Простая схема для фотодиода подключение принцип работы. Как применять фоторезисторы, фотодиоды и фототранзисторы

Фотодиод активно используется в современных электронных устройствах, из названия становится понятно, что прибор из себя представляет конструкцию с применением полупроводника, так давайте рассмотрим, что такое фотодиод Фотодиод - это полупроводниковый диод, который обладает свойством односторонней проводимости при воздействия на него оптического излучения. Фотодиод представляет собой полупроводниковый кристалл, обычно с электронно - дырочным переходом (пн). Он снабжен двумя металлическими выводами и вмонтированный в пластмассовый или же в металлический корпус.

Различают два режима работы фотодиода.

1) фотодиодный - когда во внешней цепи фотодиода содержится источник постоянного тока, который создает на переходе обратное смещение и вентильный, когда такой источник отсутствует. В фотодиодном режиме фотодиод, как и фоторезистор используют для управления током. Фототок фотодиода сильным образом зависит от интенсивности падающего излучения и не зависит от напряжения смещения.

2) Вентильный режим - когда фотодиод, как и фотоэлемент, используют в качестве генератора ЭДС.

Основные параметры фотодиода - порог чувствительности, уровень шумов, область спектральной чувствительности лежит в пределах от 0,3 до 15 мкм (микрометров), инерционность - время восстановления фототока, Существуют также фотодиоды с прямой структурой.Фотодиод является составным элементом во многих опто- электронных устройствах. фотодиоды и фотоприемники широко применяются в опронных парах, приемниках излучения видео - аудио сигналов. Широко применяется для принятия сигнала с лазерных диодов в CD и DVD дисководах.

Сигнал от лазерного диода, который в себе содержит кодированную информацию, сначала попадает на фотодиод, который в данных устройствах имеет сложную конструкцию, затем после расшифровки информация поступает на центральный процессор, где после обработки превращается в аудио или видеосигнал. На таком принципе работают все современные дисководы. Так же фотодиоды применяются в различных охранных устройствах, в инфракрасных датчиках движения и присутствия. Очередной обзор для начинающего радиолюбителя подошел к концу, удачи в мире радиоэлектроники - АКА.

Теория для начинающих

Обсудить статью ФОТОДИОДЫ

radioskot.ru

описание принципа работы, схема, характеристики, способы применения

Фотодиоды – полупроводниковые элементы, обладающие светочувствительностью. Их основная функция – трансформация светового потока в электросигнал. Такие полупроводники применяются в составе различных приборов, функционирование которых базируется на использовании световых потоков.

Принцип работы фотодиодов

Основа действия фотодиодных элементов – внутренний фотоэффект. Он заключается в возникновении в полупроводнике под воздействием светового потока неравновесных электронов и дырок (т.е. атомов с пространством для электронов), которые формируют фотоэлектродвижущую силу.

  • При попадании света на p-n переход происходит поглощение световых квантов с образованием фотоносителей
  • Фотоносители, находящиеся в области n, подходят к границе, на которой они разделяются под влиянием электрополя
  • Дырки перемещаются в зону p, а электроны собираются в зоне n или около границы
  • Дырки заряжают p-область положительно, а электроны – n-зону отрицательно. Образуется разность потенциалов
  • Чем выше освещенность, тем больше обратный ток

Если полупроводник находится в темноте, то его свойства аналогичны обычному диоду. При прозванивании тестером в отсутствии освещения результаты будут аналогичны тестированию обычного диода. В прямом направлении будет присутствовать маленькое сопротивление, в обратном – стрелка останется на нуле.

Схема фотодиода

Режимы работы

Фотодиоды разделяют по режиму функционирования.

Режим фотогенератора

Осуществляется без источника электропитания. Фотогенераторы, являющиеся комплектующими солнечных батарей, иначе называют «солнечными элементами». Их функция – преобразовывать солнечную энергию в электрическую. Наиболее распространены фотогенераторы, созданные на базе кремния – дешевого, распространенного, хорошо изученного. Обладают невысокой стоимостью, но их КПД достигает всего 20%. Более прогрессивными являются пленочные элементы.

Режим фотопреобразования

Источник электропитания в схему подключается с обратной полярностью, фотодиод в данном случае служит датчиком освещенности.

Основные параметры

Свойства фотодиодов определяют следующие характеристики:

  • Вольтамперная. Определяет изменение величины светового тока в соответствии с меняющимся напряжением при стабильных потоке света и темновом токе
  • Спектральная. Характеризует влияние длины световой волны на фототок
  • Постоянная времени – это период, в ходе которого ток реагирует на увеличение затемнения или освещенности на 63% от установленного значения
  • Порог чувствительности – минимальный световой поток, на который реагирует диод
  • Темновое сопротивление – показатель, характерный для полупроводника при отсутствии света
  • Инерционность

Из чего состоит фотодиод?

Разновидности фотодиодов

P-i-n

Для этих полупроводников характерно наличие в зоне p-n перехода участка, обладающего собственной проводимостью и значительной величиной сопротивления. При попадании на этот участок светового потока появляются пары дырок и электронов. Электрополе в данной области постоянно, пространственного заряда нет. Такой вспомогательный слой расширяет диапазон рабочих частот полупроводника. По функциональному назначению p-i-n-фотодиоды разделяют на детекторные, смесительные, параметрические, ограничительные, умножительные, настроечные и другие.

Лавинные

Этот вид отличается высокой чувствительностью. Его функция – преобразование светового потока в электросигнал, усиленный с помощью эффекта лавинного умножения. Может применяться в условиях незначительного светового потока. В конструкции лавинных фотодиодов используются сверхрешетки, способствующие снижению помех при передаче сигналов.

С барьером Шоттки

Состоит из металла и полупроводника, вокруг границы соединения которых создается электрическое поле. Главным отличием от обычных фотодиодов p-i-n-типа является использование основных, а не дополнительных носителей зарядов.

С гетероструктурой

Образуется из двух полупроводников, имеющих разную ширину запрещенной зоны. Гетерогенным называют слой, находящийся между ними. Путем подбора таких полупроводников можно создать устройство, работающее в полном диапазоне длин волн. Его минусом является высокая сложность изготовления.

Области применения фотодиодов

  • Оптоэлектронные интегральные микросхемы. Полупроводники обеспечивают оптическую связь, что гарантирует эффективную гальваноразвязку силовых и руководящих цепей при поддержании функциональной связи.
  • Многоэлементные фотоприемники – сканисторы, фоточувствительные аппараты, фотодиодные матрицы. Оптоэлектрический элемент способен воспринимать не только яркостную характеристику объекта и ее изменение во времени, но и создавать полный визуальный образ.

Другие сферы использования: оптоволоконные линии, лазерные дальномеры, установки эмиссионно-позитронной томографии.

www.radioelementy.ru

Фотодиоды

Фотодиодом принято называть полупроводниковый прибор с одним p-n переходом, вольтамперная характеристика которого зависит от воздействующего на него света.

Условное графическое обозначение, структура и внешний вид фотодиода представлены на рис. 17.6.

Рис. 17.6. Фотодиод:

а - условное графическое обозначение; б – структура; в – внешний вид

Простейший фотодиод представляет собой обычный полупроводниковый диод, в котором обеспечивается возможность воздействия оптического излучения на р-n переход. В равновесном состоянии, когда поток излучения полностью отсутствует, концентрация носителœей, распределœение потенциала и энергетическая зонная диаграмма фотодиода полностью соответствуют обычному p-n переходу (см. рис. 1.3).

