Металлоискатели принцип действия и основные характеристики. Различные виды металлоискателей и их принцип действия. Схема, описание. Металлодетекторы-металлоискатели виды и применение

От величины электрического сопротивления катушки с проводом зависит время затухания этого электрического импульса. Полное отсутствие сопротивления, или напротив очень высокая его величина заставит импульс колебаться. Это похоже на бросание резинового мячика на очень твердую поверхность, на которой он отскакивает многократно, прежде чем успокоится окончательно. При достаточном электрическом сопротивлении время затухания импульса укорачивается и отраженный импульс «сглаживается». Это аналогично бросанию резинового мячика в подушку. Про катушку детектора с импульсной индукцией говорят, что она критично заглушена, когда отраженный импульс быстро затухает до нуля без колебаний. Чрезмерное или недостаточное подавление будет вносить нестабильность в работу и маскировать сигналы от хорошо проводящих металлов таких, как золото и уменьшать глубину обнаружения. Когда металлический предмет находится поблизости от поисковой катушки, он запасает в себе некоторую часть энергии импульса, что приводит к затягиванию процесса затухания этого импульса до нуля. Изменение в ширине отраженного импульса измеряется и сигнализирует о присутствии металлического объекта. Для того чтобы выделить сигнал такого объекта, мы должны измерить ту часть импульса, где он спадает к нулю (хвост). На входе приемника катушки стоит резистор и ограничивающий диодная схема, которые обрезают напряжение входного импульса до величины 1 вольт, чтобы не перегружать вход схемы. Сигнал в приемнике состоит из импульса от передатчика и отраженного импульса. Обычно усиление приемника составляет 60 децибел. Это означает, что область, где отраженный сигнал спадает до нуля можно увеличить в 1000 раз.

Схема стробирования.
Усиленный сигнал от приемника поступает в схему, измеряющую время падения напряжения до нуля. Отраженный импульс преобразуется в последовательность импульсов. Когда металлический предмет приближается к катушке, форма импульса передатчика не изменится, а вот отраженный импульс станет немного длиннее. Увеличение длительности «хвоста» импульса всего на несколько миллионных долей секунды (микросекунды) достаточно для того, чтобы определить наличие металла под катушкой. На этот отраженный импульс накладываются импульсы (стробы), синхронизованные с началом импульса передатчика, и на выходе электронной схемы получается серия стробов, количество которых пропорционально длине «хвоста» импульса. Наиболее чувствительный импульс расположен максимально близко к концу хвоста там, где напряжение совсем близко к нулю. Обычно это временная область около 20-ти микросекунд после выключения передатчика и начала отраженного импульса. К сожалению, это так же область где работа металлодетектора с импульсной индукцией становится неустойчивой. По этой причине большинство моделей металлодетекторов с импульсной индукцией продолжают вырабатывать стробирующие импульсы еще 30-40 микросекунд после полного затухания отраженного импульса.

Интегратор.
Далее стробированный сигнал должен быть преобразован в напряжение постоянного тока. Это выполнятся схемой – интегратором, который усредняет последовательность импульсов и преобразует их в соответствующее напряжение, которое возрастает, когда объект близко от рамки и уменьшается, когда объект удаляется. Напряжение дополнительно усиливается и управляет схемой звукового контроля.
Период времени, в течение которого интегратор собирает входящие стробы, называется постоянной времени интегратора - (ПВИ). Она определяет то, насколько быстро металлодетектор реагирует на металлический объект. Длительная ПВИ (порядка секунд) имеет преимущество в уменьшении шума и упрощении настройки детектора, но при этом требует очень медленного перемещения поисковой катушки, поскольку объект может быть пропущен при быстром движении. Короткая ПВИ (порядка десятых долей секунды) быстрее реагирует на цель, что позволяет быстрее перемещать катушку, но помехоустойчивость и стабильности работы ухудшаются.

ДИСКРИМИНАЦИЯ (распознавание).
Металлодетектор с импульсной индукцией не способны к такой же степени дискриминации как СНЧ приборы. За счет измерения увеличивающегося периода времени между окончанием импульса передатчика и точкой, в которой отраженный импульс рассасывается до нуля (время задержки), можно отфильтровать объекты, состоящие из определенных металлов. На первом месте по этой характеристике стоит алюминиевая фольга, затем мелкие никелевые монетки, пуговицы и золото. Некоторые монеты могут быть вычислены по очень длинному хвосту импульса, однако железо, таким образом, НЕ определяется.
Было сделано много попыток создать металлодетектор с импульсной индукцией, способный определять железо, однако все эти попытки имели очень ограниченный успех. Хотя железо и дает длинный «хвост», серебро и медь имеют такие же характеристики. Столь длительная задержка плохо влияет на определение глубины залегания. Содержание минералов в почве также будет удлинять отраженный импульс, изменяя точку, в которой объект определяется или отвергается. Если постоянная времени интегратора настроена так, что золотое кольцо не определяется в воздухе, это же кольцо может «засветиться» в грунте, насыщенном солями. Таким образом, почва, насыщенная солями, изменяет всё, что относится к времени задержки и избирательной способности металлодетектора с импульсной индукцией.

