Изобретение светодиода. Что такое SMD светодиоды: их характеристики и отличие от обычных. Где используются светодиоды

СВЕТОДИОД Графическое обозначение

Свободный перевод статьи "LED" из Википедии.

Светоизлучающий диод (СИД) является полупроводниковым источником света. Светодиоды используются в качестве индикаторов во многих устройствах и все чаще используются для освещения. В качестве электронного компонента, пригодного для практического использования, был разработан в 1962 году. Первые образцы излучали красный свет низкой интенсивности, но современные версии излучают во всей видимой, ультрафиолетовой и инфракрасной областях спектра с очень высокой яркостью.

Светодиод разработан на базе полупроводникового диода. Когда на диод подается рабочее напряжение, электроны с дырками меняются местами, высвобождая энергию в виде фотонов. Этот эффект называется электролюминесценцией и цвет света (соответствует энергии фотона) определяется энергией запрещенной зоны полупроводника. Светодиодные кристаллы, как правило, небольшие по площади (менее 1 мм2), диаграмма распределения света и индекс отражения формируется дополнительной оптической системой, входящей в конструкцию светодиода. Светодиоды имеют много преимуществ по сравнению с лампами накаливания и другими источниками света, включая низкое потребление энергии, большой срок службы, повышенную надежность, меньший размер, быстрое включение и большую долговечность. Тем не менее, они достаточно дороги и имеют повышенные требования к питанию и рассеиванию тепла по сравнению с традиционными источниками света. Текущие образцы светодиодной продукции для общего освещения являются более дорогостоящими, чем флуоресцентные источники сопоставимых параметров.

Светодиоды все чаще используются в автомобильной электронике в качестве указателей поворотов, габаритных огней и стоп-сигналов. Светодиодные светофоры уже являются обыденным способом регулировки движения. Компактные размеры светодиодов позволяют разрабатывать новые типы дисплеев и экранов, а их высокая скорость переключения полезна в передовых коммуникационных технологиях.

Изобретение и первые образцы

Электролюминесценция кристалла карбида кремния (зеленого цвета) была обнаружена в 1907 году английским ученым Раундом в лаборатории Маркони. Этому явлению тогда не придали значения. В 1923 году советский ученый О.В. Лосев , работая в НРЛ (Нижегородской радиолаборатории), проводил глубокие исследования такого явления, как излучательная рекомбинация, а так же наблюдал излучение света, исходящее из кристаллов карбида кремния SiC (карборунда). Длительные исследования позволили сформулировать основной принцип электролюминесценции полупроводниковых структур - инжекционная рекомбинация. В 1927 Лосев запатентовал принцип полупроводникового свечения. Изобретение было опубликовано в российских, немецких и английских научных журналах, но практического применения не получило. В 1955 году Р.Браунштейн из Radio Corporation of America заявил о наличии инфракрасного излучения арсенида галлия (GaAs) в комбинации с другими полупроводниковами сплавами. Браунштейн наблюдал инфракрасное излучение, генерируемое простой диодной структурой на основе антимонида галлия (GaSb), арсенида галлия, фосфида индия (InP) и кремниево - германиевого сплава (SiGe) при комнатной температуре.

В 1961 году разработчики Р.Бард и Г.Питман, работающие в компании Texas Instruments, обнаружили что сплав арсенида галлия производит инфракрасное излучение при пропускании через него электрического тока и получили патент на ИК светодиод.

Первый светодиод, излучающий свет видимого спектра, был изобретен в 1962 году Н.Холоньяком, работающим в компании General Electric. С тех пор многие называют его "отцом" современных светодиодов. Чтобы понять, что это не так, достаточно изучить исторические справки о исследованиях О.В.Лосева и других именитых ученых 20-50 г.г. двадцатого века. Однако история несправедлива, и мы имеем то, что имеем, и в 60-х годах Россия потеряла приоритет в изобретении полупроводниковых источников света.

В 1972 году бывший студент Холоньяка Г.Грэфорд изобрел желтый светодиод и увеличил яркость красных и красно-оранжевых светодиодов в десять раз. В 1976 году Т.Пирсэлл создал первый сверхяркий светодиод для световолоконных телекоммуникаций, изобретя новые полупроводниковые сплавы, специально приспособленные для передачи света по оптоволокну.

Вплоть до 1968 года видимые и инфракрасные светодиоды имели огромную себестоимость, около 200 USD за штуку, что создавало трудности для практического применения. Но в 1968 году фирма Monsanto впервые организовала массовое производство светодиодов видимого света на базе арсенида-фосфида галлия (GaAsP), пригодных для применения в качестве индикаторов. Компания Hewlett Paccard, представившая светодиоды в 1968 году, использовала светодиоды Monsanto для производства цифровых дисплеев и калькуляторов.

Практическое использование первых светодиодов

Первое коммерческое использование светодиодов связано с их применением в качестве замены индикаторов, ранее основанных на использовании ламп накаливания. Из светодиодов изготавливали семисегментные индикаторы, встраивали в дорогие лабораторные приборы, использовали в тестовом оборудовании, но позже светодиоды стали применять при изготовлении телевизоров, радиоприемников, телефонов, калькуляторов и даже часов. Светодиоды красного свечения, применяемые для этих целей имели яркость, достаточную для использования лишь в качестве индикаторов. Светодиоды других цветов имели еще меньшую яркость. Все типы led выпускались в типоразмерах 3 или 5 мм.