При воздействии излучения в направлении, перпендикулярном плоскости p-n перехода, в результате поглощения фотонов с энергией, большей, чем ширина запрещенной зоны, в n области возникают электронно-дырочные пары. Эти электроны и дырки называют фотоносителями. При диффузии фотоносителœей вглубь n области основная доля электронов и дырок не успевает рекомбинировать и доходит до границы p-n перехода. Здесь фотоносители разделяются электрическим полем p-n перехода, причем дырки переходят в p область, а электроны не могут преодолеть поле перехода, и скапливаются у границы p-n перехода и n области. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, ток через p-n переход обусловлен дрейфом небазовых носителœей – дырок. Дрейфовый ток фотоносителœей принято называть фототоком.

Фотоносители – дырки заряжают p область положительно относительно n области, а фотоносители – электроны – n область отрицательно по отношению к p области. Возникающая разность потенциалов принято называть фото ЭДС Eф. Генерируемый ток в фотодиоде – обратный, он направлен от катода к аноду, причем его величина тем больше, чем больше освещенность.

Фотодиоды могут работать в одном из двух режимов – с внешним источником электрической энергии (режим преобразователя), либо без внешнего источника электрической энергии (режим генератора).

При работе фотодиода в режиме преобразователя на него подают обратное напряжение (рис. 17.7, а). Используются обратные ветви ВАХ фотодиода при различных уровнях освещенности Ф, Ф1, Ф2 (рис. 17.7, б).

Учитывая зависимость отуровня освещённости изменяется обратный ток фотодиода, и на резисторе нагрузки изменяется напряжение. В системах желœезнодорожной автоматики по такой схеме включён германиевый фотодатчик в приборах обнаружения нагретой буксы (германий чувствителœен к ИК лучам, а кремний – к видимому свету).

а) б)

Рис. 17.7. Работа фотодиода в режиме фотопреобразователя:

а – схема включения; б – вольтамперные характеристики

Фотодиоды, работающие в режиме генератора, используют в качестве источников питания, преобразующих энергию солнечного излучения в электрическую. Οʜᴎ называются солнечными элементами и входят в состав солнечных батарей. Выходное напряжение солнечной батареи сильно зависит от уровня освещённости. Чтобы получить стабильное напряжение в нагрузке, солнечную батарею используют совместно с аккумулятором. Схема солнечно-аккумуляторной батареи представлена на рис. 17.8.

Рис. 17.8. Принципиальная схема солнечно-аккумуляторной батареи

При максимальной освещённости солнечная батарея питает нагрузку и заряжает аккумулятор. Размещено на реф.рфВ темноте нагрузка питается только от аккумулятора, а чтобы аккумулятор не разряжался на солнечную батарею, в схеме установлен диод VD1.

КПД кремниевых солнечных элементов составляет около 20 %. Важными техническими параметрами солнечных батарей являются отношения их выходной мощности к массе и площади, занимаемой солнечной батареей. Эти параметры достигают значений 200 Вт/кг и 1 кВт/м2 соответственно.

Более подробные сведения о фотодиодах приведены в литературе .

Читайте также

  • - Фоторезисторы и фотодиоды. Устройство, принцип действия

    Лекция 14 Фоторезисторами называют полупроводниковые приборы, принцип действия которых основан на изменение сопротивления полупроводника под действием светового излучения. На рис.7.31 показано устройство фоторезистора, состоящего из диэлектрической подложки 1,... [читать подробнее].

  • - Фотодиоды

    Фотодиодами называют полупроводниковые диоды, в которых осуществляется управление величиной обратного тока с помощью света. Фотодиод устроен так, что в нем обеспечивается доступ света к - переходу. В отсутствие светового потока в фотодиоде при обратном напряжении... [читать подробнее].

  • - Фотодиоды и светодиоды

    Рис. 9. Фотодиод в режиме фотосопротивления Фотодиод в режиме фотосопротивления и его ВАХ показаны на рис. 9. К фотодиоду от источника ЭДС прикладывается обратное напряжение, поэтому его переход закрыт. Если поток равен нулю, то обратный ток через фотодиод примерно... [читать подробнее].

  • - Фотодиоды

    Фотодиод – полупроводниковый фотоэлектрический прибор с внутренним фотоэффектом, отображающим процесс преобразования световой энергии в электрическую. Внутренний фотоэффект заключается в том что под действием энергии светового излучения в области p – n – перехода... [читать подробнее].

  • - Фотодиоды

    Фотодиодом называют фотогальванический приёмник с электронно-дырочным переходом, облучение которого светом вызывает увеличение силы обратного тока. Материалом полупроводника фотодиода обычно выступает кремний, сернистое серебро, сернистый таллий или арсенид галлия.... [читать подробнее].

  • - Фотоприемные устройства. Фотоэффект. ПЗС и ФЭУ. Фотодиоды.

    Фотоприемники. В сканерах плоскостного и проекционно­го типов применяются приборы с зарядовой связью (ПЗС), а в барабанных - фотоэлектронные умножители и фотодиоды. Иногда бывает наоборот. Работа ПЗС основана на свойстве конденсаторов МОП-струк­туры (металл - оксид -... [читать подробнее].

  • - Фотодиоды

    Фотодиод имеет структуру обычного p-n- перехода. Обратный ток фотодиода зависит от уровня освещенности. Фотодиоды помещаются в металлический корпус с прозрачным окном. Условное графическое изображение фотодиода и его схема замещения приведены на рис.3.11. На рис.3.12... [читать подробнее].

  • referatwork.ru

    Фотодиоды | Техника и Программы

    Принцип действия фотодиода

    Полупроводниковый фотодиод - это полупроводниковый диод обратный ток которого зависит от освещенности.

    Обычно в качестве фотодиода используют полупроводниковые диоды с р-п переходом, который смещен в обратном направлении внешним источником питания. При поглощении квантов света в р-n переходе или в прилегающих к нему областях образуются новые носители заряда. Неосновные носители заряда, возникшие в областях, прилегающих к р-п переходу на расстоянии, не превь,’ ,ающем диффузионной длины, диффундируют в р-п переход и проходя* через него под действием электрического поля. То есть обратный ток при освещении возрастает. Поглощение квантов непосредственно в р-п переходе приводит к аналогичным результатам. Величина, на которую возрастает обратный ток, называется фототоком.

    Характеристики фотодиодов

    Свойства фотодиода можно охарактеризовать следующими характеристиками:

    Вольт-амперная характеристика фотодиода представляет собой зависимость светового тока при неизменном световом потоке и темнового тока 1т от напряжения.

    Световая характеристика фотодиода обусловлена зависимостью фототока от освещенности. При увеличении освещенности фототок возрастает.

    Спектральная характеристика фотодиода - это зависимость фототока от длины волны падающего света на фотодиод. Она определяется для больших длин волн шириной запрещенной зоны, а при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.

    Постоянная времени - это время, в течение которого фото- ток фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63%) по отношению к установившемуся значению.

    Темновое сопротивление - сопротивление фотодиода в отсутствие освещения.

    Интегральная чувствительность определяется формулой:

    где 1ф - фототок, Ф - освещенность.