ОТСТРОЙКА ОТ ЗЕМЛИ.
Отстройка от земли является очень критичной для СНЧ приборов, но не для металлодетекторов с импульсной индукцией. В среднем почва не запасает какого-либо значительного количества энергии от поисковой катушки и обычно сама не даёт никакого сигнала. Почва не будет маскировать сигнал от объекта и даже напротив, минерализация почвы слегка удлиняет сигнал пропорционально увеличению глубины залегания предмета. По отношению к МД с импульсной индукцией часто применяется термин «автоматическая отстройка от земли» (automatic ground balance) они обычно не реагируют на избыточную минерализацию почвы, не требуют внешней подстройки для разных типов почвы. Исключением является один из наиболее неприятных компонентов грунта - магнетит (Fe3O4), или магнитный оксид железа. Он вызывает перегрузку входных катушек детекторов СНЧ типа, сильно уменьшая их чувствительность, металлодетекторы с импульсной индукцией будут работать, но могут показывать ложные цели, если поднести катушку слишком близко к земле. Можно свести до минимума этот вредный эффект, удлинив время задержки между окончанием импульса передатчика и началом стробирования. Настраивая эту постоянную времени можно отстроиться от помех, вызванных минерализацией грунта.

АВТОМАТИЧЕСКАЯ И РУЧНАЯ НАСТРОЙКА.
Большинство металлодетекторов с импульсной индукцией имеют ручную настройку. Это означает, что оператор должен крутить настройку до тех пор, пока не послышится щелкающий или зудящий звук в наушниках. Если почва в районе поиска изменяется от и до нейтрального песка или от сухой почвы до морской воды, в этом случае подстройка необходима. Если этого не делать, можно потерять в глубине обнаружения и пропустить некоторые объекты. Ручная настройка очень затруднительна при использовании короткой постоянной времени интегратора (ПВИ). Поэтому многие приборы с ручной настройкой имеют длинную ПВИ и требуют медленного перемещения поисковой катушки.
Нет проблем с использованием МД с импульсной индукцией для подводного поиска, поскольку при этом поисковую катушку не перемещают быстро. При использовании в полосе прибоя, катушка будет, находится то в воде, то под водой, и при таких условиях использование приборов с ручной настройкой может вас сильно разочаровать, поскольку придется непрерывно подстраивать порог срабатывания. Некоторые операторы в таком случае сразу настраивают прибор чуть ниже порога срабатывания. Но это может привести к уменьшению глубины обнаружения, при изменении характеристик почвы.
Автоматическая настройка (SAT- self adjusting Threshold) дает значительное преимущество при поиске в и над соленой водой или на почве с высоким содержанием солей. Она позволяет использовать детектор на максимальной чувствительности без постоянной подстройки. Это улучшает стабильность работы, помехозащищенность и позволяет использовать больший коэффициент усиления. МД с импульсной индукцией не излучают сильные отрицательные сигналы как СНЧ приборы. Поэтому они не зашкаливают на ямах с минералами. Необходимо непрерывно перемещать катушку металлоискателя оснащенного системой автоподстройки, если вы останавливаете катушку, настройка сбивается или прибор перестает реагировать.

Аудио контроль.
Схемы звуковой сигнализации МД с импульсной индукцией распадаются на две категории: с изменяющейся частотой и изменяющейся громкостью. Схемы с изменяющейся частотой, построенные на основе генератора управляемого напряжением, хороши для регистрации небольших предметов, поскольку изменение в частоте легче уловить на слух, чем изменение в громкости, особенно при небольшом уровне громкости, особенно для приборов с ручной подстройкой порога. Однако звук похожий на пожарную сирену быстро утомляет, а некоторые люди не способны различать высокие тона. Один из хороших вариантов - это механическая вибрация, которая первоначально использовалось для подводных аппаратов. Такой прибор издает звуки и вибрацию, которая нарастает до жужжания при обнаружении объекта. Сигналы такого механического прибора легко распознать и они не заглушаются системой подачи воздуха.
Многие люди предпочитают более традиционный звуковой тон с нарастанием громкости, а не частоты. Такие системы звукового контроля работают хорошо в приборах, с быстрым перемещением рамки, те в приборах с автоматической подстройкой, при этом они звучат аналогично приборам с СНЧ.