    Инерционность

    Существует три физических фактора, влияющих на инерционность:

    1. Время диффузии или дрейфа неравновесных носителей через базу т;

    2. Время пролета через р-n переход т,;

    3. Время перезарядки барьерной емкости р-п перехода, характеризующееся постоянной времени RC6ap.

    Толщина р-п перехода, зависящая от обратного напряжения и концентрации примесей в базе, обычно меньше 5 мкм, а значит, т, - 0,1 не. RC6ap определяется барьерной емкостью р-п перехода, зависящей от напряжения и сопротивления базы фотодиода при малом сопротивлении нагрузки во внешней цепи. Величина RC6ap обычно составляет нескольких наносекунд.

    Расчет КПД фотодиода и мощности

    КПД вычисляется по формуле:

    где Росв - мощность освещенности; I - сила тока;

    U - напряжение на фотодиоде.

    Расчет мощности фотодиода иллюстрирует рис. 2.12 и таблица 2.1.

    Рис. 2.12. Зависимость мощности фотодиода от напряжения и силы тока

    Максимальная мощность фотодиода соответствует максимальной площади данного прямоугольника.

    Таблица 2.1. Зависимость мощности от КПД

    Мощность освещенности, мВт

    Сила тока, мА

    Напряжение, В

    Применение фотодиода в олтоэлектронике

    Фотодиод является составным элементом во многих сложных оптоэлектронных устройствах:

    Оптоэлектронные интегральные микросхемы.

    Фотодиод может обладать большим быстродействием, но его коэффициент усиления фототока не превышает единицы. Благодаря наличию оптической связи оптоэлектронные интегральные микросхемы обладают рядом существенных достоинств, а именно: почти идеальная гальваническая развязка управляющих цепей от силовых при сохранении между ними сильной функциональной связи.

    Многоэлементные фотоприемники.

    Эти приборы (сканистор, фотодиодная матрица с управлением на МОП-транзисторе, фоточувствительные приборы с зарядовой связью и другие) относятся к числу наиболее быстро развивающихся и прогрессирующих изделий электронной техники. Оптоэлектрический «глаз» на основе фотодиода способен реагировать не только на яркостно-временные, но и на пространственные характеристики объекта, то есть воспринимать его полный зрительный образ.

    Число фоточувствительных ячеек в приборе является достаточно большим, поэтому кроме всех проблем дискретного фотоприемника (чувствительность, быстродействие, спектральная область) приходится решать и проблему считывания информации. Все многоэлементные фотоприемники представляют собой сканирующие системы, то есть устройства, позволяющие производить анализ исследуемого пространства путем последовательного его просмотра (поэлементного разложения).

    Как происходит восприятие образов?

    Распределение яркости объекта наблюдения превращается в оптическое изображение и фокусируется на фоточувствительную поверхность. Здесь световая энергия переходит в электрическую, причем отклик каждого элемента (ток, заряд, напряжение) пропорционален его освещенности. Яркостная картина преобразуется в электрический рельеф. Схема сканирования производит периодический последовательный опрос каждого элемента и считывание содержащейся в нем информации. Тогда на выходе устройства мы получаем последовательность видеоимпульсов, в которой закодирован воспринимаемый образ.

    При создании многоэлементных фотоприемников стремятся обеспечить наилучшее выполнение ими функций преобразования и сканирования. Оптроны.

    Оптроном называется такой оптоэлектронный прибор, в котором имеются источник и приемник излучения с тем или иным видом оптической связи между ними, конструктивно объединенные и помещенные в один корпус. Между управляющей цепью (ток в которой мал, порядка нескольких мА), куда включен излучатель, и исполнительной, в которой работает фотоприемник, отсутствует электрическая (гальваническая) связь, а управляющая информация передается посредством светового излучения.

    Это свойство оптоэлектронной пары (а в некоторых видах оптронов присутствует по несколько не связанных друг с другом даже оптически оптопар) оказалось незаменимым в тех электронных узлах, где нужно максимально устранить влияние выходных электрических цепей на входные. У всех дискретных элементов (транзисторов, тиристоров, микросхем, являющихся коммутационными сборками, или микросхем с выходом, позволяющим коммутировать нагрузку большой мощности) управляющие и исполнительные цепи электрически связаны друг с другом. Это часто недопустимо, если коммутируется высоковольтная нагрузка. К тому же, возникающая обратная связь неминуемо приводит к появлению дополнительных помех.

    Конструктивно фотоприемник обычно крепится на дне корпуса, а излучатель - в верхней части. Зазор между излучателем и фотоприемником заполнен иммерсионным материалом - чаще всего эту роль выполняет полимерный оптический клей. Этот материал исполняет роль линзы, фокусирующей излучение на чувствительный слой фотоприемника. Иммерсионный материал снаружи покрыт специальной пленкой, отражающей световые лучи внутрь, чтобы препятствовать рассеянию излучения за пределы рабочей зоны фотоприемника.

    Роль излучателей в оптронах, как правило, выполняют светодиоды на основе арсенид-галлия. Светочувствительные элементы в оптопарах могут представлять собой фотодиоды (оптопары серии АОД…), фототранзисторы, фототринисторы (оптопары серии АОУ.,.) и высокоинтегрированные схемы фотореле. В диодной оптопаре, например, в качестве фотоприемного элемента используется фотодиод на основе кремния, а излучателем служит инфракрасный излучающий диод. Максимум спектральной характеристики излучения диода приходится на длину волны около 1 мкм. Диодные оптопары применяются в фотодиодном и фотогенераторном режимах.

    Транзисторные оптроны (серия АОТ…) имеют некоторые преимущества относительно диодных. Коллекторным током биполярного транзистора управляют как оптически (воздействуя на светодиод), так и электрически по базовой цепи (в данном случае работа фототранзистора при отсутствии излучения управляющего светодиода оптрона практически не отличается от работы обыкновенного кремниевого транзистора). У полевого транзистора управление осуществляется через цепь затвора.

    Кроме того, фототранзистор может работать в ключевом и усилительных режимах, а фотодиод - только в ключевом. Оптроны с составными-транзисторами (например, АОТ1ЮБ), имеют наибольший коэффициент усиления (как и обычный узел на составном транзисторе), могут коммутировать напряжение и ток достаточно больших величин и по данным параметрам уступают только тиристорным оптронам и оптоэлектронным реле типа КР293КП2 - КР293КП4, которые приспособлены для коммутации высоковольтных и сильноточных цепей. Сегодня в розничной продаже появились новые оптоэлектронные реле серий К449 и К294. Серия К449 позволяет коммутировать напряжение до 400 В при токе до 150 мА. Такие микросхемы в четырехвы- водном компактном корпусе DIP-4 приходят на смену маломощным электромагнитным реле и имеют по сравнению с реле массу преимуществ (бесшумность работы, надежность, долговечность, отсутствие механических контактов, широкий диапазон напряжения срабатывания). Кроме того, их доступная цена объясняется тем, что нет необходимости использовать драгметаллы (в реле ими покрываются коммутирующие контакты).

    В резисторных оптронах (например, ОЭП-1) и-злучателями являются электрические минилампы накаливания, помещенные также в один корпус.

    Графическим обозначениям оптронов по ГОСТу присвоен условный код - латинская буква U, после которой следует порядковый номер прибора в схеме.

    В главе 3 книги описаны приборы и устройства, иллюстрирующие применение оптронов.

    Применение фотоприемников

    Любое оптоэлектронное устройство содержит фотоприемный блок. И в большинстве современных оптоэлектронных устройств фотодиод составляет основу фотоприемника.

    В сопоставлении с другими, более сложными фотоприемниками, они обладают наибольшей стабильностью температурных характеристик и лучшими эксплуатационными свойствами.

    Основной недостаток, на который обычно указывают, - отсутствие усиления. Но он достаточно условен. Почти в каждом оп- тоэлектронном устройстве фотоприемник работает на ту или иную согласующую электронную схему. И введение усилительного каскада в нее значительно проще и целесообразнее, чем придание фотоприемнику несвойственных ему функций усиления.

    Высокая информационная емкость оптического канала, связанная с тем, что частота световых колебаний (около 1015 Гц) в 103…104 раз выше, чем в освоенном радиотехническом диапазоне. Малое значение длины волны световых колебаний обеспечивает высокую достижимую плотность записи информации в оптических запоминающих устройствах (до 108 бит/см2).

    Острая направленность (кучность) светового излучения, обусловленная тем, что угловая расходимость луча пропорциональна длине волны и может быть меньше одной минуты. Это позволяет концентрированно и с малыми потерями передавать электрическую энергию в любую область пространства.

    Возможность двойной - временной и пространственной - модуляции светового луча. Так как источник и приемник в опто- электронике не связаны друг с другом электрически, а связь между ними осуществляется только посредством светового луча (электрически нейтральных фотонов), то они не влияют друг на друга. И поэтому в оптоэлектронном приборе поток информации передается лишь в одном направлении - от источника к приемнику. Каналы, по которым распространяется оптическое излучение, не воздействуют друг на друга и практически не чувствительны к электромагнитным помехам, что определяет их высокую помехозащищенность.

    Важная особенность фотодиодов - высокое быстродействие. Они могут работать на частотах до нескольких МГц. обычно изготовляют из германия или кремния.

    Фотодиод является потенциально широкополосным приемником. Этим обуславливается его повсеместное применение и популярность.

    ИК спектра

    Инфракрасный излучающий диод (ИК диод) представляет собой полупроводниковый диод, который при протекании через него прямого тока излучает электромагнитную энергию в инфракрасной области спектра.

    В отличие от видимого человеческим глазом спектра излучения (какое, например, производит обычный светоизлучающий диод на основе фосфида галлия) ИК излучение не может быть воспринято человеческим глазом, а регистрируется с помощью специальных приборов, чувствительных к данному спектру излучения. Среди популярных фотоприемных диодов ИК спектра можно отметить фоточувствительные приборы МДК-1, ФД263-01 и подобные им.

    Спектральные характеристики ИК излучающих диодов имеют выраженный максимум в интервале волн 0,87…0,96 мкм. Эффективность излучения и КПД данных приборов выше, чем у светоизлучающих диодов.

    На основе ИК диодов (которые в электронных конструкциях занимают важное место передатчиков импульсов ИК спектра) конструируются волоконно-оптические линии (выгодно отличающиеся своим быстродействием и помехозащищенностью), многоплановые электронные бытовые узлы и, конечно же, электронные узлы охраны. В этом есть свое преимущество, т.к. ИК луч невидим человеческим глазом и в некоторых случаях (при условии использования нескольких разнонаправленных ИК лучей) определить визуально наличие самого охранного устройства невозможно до его перехода в режим «тревога»). Опыты работы в сфере производства и обслуживания систем охраны на основе ИК излучателей позволяют все же дать некоторую рекомендацию по определению рабочего состояния ИК излучателей.

    Если близко всмотреться в излучающую поверхность ИК диода (например, АЛ147А, АЛ156А), когда на него подан сигнал управления, то можно заметить слабое красное свечение. Световой спектр этого свечения близок к цвету глаз животных альбиносов (крыс, хомяков и т.д.). В темноте ИК свечение еще более выражено. Необходимо заметить, что длительное время всматриваться в излучающий ИК световую энергию прибор нежелательно с медицинской точки зрения.

    Кроме систем охраны, ИК излучающие диоды в настоящее время находят применение в брелоках сигнализации для автомобилей, различного рода беспроводных передатчиках сигналов на расстояние. Например, подключив к передатчику модулированный НЧ сигнал от усилителя, с помощью ИК приемника на некотором расстоянии (зависит от мощности излучения и рельефа местности) можно прослушивать звуковую информацию, телефонные переговоры также можно транслировать на расстояние. Этот способ сегодня менее эффективен, но все же является альтернативным вариантом домашнему радиотелефону. Самым популярным (в быту) применением ИК излучающих диодов являются пульты дистанционного управления различными бытовыми приборами.

    Как может легко убедиться любой радиолюбитель, вскрыв крышку ПДУ, электронная схема этого прибора не сложна и может быть повторена без особых проблем. В радиолюбительских конструкциях, некоторые из которых описаны в третьей главе данной книги, электронные устройства с ИК излучающими и приемными приборами намного проще, чем промышленные устройства.

    Параметры, определяющие статические режимы работы ИК диодов (прямое и обратное максимально допустимое напряжение, прямой ток и т.д.) сходны с параметрами фотодиодов. Основными специфическими параметрами, по которым их идентифицируют, для ИК диодов являются:

    Мощность излучения - Ризл - поток излучения определенного спектрального состава, излучаемого диодом. Характеристикой диода, как источника ИК излучения, является ватт-амперная характеристика - зависимость мощности излучения в Вт (милливаттах) от прямого тока, протекающего через диод. Диаграмма направленности излучения диода показывает уменьшение мощности излучения в зависимости от угла между направлением излучения и оптической осью прибора. Современные ИК диоды различаются между имеющими остронаправленное излучение и рассеянное.

    При конструировании электронных узлов следует учитывать, что дальность передачи ИК сигнала прямо зависит от угла наклона (совмещения передающей и приемной частей устройства) и мощности ИК диода. При взаимозаменах ИК диодов необходимо учитывать этот параметр мощности излучения. Некоторые справочные данные по отечественным ИК диодам приведены в табл. 2.2.

    Данные по взаимозаменам зарубежных и отечественных приборов приведены в приложении. Сегодня наиболее популярными типами ИК диодов среди радиолюбителей считаются приборы модельного ряда АЛ 156 и АЛ147. Они оптимальны по универсальности применения и стоимости.

    Импульсная мощность излучения - Ризл им - амплитуда потока излучения, измеряемая при заданном импульсе прямого тока через диод.

    Ширина спектра излучения - интервал длин волн, в котором спектральная плотность мощности излучения составляет половину максимальной.

    Максимально допустимый прямой импульсный ток 1пр им (ИК диоды в основном используются в импульсном режиме работы).

    Таблица 2.2. Излучающие диоды инфракрасного спектра

    Мощность излучения, мВт

    Длина волны, мкм

    Ширина спектра, мкм

    Напряжение на приборе, В

    Угол излучения, град

    нет данных

    нет данных

    Время нарастания импульса излучения tHapизл - интервал времени, в течение которого мощность излучения диода нарастает с 10 до 100% от максимального значения.

    Параметр времени спада импульса tcnM3J1 аналогичен предыдущему.

    Скважность - Q - отношение периода импульсных колебаний к длительности импульса.