Выводы по МД с импульсной индукцией.
Это специализированные инструменты. Они мало пригодны для поиска монет в городских условиях, поскольку не могут отфильтровать железный и ферросодержащий мусор. Они могут быть использованы для археологических поисков в сельской местности, где нет железного мусора в больших количествах, поиска золотых самородков и для поиска на максимальной глубине в экстремальных условиях, таких как побережья морей или места, где земля сильно минерализирована. Такие металлодетекторы показывают отличные результаты в подобных условиях и в целом сравнимы с СНЧ приборами, особенно по их способностям отстраиваться от таких грунтов и «пробивать» их на максимальную глубину.

Для успешного поиска металлических предметов в земле нет необходимости понимать научные принципы металлоискателя. Однако полезно знать в общих чертах, как металлоискатель работает.

Металлоискатель - это электронный прибор, который определяет присутствие металла и информирует нас об этом. Металлический предмет, скажем монета, находящийся в земле, сам по себе ничего не излучает и не выдает своего присутствия. Чтобы его обнаружить, необходимо облучить его радиоволнами и уловить вторичный сигнал. Все металлоискатели основаны на этом принципе Различие между дешевыми и дорогими моделями заключается в методах излучения этих радиоволн, в методах улавливания вторичных сигналов, а также в способах информирования вас о наличии металла.


Рис. 12. Электромагнитное поле поисковой катушки

Рис. 13. Возникновение вихревых токов на поверхности металлических предметов, оказавшихся в электромагнитном поле поисковой катушки

Когда вы включаете металлоискатель, в поисковой катушке протекает переменный электрический ток, создающий вокруг катушки электромагнитное поле. Это поле проходит в окружающую среду, будь то воздух, грунт, вода, камень, дерево и т.д. Если на пути этого поля оказывается металлический предмет, то на его поверхности возникают так называемые вихревые токи. Эти токи образуют свое электромагнитное поле, которое ослабляет поле передающей катушки. Электронная схема прибора с помощью катушки улавливает это ослабление поля, вызванное присутствием под катушкой металла, и информирует вас об этом тем или иным способом. Более сложные электронные схемы обеспечивают лучшее улавливание более слабых вторичных сигналов, более точно их обрабатывают. Поэтому такие приборы трудоемки в изготовлении и стоят дороже. Однако они, как правило, способны находить объекты набольшей глубине.


Рис. 14. Влияние минерализации грунта на глубину обнаружения

Вихревые токи образуются на поверхности любых электропроводных материалов - металлов, минералов и т.п. Цветные металлы более электропроводны, чем черные металлы и минералы. Поэтому вихревые токи на них затухают дольше. Металлоискатель чувствует, в каком случае вихревые токи затухают быстрее, и на этом основании может "сказать" вам, какой из металлов - черный или цветной - находится под катушкой.

К сожалению, в некоторых местах грунт содержит большое количество электропроводных минералов (магнетит, соли натрия и калия), которые крайне нежелательны, поскольку маскируют присутствие металла, уменьшая глубину его обнаружения. Минералы железа и соли представляют большую проблему для производителей и пользователей металлоискателей. Применяя различные фильтры, можно в значительной мере снизить влияние фунта. Некоторые приборы имеют автоматическую отстройку от грунта, в других это достигается вручную оператором, что более точно, если выполнено правильно.

В литературе различают следующие основные подходы к построению схемотехники металлоискателей:

1. Метод биений - BFO (Bcat Frequency Oscillation).

2. Метод индукционного баланса - IB/TR (Induction Balance / Transmitter-Reciver).

3. Метод индукционного баланса с использованием очень низких рабочих частот - VLF/TR (Very Low Frequency/ Transmitter- Reciver).

4. Метод индукционного баланса с разнесенными катушками - RF (Radio Frequency).

5. Импульсный метод - PI (Pulse Induction).

6. Метод срыва резонанса - OR (OfTResonance).