    В основе предлагаемых к повторению электронных узлов (глава 3 данной книги) лежит принцип передачи и приема модулированного ИК сигнала. Но не только в таком виде можно использовать принцип работы ИК диода. Такие оптореле могут работать и в режиме реагирования на отражение лучей (фотоприемник размещается рядом с излучателем). Этот принцип воплощен в электронные узлы, реагирующие на приближение к объединенному приемо-передающему узлу какого-либо предмета или человека, что также может служить датчиком в системах охраны.

    Вариантов применения ИК диодов и устройств на их основе бесконечно много и они ограничиваются только эффективностью творческого подхода радиолюбителя.

    nauchebe.net

    Фотодиод - это... Что такое Фотодиод?

    Фотодиод ФД-10-100 активная площадь-10х10 мм² ФД1604 (активная площадь ячейки 1,2х4мм2 - 16шт) Обозначение на схемах

    Фотодио́д - приёмник оптического излучения, который преобразует попавший на его фоточувствительную область свет в электрический заряд за счёт процессов в p-n-переходе.

    Фотодиод, работа которого основана на фотовольтаическом эффекте (разделение электронов и дырок в p- и n- области, за счёт чего образуется заряд и ЭДС), называется солнечным элементом. Кроме p-n фотодиодов, существуют и p-i-n фотодиоды, в которых между слоями p- и n- находится слой нелегированного полупроводника i. p-n и p-i-n фотодиоды только преобразуют свет в электрический ток, но не усиливают его, в отличие от лавинных фотодиодов и фототранзисторов.

    Описание

    Структурная схема фотодиода. 1 - кристалл полупроводника; 2 - контакты; 3 - выводы; Φ - поток электромагнитного излучения; Е - источник постоянного тока; RH - нагрузка.

    Принцип работы:

    При воздействии квантов излучения в базе происходит генерация свободных носителей, которые устремляются к границе p-n-перехода. Ширина базы (n-область) делается такой, чтобы дырки не успевали рекомбинировать до перехода в p-область. Ток фотодиода определяется током неосновных носителей - дрейфовым током. Быстродействие фотодиода определяется скоростью разделения носителей полем p-n-перехода и ёмкостью p-n-перехода Cp-n

    Фотодиод может работать в двух режимах:

    • фотогальванический - без внешнего напряжения
    • фотодиодный - с внешним обратным напряжением

    Особенности:

    • простота технологии изготовления и структуры
    • сочетание высокой фоточувствительности и быстродействия
    • малое сопротивление базы
    • малая инерционность

    Параметры и характеристики фотодиодов

    Параметры:

    • чувствительность отражает изменение электрического состояния на выходе фотодиода при подаче на вход единичного оптического сигнала. Количественно чувствительность измеряется отношением изменения электрической характеристики, снимаемой на выходе фотоприёмника, к световому потоку или потоку излучения, его вызвавшему. ; - токовая чувствительность по световому потоку; - вольтаическая чувствительность по энергетическому потоку
    • шумы помимо полезного сигнала на выходе фотодиода появляется хаотический сигнал со случайной амплитудой и спектром - шум фотодиода. Он не позволяет регистрировать сколь угодно малые полезные сигналы. Шум фотодиода складывается из шумов полупроводникового материала и фотонного шума.

    Характеристики:

    • вольт-амперная характеристика (ВАХ) зависимость выходного напряжения от входного тока.
    • спектральные характеристики зависимость фототока от длины волны падающего света на фотодиод. Она определяется со стороны больших длин волн шириной запрещённой зоны, при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.
    • световые характеристики зависимость фототока от освещённости, соответствует прямой пропорциональности фототока от освещённости. Это обусловлено тем, что толщина базы фотодиода значительно меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, возникшие в базе, принимают участие в образовании фототока.
    • постоянная времени это время, в течение которого фототок фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63 %) по отношению к установившемуся значению.
    • темновое сопротивление сопротивление фотодиода в отсутствие освещения.
    • инерционность

    Классификация

    • В p-i-n структуре средняя i-область заключена между двумя областями противоположной проводимости. При достаточно большом напряжении оно пронизывает i-область, и свободные носители, появившееся за счет фотонов при облучении, ускоряются электрическим полем p-n переходов. Это дает выигрыш в быстродействии и чувствительности. Повышение быстродействия в p-i-n фотодиоде обусловлено тем, что процесс диффузии заменяется дрейфом электрических зарядов в сильном электрическом поле. Уже при Uобр≈0.1В p-i-n фотодиод имеет преимущество в быстродействии.
    Достоинства: 1) есть возможность обеспечения чувствительности в длинноволновой части спектра за счет изменения ширины i-области. 2) высокая чувствительность и быстродействие 3) малое рабочее напряжение Uраб Недостатки: сложность получения высокой чистоты i-области
    • Фотодиод Шоттки (фотодиод с барьером Шоттки) Структура металл-полупроводник. При образовании структуры часть электронов перейдет из металла в полупроводник p-типа.
    • Лавинный фотодиод
    • В структуре используется лавинный пробой. Он возникает тогда, когда энергия фотоносителей превышает энергию образования электронно-дырочных пар. Очень чувствительны. Для оценки существует коэффициент лавинного умножения: Для реализации лавинного умножения необходимо выполнить два условия: 1) Электрическое поле области пространственного заряда должно быть достаточно большим, чтобы на длине свободного пробега электрон набрал энергию, большую, чем ширина запрещённой зоны: 2) Ширина области пространственного заряда должна быть существенно больше, чем длина свободного пробега: Значение коэффициентов внутреннего усиления составляет M=10-100 в зависимости от типа фотодиодов.
    • Фотодиод с гетероструктурой Гетеропереходом называют слой, возникающий на границе двух полупроводников с разной шириной запрещённой зоны. Один слой р+ играет роль «приёмного окна». Заряды генерируются в центральной области. За счет подбора полупроводников с различной шириной запрещённой зоны можно перекрыть весь диапазон длин волн. Недостаток - сложность изготовления.

    Особое место в электротехнике занимают фотодиоды, которые применяются в различных устройствах и приборах. Фотодиодом называется полупроводниковый элемент, по своим свойствам подобный простому диоду. Его обратный ток прямо зависит от интенсивности светового потока, падающего на него. Чаще всего в качестве фотодиода применяют полупроводниковые элементы с р-n переходом.

    Устройство и принцип действия

    Фотодиод входит в состав многих электронных устройств. Поэтому он и приобрел широкую популярность. Обычный светодиод – это диод с р-n переходом, проводимость которого зависит от падающего на него света. В темноте фотодиод обладает характеристиками обычного диода.

    1 – полупроводниковый переход.
    2 – положительный полюс.
    3 – светочувствительный слой.
    4 – отрицательный полюс.

    При действии потока света на плоскость перехода фотоны поглощаются с энергией, превышающей предельную величину, поэтому в n-области образуются пары носителей заряда — фотоносители.

    При смешивании фотоносителей в глубине области «n» основная часть носителей не успевает рекомбинировать и проходит до границы р-n. На переходе фотоносители делятся электрическим полем. При этом дырки переходят в область «р», а электроны не способны пройти переход, поэтому накапливаются возле границы перехода р-n, а также области «n».

    Обратный ток диода при воздействии света повышается. Значение, на которое повышается обратный ток, называют фототоком.