Метод биений - BFO

Измеряемым параметром является частота LC-генератора, включающего катушку поисковой головки. Частота сравнивается с эталонной, и полученная разностная частота биений выводится на звуковую индикацию. Схемотехника приборов достаточна проста, катушка нетребует прецизионного исполнения. Рабочая частота 40-500 кГц. Чувствительность BFO-приборов невысокая при низкой стабильности работы и слабой возможности отстраиваться от влажного и минерализированного фунта. Метод BFO применялся в миноискателях и серийных иностранных приборах в 60-70 гг. прошлого века. В настоящее время этот метод популярен у радиолюбителей и встречается в недорогих приборах российских производителей. Сюда же можно отнести приборы с прямым измерением частоты, хорошо реализуемые на микропроцессорах.

Метод индукционного баланса - IB/TR

Поисковую головку образуют две катушки, расположенные в одной плоскости и сбалансированные так, что при подаче сигнала в передающую катушку на выходах приемной присутствует минимальный сигнал. Передающая катушка часто включается в контур LC-генератора. Измеряемым параметром является амплитуда сигнала на приемной катушке и фазовый сдвиг между переданным и принятым синусоидальными сигналами. Такие металлоискатели имеют рабочую частоту 80-100 kHz. Они могут обнаруживать небольшие объекты на сравнительно большой глубине (30-35 см), однако они бесполезны при поиске на сильно минерализованных фунтах и морских пляжах.

Метод индукционного баланса с использованием очень низких рабочих частот - VLF/TR

Было обнаружено, что при снижении рабочей частоты ниже 20 kHz можно отстроиться от влияния фунта, глубина действия прибора при этом несколько снижается, зато резко возрастает стабильность работы и исчезают ложные сигналы. Такие приборы получили название VLF/TR, что расшифровывается как металлоискатель типа передатчик-приемник, работающий на очень низких частотах.

VLF - метод позволяет построить высокочувствительные приборы с хорошим различением металлов за счет анализа фазовых характеристик. Схемотехника приборов достаточно сложна, катушки требуют прецизионной балансировки. На основе этого метода сейчас строится большинство серийных приборов, в том числе и компьютеризированных. Дискриминация объектов и отстройка от грунта в таких приборах осуществляется сравнительно просто с помощью фазосдвигающих цепей.

Принцип TR (или его разновидность VLF/TR) предусматривает анализ фазовых характеристик сигнала, поэтому эти приборы легко различают черные и цветные металлы, отстраиваются от мусора и грунта. Они имеют высокую чувствительность и разрешающую способность, которая зависит от диаметра поисковой катушки - чем она больше, тем глубже обнаружение, но тем труднее искать мелкие предметы.

Недостаток таких приборов заключался в том, что отстройку от грунта нельзя было выполнять одновременно с дискриминацией и оператор с помощью переключателя должен выбирать л ибо тот, либо другой режим. Такие приборы выпускались в США и Англии в течение 10 лет вплоть до 1980 г., когда они были заменены на так называемые динамические металлоискатели.

В конце 70-х гг. XX в. американец Дж.Пейн разработал схему, позволяющую проводить одновременно и дискриминацию и отстройку от грунта.

Первые приборы такого типа необходимо было очень быстро перемещать для достижения приемлемой глубины их действия, что было для оператора весьма утомительно. Белее поздние модели (за счет усложнения схемы) позволяли работать уже с меньшими скоростями перемещения катушки без потери глубины.

В начале 80-х гг. металлоискатели стали тяжелыми и сложными в настройке. По существу, один прибор включал в себя четыре металлоискателя различных типов. Американская фирма Fisher Researh Laboratory своевременно отреагировала на просьбы искателей сокровищ сделать более простой, но не менее чувствительный прибор и на основе последних достижений микроэлектроники разработала металлоискатель 1260-х с автоподстройкой порога, работающий на очень низкой частоте. Он имел лишь несколько органов управления и не требовал никакой ручной настройки. Это легкий, удобный в работе и чувствительный к мелким объектам прибор, успешно действующий на плохих минерализованных грунтах. Его модификация 1266-х выпускалась до 2003 г.

Этот металлоискатель стал называться "динамическим", хотя, по существу, он относится к типу VLF/TR. Предыдущие статические металлоискатели типа VLF/TR практически перестали производиться, и все ведущие фирмы быстро переключились на производство приборов, использующих указанный динамический принцип. Многочисленные мелкие компании, не успевшие это сделать, были вынуждены прекратить свое существование. С тех пор в мире осталось л ишь около десятка фирм, производящих металлоискатели.

Метод индукционного баланса с разнесенными катушками - RF

Это высокочастотный вариант TR, где передающая и приемная катушки образуют не плоский трансформатор, а разнесены в пространстве и расположены перпендикулярно друг к другу. Приемная катушка принимает отраженный от металлической поверхности сигнал, излучаемый передающей катушкой. Этот метод используется в глубинных приборах и характеризуется нечувствительностью к мелким объектам и невозможностью различать черные и цветные металлы.