    Фотоносители в виде дырок осуществляют положительный заряд области «р», по отношению к области «n». В свою очередь электроны производят отрицательный заряд «n» области относительно «р» области. Возникшая разность потенциалов называется фотоэлектродвижущей силой, и обозначается «Е ф ». Электрический ток, возникающий в фотодиоде, является обратным, и направлен от катода к аноду. При этом его величина зависит от величины освещенности.

    Режимы работы

    Фотодиоды способны функционировать в следующих режимах:

    • Режим фотогенератора . Без подключения источника электричества.
    • Режим фотопреобразователя . С подключением внешнего источника питания.

    В работе фотогенератора фотодиоды используются вместо источника питания, которые преобразуют солнечный свет в электрическую энергию. Такие фотогенераторы называются солнечными элементами. Они являются основными частями солнечных батарей, применяемых в различных устройствах, в том числе и на космических кораблях.

    КПД солнечных батарей на основе кремния составляет 20%, у пленочных элементов этот параметр значительно больше. Важным свойством солнечных батарей является зависимость мощности выхода к весу и площади чувствительного слоя. Эти свойства достигают величин 200 Вт / кг и 1 кВт / м 2 .

    При функционировании фотодиода в качестве фотопреобразователя , источник напряжения Е подключается в схему обратной полярностью. При этом применяются обратные графики вольт-амперной характеристики при разных освещенностях.

    Напряжение и ток на нагрузке R н определяются на графике по пересечениям характеристики фотодиода и нагрузочной линии, которая соответствует резистору R н. В темноте фотодиод по своему действию равнозначен обычному диоду. Ток в режиме темноты для кремниевых диодов колеблется от 1 до 3 микроампер, для германиевых от 10 до 30 микроампер.

    Виды фотодиодов

    Существует несколько различных видов фотодиодов, которые имеют свои достоинства.

    p i n фотодиод

    В области р-n у этого диода имеется участок с большим сопротивлением и собственной проводимостью. При воздействии на него света возникают пары дырок и электронов. Электрическое поле в этой зоне имеет постоянное значение, пространственный заряд отсутствует.

    Этот вспомогательный слой значительно снижает емкость запирающего слоя, и не зависит от напряжения. Это расширяет полосу рабочих частот диодов. В результате скорость резко повышается, и частота достигает 10 10 герц. Повышенное сопротивление этого слоя значительно уменьшает ток работы при отсутствии освещения. Чтобы световой поток смог проникнуть через р-слой, он не должен быть толстым.


    Лавинные фотодиоды

    Такой вид диодов является полупроводниками с высокой чувствительностью, которые преобразуют освещение в сигнал электрического тока с помощью фотоэффекта. Другими словами, это фотоприемники, усиливающие сигнал вследствие эффекта лавинного умножения.

    1 — омические контакты 2 — антиотражающее покрытие

    Лавинные фотодиоды более чувствительны, в отличие от других фотоприемников. Это дает возможность применять их для незначительных мощностей света.

    В конструкции лавинных фотодиодов применяются сверхрешетки. Их суть заключается в том, что значительные различия ударной ионизации носителей приводят к падению шумов.

    Другим достоинством применения аналогичных структур является локализация лавинного размножения. Это также снижает помехи. В сверхрешетке толщина слоев составляет от 100 до 500 ангстрем.

    Принцип действия

    При обратном напряжении, близком к величине лавинного пробоя, фототок резко усиливается за счет ударной ионизации носителей заряда. Действие заключается в том, что энергия электрона повышается от внешнего поля и может превзойти границу ионизации вещества, вследствие чего встреча этого электрона с электроном из зоны валентности приведет к появлению новой пары электрона и дырки. Носители заряда этой пары будут ускоряться полем и могут способствовать образованию новых носителей заряда.

    Характеристики

    Свойства таких световых диодов можно описать некоторыми зависимостями.

    Вольт-амперная

    Эта характеристика является зависимостью силы тока при постоянном потоке света от напряжения.

    I — ток M — коэффициент умножения U — напряжение

    Световая

    Это свойство является зависимостью тока диода от освещения. При возрастании потока света, фототок повышается.

    Спектральная

    Это свойство является зависимостью тока диода от длины световой волны, и является шириной пограничной зоны.

    Постоянная времени

    Это время, за которое фототок диода меняется после подачи света в сравнении с установившимся значением.

    Темновое сопротивление

    Это значение сопротивления диода в темноте.

    Инерционность

    Факторы, влияющие на эту характеристику:

    • Время диффузии неравновесных носителей заряда.
    • Время прохождения по р-n переходу.
    • Период перезарядки емкости барьера р-n перехода.

    Сфера применения

    Фотодиоды являются основными элементами многих оптоэлектронных приборов.

    Интегральные микросхемы (оптоэлектронные)

    Фотодиод может иметь значительную скорость работы, но коэффициент усиления тока составляет не более единицы. Вследствие оптической связи микросхемы имеют существенные преимущества: идеальная гальваническая развязка цепей управления от мощных силовых цепей. При этом между ними сохраняется функциональная связь.

    Фотоприемники с несколькими элементами

    Эти устройства в виде фотодиодной матрицы, сканистора, являются новыми прогрессивными электронными устройствами. Их оптоэлектронный глаз с фотодиодом может создавать реакцию на пространственные и яркостные свойства объектов. Другими словами, он может видеть полный его зрительный образ.

    Количество ячеек, чувствительных к свету, очень большое. Поэтому, кроме вопросов быстродействия и чувствительности, необходимо считывание информации. Все фотоприемники с множественными фотоэлементами являются сканирующими системами, то есть, приборами, которые позволяют анализировать исследуемое пространство последовательным поэлементным просмотром.

    Фотодиоды также нашли широкое применение в оптоволоконных линиях, лазерных дальномерах. Недавно такие световые диоды стали использоваться в эмиссионно-позитронной томографии.

    В настоящее время имеются образцы светочувствительных матриц, состоящих из лавинных фотодиодов. Их эффективность и область применения зависит он некоторых факторов.

    Наиболее влияющими оказались такие факторы:

    • Суммарный ток утечек, образующийся путем сложения шумов и тока при отсутствии света.
    • Квантовая эффективность, определяющая долю падающих квантов, приводящих к возникновению тока и носителей заряда.

    Фотодиод - это полупроводниковый диод, у которого ток зависит от освещенности. Обычно под этим током подразумевают обратный ток фотодиода, потому что его зависимость от освещенности выражена на порядки сильнее, чем прямого тока. В дальнейшем мы будем говорить именно про обратный ток.

    В общем случае фотодиод представляет собой p-n переход, открытый для светового излучения. Под воздействием света в области p-n перехода генерируются носители заряда (электроны и дырки), которые проходят через него и вызывают напряжение на выводах фотодиода или протекание тока в замкнутой цепи.

    Фотодиод, в зависимости от его материала, предназначен для регистрации светового потока в инфракрасном, оптическом и ультрафиолетовом диапазоне длин волн. Фотодиоды изготавливают из кремния, германия, арсенида галлия, арсенида галлия индия и других материалов.

    Фотодиоды широко используются в системах управления, метрологии, робототехнике и других областях. Также они используются в составе других компонентов, например, оптопар, оптореле. Применительно к микроконтроллерам, фотодиоды находят применение в качестве различных датчиков - концевых датчиков, датчиков освещенности, расстояния, пульса и т.д.