Импульсный метод - IP

Впервые разработанные в США для археологов, эти приборы получили наибольшее распространение среди любителей Англии в конце 60-х гг. Как и в приборах, основанных на принципе индукционного баланса, импульсные приборы создают электромагнитное поле, воздействующее на объект, однако это поле действует не все время, а периодически - то включается, то выключается (пульсирует) многократно в течение одной секунды.

При включении поля на поверхности объекта наводятся вихревые токи. При выключении поля вихревые токи постепенно затухают, хотя и в течение очень короткого промежутка времени. В этот момент катушка действует как приемная антенна, улавливающая этот затухающий сигнал. При этом пороговый фон прибора усиливается, свидетельствуя о наличии металла в почве. Поскольку вихревые токи грунта затухают гораздо быстрее и не улавливаются прибором, импульсные металлоискатели эффектно работают на плохих минерализованных почвах и особенно на влажных соленых грунтах морских побережий.

Недостатком импульсных металлоискателей является высокая чувствительность к черным металлам и трудности с дискриминацией. Однако в ряде случаев (например, при поиске металла на дне моря) они превосходят все другие типы металлоискателей.

Метод срыва резонанса - OR

Анализируемым параметром является амплитуда сигнала на катушке колебательного контура, настроенного близко к резонансу с подаваемым на него сигналом от генератора. Появление металла в поле катушки вызывает или достижение резонанса или уход от него, в зависимости от вида металла, что приводит к увеличению или уменьшению амплитуды колебаний на катушке. Этот метод, так же как и BFO разрабатывался радиолюбителями.

Читайте и пишите полезные

Металлодетекторы-металлоискатели ныне становятся незаменимым оборудованием при реконструкции старинных домов, именно с их помощью работники разыскивают проложенные трубы, электрокабеля и т.п.

Поиск металлических предметов под землёй, в воде, стенах здания и т.п. является не только методом заработка или хобби для некоторых людей. Археологи, дайверы, военные давно пользуются специальными приборами для поиска различных предметов в нейтральной среде.

Устройство металлодетекторов

Металлодетектор (МД) является специальным электроприбором, обнаруживающим металлические предметы за счёт их проводимости в любой среде (воде, земле, организме живого существа, стенах зданий). Обнаруживая металл, приборы подают особый звуковой либо светозвуковой сигнал, некоторые модели способны даже чётко определить найденную вещь.

Существует уйма металлодетекторов, все они различаются своим конструктивным исполнением, эти отличия обусловлены разным назначением приборов. Конструкция устройств для поиска металлов довольно сложная, но любой прибор состоит из нескольких основных частей, присутствующих в основном в каждой модели.

Типовая конструкция металлоискателя:
  • Катушка . Этот элемент металлодетектора представляет короб, в котором расположен приемник сигналов и передатчик. Обычно катушка круглой либо эллиптической формы, а в её изготовлении используется пластик. К ней присоединяется кабель, который проходит к блоку управления. Соединение кабеля и катушки обязательно должно быть выполнено герметично. По этому кабелю передаются сигналы от приемника к блоку. А сам приемник получает сигнал от передатчика, как только тот обнаружит вблизи металл. Сама катушка закреплена в нижней штанге.
  • Нижняя штанга . Эта металлическая часть устройства выполняется из металла, предназначена для фиксирования катушки и регулировки угла её наклона, благодаря чему происходит более точное исследование. В некоторых моделях штанга регулирует высоту металлоискателя и телескопическое соединение со средней штангой.
  • Средняя штанга . Обычно этот элемент представляет промежуточную часть между нижней и верхней штангой. На этой штанге крепятся специальные приспособления для изменения высоты устройства. Некоторые приборы состоят только из двух штанг.
  • Верхняя штанга . Форма этой штанги обычно S-образная. Эта форма признана, как более удобная для применения приборов МД. Верхняя штанга оборудована подлокотником, блоком управления и рукояткой.
  • Подлокотник . Чаще всего этот элемент изготавливают из полимерного материала. Предназначен он для того, чтобы прибор было удобнее держать, делая на подлокотник упор локтем.
  • Рукоятка . Этот элемент изготавливают из пористого материала и устанавливают на верхней штанге МД. Рукоятка обеспечивает надёжность держания и удобство эксплуатации.
  • Блок управления . Благодаря блоку управления происходит обработка информации, полученной от катушки. После преобразования данных, пользователь получает в ясном виде сигналы от передатчика. Также с помощью блока происходит настройка режимов прибора. Кабель от поисковой катушки подключается к блоку управления путём быстросъёмного разъёма.

Блок управления бывает фиксированным и съёмным. Профессиональные модели оснащены батарейным отсеком, располагающимся от блока управления отдельно.

Много новых моделей металлодетекторов имеют очень компактные габариты и исполнение, а также высокую надёжность.

Принцип работы металлодетекторов

Все МД-МИ определяют присутствие металлических предметов и информируют об этом. Металл, где бы он ни находился, не способен сам по себе что-то излучать, тем самым выдавая своё присутствие. Но облучая предмет радиоволнами, его можно обнаружить, улавливая вторичный сигнал. На этом принципе работают все металлоискатели.

При включении МД, переменный электроток протекает в поисковой катушке и создаёт вокруг неё электромагнитное поле, которое способно проходить в окружающую среду. При сталкивании с металлом на поверхности поля появляются вихревые токи, которые образовывают своё электромагнитное поле, ослабляющее поле катушки. Электронная схема устройства улавливает ослабление поля и информирует об этом, благодаря катушке.

Вихревые токи появляются на поверхности разных металлов либо минералов, имеющих электропроводность. Более электропроводны цветные металлы, из-за этого создающиеся токи затухают дольше на них. Приборы ощущают, насколько затухают вихревые токи, благодаря чему определяют цветной или чёрный металл под катушкой.

Лучше улавливать слабые вторичные сигналы и точнее их обрабатывать, способны электронные схемы, отличающиеся сложностью. Приборы с такими схемами стоят дороже, потому что их изготовление довольно трудоёмкое. Но такие металлодетекторы находят металлические объекты на большой глубине. Препятствием для обнаружения металла в грунте, может быть наличие электропроводных минералов в почве (соли калия, натрия, магнетит и пр.). Они способны маскировать металл, снижая глубину его поиска. Снизить влияние подобных минералов помогают различные фильтры и разные другие приспособления, которым наделяют производители некоторые модели МД. К примеру, некоторые устройства оснащены автоматической отстройкой от почвы, в других эту отстройку можно выполнять вручную.

Разновидности металлодетекторов по принципу работы

Все металлодетекторы-металлоискатели можно классифицировать по принципу работы, а также по назначению (выполняемым задачам).

МД по специфике действия:
  • МД типа «прием-передача» . Приборов этого типа довольно много можно встретить на рынке. Простая специфика действия устройств, базируется на приеме и передаче электромагнитного излучения. Главными элементами прибора служат две катушки. Приёмная катушка индуктивности принимает сигналы, её также принято называть поисковой. Передающая – излучает электромагнитные волны, попадающие в поисковую катушку. Волны легко проходят через нейтральную среду, и отражаются от металла, когда на их пути стоит металлический объект. Из-за этого МД получает отражённую волну, после чего срабатывает сигнал, информирующий о находке.
Достоинствами этих приборов являются следующие моменты:

— простая конструкция;
— широкие возможности для поиска и определения металла.

Недостатки:

— чувствительность к минерализации почвы;
— сложность производства датчика.
Соли и прочие минералы, находящиеся в грунте, представляют большие преграды в нахождении и определении металла, поэтому устройства этого типа следует предварительно настраивать, указывая тип почвы, в которой будет происходить поиск.

  • Индукционные металлодетекторы . Этот тип металлоискателей спецификой поиска объектов практически не отличается от МД вида «прием-передача», поэтому индукционные приборы приписывают к разновидностям первых. Они отличаются от них конструкцией, так как имеют только одну катушку, способную посылать и принимать сигналы. Приборы имеют простой конструкции датчик, но слабый отражённый сигнал в сравнении с мощным излучаемым.
    На индукционные металлоискатели также очень влияет минерализация грунта.
  • Импульсные металлодетекторы . Основой приборов является катушка, формирующая в месте размещения металла вихревые токи, которые ловит устройство. Возникающий сигнал передаётся в катушку датчика в виде импульсов. Длительность сигнала может быть разной, как и его форма. Эти отличия обусловлены разными размерами и проводящими свойствами предмета, с которым столкнулся прибор.
Плюсы:

— простота конструкции датчика;
— нечувствительность к минерализации почвы.
Но импульсные металлодетекторы имеют и своеобразные минусы, они много потребляют энергии и низкие возможности дискриминации, что влияет негативно на работу с одним типом металла.