    Обозначение на схемах

    На электрических схемах фотодиод обозначается как диод, с двумя направленными к нему стрелочками. Стрелки символизируют падающее на фотодиод излучение. Не путайте с обозначением светодиода, у которого стрелки направлены от него.

    Буквенное обозначение фотодиода может быть VD или BL (фотоэлемент).

    Режимы работы фотодиода

    Фотодиод работает в двух режимах: фотодиодном и фотогальваническом (фотовольтаическом, генераторном).

    В фотодиодном режиме используется источник питания, который смещает фотодиод в обратном направлении. В этом случае через фотодиод течет обратный ток, пропорциональный падающему на него световому потоку. В рабочем диапазоне напряжений (то есть до наступления пробоя), этот ток практически не зависит от приложенного обратного напряжения.

    В фотогальваническом режиме фотодиод работает без внешнего источника питания. В этом режиме он может работать в качестве датчики или в качестве элемента питания (солнечной батареи), так как под воздействием света на выводах фотодиода появляется напряжение, зависящее от потока излучения и нагрузки.


    Вольтамперная характеристика

    Чтобы получше разобраться с режимами работы фотодиода, нужно рассмотреть его вольтамперную характеристику.


    График состоит из 4 областей, так называемых квадрантов. Фотодиодному режиму соответствует работа в 3-м квадранте.

    При отсутствии излучения график представляет собой обратную ветвь вольтамперной характеристики обычного полупроводникового диода. Присутствует небольшой обратный ток, который называется тепловым (темновым) током обратно смещенного p-n перехода.

    При наличии светового потока, сопротивление фотодиода уменьшается и обратный ток фотодиода возрастает. Чем больше света падает, тем больший обратный ток течет через фотодиод. Зависимость обратного тока фотодиода от светового потока в этом режиме линейная.

    Из графика видно, что обратный ток фотодиода слабо зависит от обратного напряжения. Посмотрите на наклон графика от нулевого напряжения до напряжения пробоя, он маленький.

    Фотогальваническому режиму соответствует работа фотодиода в 4-м квадранте. И здесь можно выделить два предельных случая:

    Холостой ход (хх),
    - короткое замыкание (кз).

    Режим близкий к холостому ходу используется для получения энергии от фотодиода. То есть для применения фотодиода в качестве солнечной батареи. Конечно, от одного фотодиода будет мало проку, да и КПД у него невысокий. Но если соединить много элементов, то такой батареей можно запитать какое-нибудь мало-потребляющее устройство.

    В режиме короткого замыкания, напряжение на фотодиоде близкое к нулю, а обратный ток прямо пропорционален световому потоку. Этот режим используется для построения фотодатчиков.

    В чем преимущество и недостатки фотодиодного и фотогальванического режимов работы? Фотодиодный режим обеспечивает большее быстродействие фотодиода, но в этом режиме всегда есть темновой ток. В фотогальваническом режиме темнового тока нет, но быстродействие датчиков будет ниже.

    Фотоэлектронные приборы. Принцип работы, основные параметры и характеристики фотодиода.

    ФОТОЭЛЕКТРОННЫЕ ПРИБОРЫ - электровакуумные или полупроводниковые приборы,преобразующие эл--магн. сигналы оптич. диапазона в электрические токи, напряжения или преобразующие изображения в невидимых (напр., ИК) лучах в видимые изображения. Ф. п. предназначены для преобразования, накопления, хранения, передачи и воспроизведения информации (включая информацию в виде изображения объекта). Действие Ф. п. основано на использовании фотоэффектов: внешнего (фотоэлектронной эмиссии), внутреннего (фотопроводимости) или вентильного. К Ф. п. относятся разл. фотоэлементы, фотоэлектронные умножители, фоторезисторы , фотодиоды, электронно-оптич. преобразователи, усилители яркости изображения, а также передающие электронно-лучевые трубки.

    Фотоэлектронными называются приборы, преобразующие энергию оптического излучения в электрическую. В спектре длин волн оптического излучения для фотоэлектронных приборов в основном используются ультрафиолетовые излучения (диапазон длин волн λ=10-400 нм), видимое (λ=0,38-0,76 мкм) и инфракрасное (λ=0,74-1 мкм).
    Работа фотоэлектронных приборов основана на явлениях внутреннего и внешнего фотоэффектов. Внутренний фотоэффект, используемый в основном в полупроводниковых фотоэлектронных приборах, заключается в том, что под действием лучистой энергии оптического излучения электроны получают дополнительную энергию для их освобождения от межатомных связей и перехода из валентной зоны в зону проводимости, в результате чего электропроводимость полупроводника существенно возрастает. При этом, согласно теории Эйнштейна, энергия световых квантов (фотонов) оптического излучения должна превышать ширину запрещенной зоны полупроводника. (36)
    Следовательно, фотоэффект возможен только при воздействии на полупроводник излучения с длиной волны λ ф, меньшей некоторого граничного значения, называемого «красной границей».
    (37)
    где λ ф – длинноволновая граница спектральной чувствительности материала, мкм;
    с – скорость света в вакууме;
    – постоянная Планка;
    – ширина запрещенной зоны (рис.3), ограниченная краями энергетических зон ЗП, ВЗ, в электрон-вольтах (эВ).
    Следует отметить, что возможности фотоэлектронных приборов могут расширяться при воздействии энергии разнообразных источников излучения. Такими источниками могут быть как источники фотонов (солнечная энергия, гамма-излучение, рентгеновское излучение), так и источники частиц с высокой энергией (электронная пушка, бета-излучение, альфа-частицы, протоны и др.) .

    Фотодиод – это двухэлектродный полупроводниковый диод, в котором в результате внутреннего фотоэффекта в p-n переходе возникает односторонняя фотопроводимость при воздействии на него оптического излучения. Конструктивно он представляет собой кристалл с p-n переходом, причём световой поток при освещении прибора направляется перпендикулярно плоскости p-n перехода (рис.36). Различают два режима работы фотодиода: фотогенераторный (или, в различных источниках – запирающий, фотогальванический, фотовольтаический, вентильный) – без внешнего источника питания, и фотодиодный (иногда фотопреобразовательный) – с внешним источником.

    Рис. 36. Структура фотодиода

    Принцип работы фотодиода

    Структурная схема фотодиода. 1 - кристалл полупроводника; 2 - контакты; 3 - выводы; Ф - поток электромагнитного излучения; Е - источник постоянного тока; Rн - нагрузка.

    При воздействии квантов излучения в базе происходит генерация свободных носителей, которые устремляются к границе p-n-перехода. Ширина базы (n-область) делается такой, чтобы дырки не успевали рекомбинировать до перехода в p-область. Ток фотодиода определяется током неосновных носителей - дрейфовым током. Быстродействие фотодиода определяется скоростью разделения носителей полем p-n-перехода и емкостью p-n-перехода C p-n

    Фотодиод может работать в двух режимах:

    § фотогальванический - без внешнего напряжения

    § фотодиодный - с внешним обратным напряжением

    Особенности:

    § простота технологии изготовления и структур

    § сочетание высокой фоточувствительности и быстродействия

    § малое сопротивление базы

    § малая инерционность

    Параметры и характеристики фотодиодов

    Параметры:

    чувствительность

    отражает изменение электрического состояния на выходе фотодиода при подаче на вход единичного оптического сигнала. Количественно чувствительность измеряется отношением изменения электрической характеристики, снимаемой на выходе фотоприемника, к световому потоку или потоку излучения, его вызвавшему.