  • Генераторные металлоискатели:
    — МД измерители частоты;
    — МД определяющие изменение добротности колебательного контура.
    Основой этих устройств является LC-генератор. Приборами этого типа ищут чаще металл только определённого вида.
В одних генераторных приборах меняется частота, если вблизи находиться металлический объект. Эти устройства называют измерителями частоты, и их работа может основываться на разных методах:

— Подачи сигнала на систему фазовой автоподстройки частоты (ФАПЧ) с LC-генератор и измерении напряжения в цепи обратной связи.
— Фиксировании частоты биений и совмещении генераторной частоты с эталонной. Измерители частоты отличаются простой схемотехникой и конструкцией датчика, но у них низкая чувствительность и возможности дискриминации найденных предметов

Другой тип генераторных приборов основан на изменении добротности контура, сталкиваясь с металлом на пути. Колебательный контур является частью LC-генератор, когда катушка приближается к зоне размещения металлических предметов, добротность и амплитуда колебаний снижается.

Приборы, находящие металл таким способом, имеют небольшую потребляемую мощность и простую конструкцию, эти особенности можно отнести к их достоинствам. Но такие МД довольно неустойчивые к варьированию температур.

Профессиональные приборы имеют несколько способов одновременно для поиска и определения типа металлов.

Металлодетекторы-металлоискатели виды и применение

Рынок постоянно пополняется новыми моделями МД, которые имеют улучшенные показатели качества, точности и практичности эксплуатации. Устройства, обнаруживающие металл в разных средах, применяются во многих отраслях, их используют любители кладоискательства, археологи в экспедициях и даже строители. Во всевозможных сферах применяют разного рода металлодетекторы-металлоискатели, поэтому их и разделяют по предназначению.

Виды МД по предназначению:
  • Грунтовые. Металлоискатель, с помощью которого ищут металлолом, ювелирные изделия, монеты и прочий клад.
  • Глубинные. С использованием этой категории приборов разыскиваются на большой глубине крупные объекты.
  • Подводные. Предназначены для дайверов, этими устройствами ищут артефакты, клады на больших глубинах в воде.
  • Золотоискательские. Этими устройствами ищут золото в разных средах.
  • Досмотровые металлодетекторы (охранные). Этими МД пользуются службы безопасности для обнаружения металлических предметов на теле человека.

  • К охранным МД относятся рамочные детекторы, которые устанавливаются в виде арки в аэропортах, метро и прочих местах с большим потоком людей.

  • Промышленные. Этими детекторами оборудованы конвейеры и другое оборудование на производствах с целью выявления металла в других материалах.
  • Военные. В основном эта группа МД применяется для поиска мин, поэтому их называют миноискателями.
  • Магнитометр. Этот вид детекторов используют для поиска железа и прочих ферромагнитных металлов.

В основном нынешние металлодетекторы и металлоискатели считаются высокоточными приборами. Они имеют эргономичный дизайн, простые в эксплуатации и весят совсем немного.

Виды металлоискателей

По принципу работы

  • Приборы типа «приём-передача». В основе их лежат две катушки индуктивности - приёмная и передающая, расположенные так, чтобы сигнал излучаемый передающей катушкой не просачивался в приёмную катушку. Когда вблизи прибора появляется металлический предмет, то сигнал передающей катушки переизлучается им во всех направлениях и попадает в приёмную катушку, усиливается и подаётся на блок индикации.
  • Индукционные металлоискатели. Представляют собой разновидность приборов типа «приём-передача», однако в отличие от последних содержат не две, а только одну катушку, которая одновременно является и передающей и приёмной. Основной трудностью при создании подобных приборов является выделение весьма малого отражённого (наведённого) сигнала на фоне мощного передаваемого (излучаемого).
  • Приборы - измерители частоты . В их основе лежит LC-генератор. При приближении металла к контуру его частота изменяется. Это изменение фиксируется различными методами:
    • Смешивание частоты генератора с эталонной и измерение частоты биений.
    • Подача сигнала с генератора на систему ФАПЧ и измерение напряжения в цепи обратной связи.

По выполняемым задачам

  • Грунтовый металлоискатель - предназначен поиска кладов , монет и ювелирных изделий . Как правило, построен по индукционной технологии. Имеет множество настроек, металла из которого предположительно состоит объект в земле. Цена данных металлоискателей от 100 до 1500 долларов. Глубина обнаружения объектов от 20 см до 1 метра.
  • Военный металлоискатель (миноискатель) - предназначен для поиска преимущественно мин . Как правило, построен на принципе «приём-передача». Имеет минимум настроек. Глубина обнаружения мины от 20 см (Советский миноискатель ИМП) до 1 метра (Современные военные миноискатели).
  • Досмотровый металлоискатель (ручной) - предназначен для служб безопасности. Служит для обнаружения на теле человека металлических предметов (пистолет, нож). Дальность обнаружения пистолета Макарова - до 25 см.
  • Глубинный металлоискатель - предназначен для поиска больших глубинных целей, таких как сундук с золотом . Имеет две разнесенные друг от друга катушки, либо одну большую рамку с катушкой. Основан на принципе «приём-передача». Отличительной особенностью данного вида металлоискателей является то, что он реагирует не только на металлы, но и на любые изменения в глубине грунта (переходы от одной почвы к другой, старые фундаменты зданий и т. д.). Цена данных металлоискателей от 500 до 2500 долларов. Глубина обнаружения объектов от 50 см до 3 метров.
  • Магнитометры - предназначены для поиска ферромагнитных целей, например железо. Данный вид металлоискателей самый компактный и самый чувствительный, так как поисковая головка может поместится на ладони. Также магнитометры могут применятся и для поиска золота, меди, алюминия... но для этого нужен дополнительно возбудитель, который будет делать из неферромагнитных металлов образно говоря электромагниты.

Физика явления

  • Различные модели металлоискателей работают на различных частотах. Это связано с физикой явления распространения электромагнитных волн. Так металлоискатели, работающие на маленьких частотах, могут находить предметы глубоко, но большого размера. При этом на поверхности земли они как бы не замечают металлических предметов. Если частота работы металлоискателя высокая, то приборы хорошо обнаруживают мелкие объекты, но не могут находить цели глубоко.
  • Пример частот металлоискателей по назначению:
    • Глубинные металлоискатели, например, работают на частоте - 6,6 кГц. Глубина обнаружения - около 4м.
    • Грунтовые металлоискатели для поиска монет - до 18,5кГц. Глубина обнаружения - около 1-2м.

Современные направления развития технологий металлоискателей

  • Современное направление развития металлоискателей идет по пути одновременного применения и обработки нескольких частот.

Практическое применение

  • "Группа "ИскателИ" (www.kladpoisk.ru) применили грунтовые и глубинные металлодетекторы и металлоискатели для поиска железного метеорита «Дронино» . Экспедиции состоялась в 2007-2008 годах совместно с Лабораторией метеоритики ГЕОХИ РАН (www.meteorites.ru). Применение современной поисковой техники принесло положительные результаты. Из земли с глубины до 2-х метров на поверхность было извлечено более 200 килограмм метеоритного железа. Немногим ранее были опробованы металлодетекторы для поиска каменных метеоритов «Царев» . Мельчайшие вкрапления металла в камне были замечены металлоискателем. (Журнал "Палео Мир", 1, 2008. стр. 22. www.paleomir.ru)

Ссылки

  • Металлодетекторы - высокие технологии на службе таможенного контроля

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Металлодетектор" в других словарях:

    Металлодетектор … Орфографический словарь-справочник

    Металлоискатель, металлообнаружитель Словарь русских синонимов. металлодетектор сущ., кол во синонимов: 4 детектор (9) … Словарь синонимов

    металлодетектор - металлодет ектор, а … Русский орфографический словарь

    металлообнаружитель (металлодетектор, - 4.26.5 металлообнаружитель (металлодетектор, Ндп. металлоискателъ): Устройство для выявления металлических (черные, цветные или драгоценные металлы) или металлизированных предметов, оружия Источник: РД 25.03.001 2002: Системы охраны и… …

    металлообнаружитель - металлодетектор Ндп. металлоискатель Устройство для выявления металлических (черные, цветные или драгоценные металлы) или металлизированных предметов, оружия. [РД 25.03.001 2002] Недопустимые, нерекомендуемые металлоискатель Тематики системы… … Справочник технического переводчика

    металлообнаружитель - 3.1 металлообнаружитель: Техническое средство обнаружения запрещенных к несанкционированному проносу металлических предметов, скрываемых под одеждой людей или в их ручной клади. Источник … Словарь-справочник терминов нормативно-технической документации

    РД 25.03.001-2002: Системы охраны и безопасности объектов. Термины и определения - Терминология РД 25.03.001 2002: Системы охраны и безопасности объектов. Термины и определения: 2.36.8 аварийное освещение (на охраняемом объекте): Действующее при аварии на объекте только в момент отключения основного освещение, позволяющее… … Словарь-справочник терминов нормативно-технической документации

    Использование металлоискателя Металлоискатель (металлодетектор) электронный прибор, позволяющий обнаруживать металлические предметы в нейтральной или слабопро … Википедия