    Si v =I ΦΦv ; Si ,Ev =I ΦEv - токовая чувствительность по световому потоку

    Su e =U ΦΦe ; Si ,Ee =U ΦEe - вольтаическая чувствительность по энергетическому потоку

    помимо полезного сигнала на выходе фотодиода появляется хаотический сигнал со случайной амплитудой и спектром - шум фотодиода. Он не позволяет регистрировать сколь угодно малые полезные сигналы. Шум фотодиода складывается из шумов полупроводникового материала и фотонного шума.

    Характеристики:

    вольт-амперная характеристика (ВАХ)

    зависимость выходного напряжения от входного тока. U Φ=f (I Φ)

    спектральные характеристики

    зависимость фототока от длины волны падающего света на фотодиод. Она определяется со стороны больших длин волн шириной запрещенной зоны, при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.

    световые характеристики

    зависимость фототока от освещенности, соответствует прямой пропорциональности фототока от освещенности. Это обусловлено тем, что толщина базы фотодиода значительно меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, возникшие в базе, принимают участие в образовании фототока.

    постоянная времени

    это время, в течение которого фототок фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63%) по отношению к установившемуся значению.

    темновое сопротивление

    сопротивление фотодиода в отсутствие освещения.

    Инерционность

    Устройство и основные физические процессы. Упрощенная структура фотодиода приведена на рис. 6.7,а, а его условное графическое изображение – на рис. 6.7,б.



    Рис. 6.7. Структура (а) и обозначение (б) фотодиода

    Физические процессы, протекающие в фотодиодах, носят обратный характер по отношению к процессам, протекающим в светодиодах. Основным физическим явлением в фотодиоде является генерация пар электрон-дырка в области p-n-перехода и в прилегающих к нему областях под действием излучения.

    Генерация пар электрон-дырка приводит к увеличению обратного тока диода при наличии обратного напряжения и к появлению напряжения uак между анодом и катодом при разомкнутой цепи. Причем uак>0 (дырки переходят к аноду, а электроны – к катоду под действием электрического поля p-n-перехода).

    Характеристики и параметры. Фотодиоды удобно характеризовать семейством вольт-амперных характеристик, соответствующих различным световым потокам (световой поток измеряется в люменах, лм) или различным освещенностям (освещенность измеряется в люксах, лк).

    Вольт-амперные характеристики (ВАХ) фотодиода представлена на рис. 6.8.

    Пусть вначале световой поток равен нулю, тогда ВАХ фотодиода фактически повторяет ВАХ обычного диода. Если световой поток не равен нулю, то фотоны, проникая в область p-n–перехода, вызывают генерацию пар электрон-дырка. Под действием электрического поля p-n–перехода носители тока движутся к электродам (дырки – к электроду слоя p, электроны – к электроду слоя n). В результате между электродами возникает напряжение, которое возрастает при увеличении светового потока. При положительном напряжении анод-катод ток диода может быть отрицательным (четвертый квадрант характеристики). При этом прибор не потребляет, а вырабатывает энергию.

    Рис. 6.8. Вольт-амперные характеристики фотодиода

    На практике фотодиоды используют и в так называемом режиме фотогенератора (фотогальванический режим, вентильный режим), и в так называемом режиме фотопреобразователя (фотодиодный режим).

    В режиме фотогенератора работают солнечные элементы, преобразующие свет в электроэнергию. В настоящее время коэффициент полезного действия солнечных элементов достигает 20 %. Пока энергия, полученная от солнечных элементов, примерно в 50 раз дороже энергии, получаемой из угля, нефти или урана.

    Режим фотопреобразователя соответствует ВАХ в третьем квадранте. В этом режиме фотодиод потребляет энергию (u · i > 0) от некоторого обязательно имеющегося в цепи внешнего источника напряжения (рис. 6.9). Графический анализ этого режима выполняется при использовании линии нагрузки, как и для обычного диода. При этом характеристики обычно условно изображаются в первом квадранте (рис. 6.10).

    Рис. 6.9 Рис. 6.10

    Фотодиоды являются более быстродействующими приборами по сравнению с фоторезисторами. Они работают на частотах 107–1010 Гц. Фотодиод часто используют в оптопарах светодиод-фотодиод. В этом случае различные характеристики фотодиода соответствуют различным токам светодиода (который при этом создает различные световые потоки).


    При поглощении световых квантов в p-n переходе или в примыкающих к нему областях генерируются новые носители заряда (электроны и дырки), которые проходя через него и вызывают появление напряжение на выводах фотодиода или протекание тока в замкнутой цепи. Величина, на которую возрастает обратный ток протекающий через переход, называют фототоком.

    Фотодиод, в зависимости от материала из которого он изготовлен, используется для регистрации светового потока в оптическом инфракрасном, и ультрафиолетовом диапазоне. Эти радиокомпоненты обычно изготавливают из германия, кремния, арсенида галлия, индия и т.п.

    В фотодиодном режиме применяется внешний источник питания, который смещает полупроводниковый прибор в обратном направлении. В этом случае через протекает обратный ток, пропорциональный падающему на него световому потоку. В рабочем диапазоне напряжений (то есть до наступления пробоя), этот ток практически не зависит от приложенного обратного напряжения.

    В фотогальваническом режиме фотодиод работает в роли датчики или в роли слаботочного элемента питания, так как под воздействием светового потока на выводах фотоэлемента генерируется напряжение, зависящее от потока излучения и нагрузки.

    Чтобы лучше разобраться с режимами работы этого компонента, рассмотрим его вольтамперную характеристику.


    При отсутствии светового излучения график представляет собой обратную ветвь ВАХ типичного диода. Присутствует небольшой ток обратки, называемый темновым током обратно смещенного.

    При наличии излучения, сопротивление фотодиода снижается и обратный ток увеличивается. Чем больший световой поток падает на фотоэлемент, тем больший обратный ток протекает через фотодиод. Зависимость в этом режиме линейная. Как видим из ВАХ обратный ток фотодиода практически не зависит от обратного напряжения.

    Фотогальваническому режиму соответствует работа в четвертой четверти графика. И здесь можно выделить два предельных варианта: режим холостого хода и короткого замыкания.

    Режим приближенный к холостому ходу применяется для получения энергии от фотодиода, хотя КПД у него невысокий. Но если соединить последовательно и параллельно много таких компонентов, то такой получившейся батареей можно запитать мало-потребляющую схему.

    В режиме короткого замыкания, напряжение на фотоэлементе стремится к нулю, а обратный ток прямо пропорционален световому потоку. Этот режим применяется для построения фотодатчиков.

    Характеристики фотодиода

    Помимо ВАХ, рассмотренной выше существкует еще ряд основных параметров фотоэлемента.

    Световая характеристика фотодиода , зависимость фототока от освещенности, которая прямопропорционально генерируемому фототоку от освещенности. Это объясняется тем, что толщина базы фотодиода гораздо меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, появившиеся в базе, учувствуют в образовании фототока.

    Спектральная характеристика фотодиода - это зависимость фототока от длины волны светового потока воздействующего на фотоэлемент.

    постоянная времени - в течение этого времени фототок фотоэлемента изменяется после освещения или после затемнения фотодиода по отношению к установившемуся значению.

    темновое сопротивление - сопротивление радиокомпонента при отсутствии освещения.