Дальнейшее развитие светодиодных технологий

Первые сверхяркие светодиоды синего свечения на базе InGaN были продемонстрированы Ш. Накамурой из японской компании Nichia. Это положило начало новой эре в применении светодиодов - использование в качестве источника света для освещения. Комбинация синего света и желтого фосфора позволила получить белый свет.

Благодаря этому открытию светодиодные технологии начали бурно развиваться. В феврале 2008 года сотрудники Bilkent university в Турции заявили о получении 300 люмен видимого света на один ватт световой мощности. Это был белый цвет теплого оттенка, полученный с использованием нанокристаллов.

В январе 2009 года исследователи из Кембриджа под предводительством С. Хэмфри доложили о выращивании нитрида галлия на подложке из кремния. Этот способ позволяет сократить производственные затраты при производстве сверхярких светодиодов на 90% по сравнению с выращиванием структур на сапфировой подложке.

Физические аспекты

Принцип работы светодиода

Как и обычный диод, светодиод содержит кристаллы полупроводников, создающих p-n переход. Как и в обычном диоде, ток легко проходит в прямом направлении от анода к катоду и не проходит в обратном. Когда электроны встречаются с дырками, они теряют энергию, которая преобразуется в фотоны. Длина волны, на которой излучаются фотоны, зависит от материала, образующего p-n переход.

Изобретние светодиодов начиналось с изготовления структур на базе арсенида галлия, излучающих красный и инфракрасный свет. Нынешнее развитие полупроводниковых технологий позволяет получить видимый свет самых разных цветов.

Электроны и дырки

Полупроводники занимают промежуточное положение между проводниками и изоляторами (диэлектриками). При низкой температуре большинство внешних электронов в полупроводнике "сидит" в атомах на своих местах. Но связаны они с атомами слабее, чем в изоляторе. Причем при росте температуры сопротивление полупроводников падает, то есть полупроводник при нагревании не уменьшает свою электропроводность, как металл, а, наоборот, увеличивает ее. Иначе говоря, в полупроводнике увеличивается количество свободных электронов, способных переносить электрический ток.

При подведении энергии (теплоты или света) в кристаллических решетках полупроводников часть электронов "убегает" из верхних атомных оболочек, при этом образуется положительный заряд. То место, где в решетке не хватает электрона, называют "дыркой".

Под действием электрического напряжения электроны дрейфуют к одному электроду (положительному полюсу), а дырки - к другому (отрицательному), причем их место тут же занимают свободные электроны. Закономерности движения дырок таковы, что этим "пустым местам" физики условно приписывают и заряд (равный заряду электрона, но положительный), и "эффективную массу".

В чистом полупроводнике, проводимость которого обусловлена тепловым возбуждением, одинаковое число электронов и дырок движется в противоположных направлениях. Если добавлять в полупроводник атомы других элементов, его проводимость можно существенно увеличить. При введении легирующих примесей в различные части кристаллической решетки полупроводника возникает так называемая примесная проводимость (в отличие от собственной проводимости), которая, в зависимости от валентности легирующих элементов, называется либо электронной (проводимостью n-типа), либо дырочной (p-типа).

В одном и том же образце полупроводникового материала один участок может обладать р-проводимостью, а другой - n-проводимостью. Между такими областями возникает пограничный слой, через который диффундируют основные носители (электроны или дырки), стремясь уравнять значения концентрации по обе стороны от слоя. На образующийся в этом слое p-n-переход можно воздействовать внешним напряжением, усиливая или, наоборот, "запирая" ток, проходящий через кристалл, - на основании этого принципа работают диоды и транзисторы. При положительной полярности внешнего напряжения (плюс - к p-зоне, минус - к n-зоне) барьер в p-n-переходе понижается, и происходит "перескакивание" (рекомбинирование) электронов и дырок в противоположные зоны, в результате чего выделяется энергия.

Сначала полупроводниковые приборы были только "гомопереходными" (как в случае с первым транзистором) - p-n-переход происходил внутри кристалла одного химического вещества. Но почти сразу появилась и идея гетероустройств, в которых такой переход образуется на стыке двух различных полупроводников. Реализация этой идеи позволила создать более миниатюрные приборы с большей эффективностью и функциональностью (так, первые в мире "гомопереходные" полупроводниковые светодиоды, а затем и лазеры могли работать только при температуре жидкого азота, а появившиеся позже гетеропереходные функционируют и при комнатной температуре).

Большинство материалов, используемых при производстве светодиодов, имеют очень высокий уровень отражения. Это необходимо для того, чтобы как можно больше света, производимого светодиодом, выходило с его поверхности за пределы корпуса. Именно поэтому этому посвящено большое количество исследований во всем мире.

Эффективность и параметры использования

Обычный светодиодный индикатор расчитан на мощность не более 30-60 мВт. В 1999 году компания Philips Lumileds представила мощный светодиод мощностью 1 Ватт. В этом светодиоде был использован полупроводниковый кристал гораздо большей площади, чем применяющиеся в обычных светодиодах индикаторного типа. Он был смонтирован на металлическом основании, что позволило организовать эффективный отвод тепла с кристалла.

Одной из ключевых позиций определения эффективности светодиода является световой выход на единицу мощности. Белый светодиод быстро достиг и превзошел показатели обычных систем на базе ламп накаливания. В 2002 году компания Lumileds произвела 5 Вт светодиод со значениями светового выхода на уровне 18-22 люмен/Ватт. Для сравнения, обычная лампа накаливания мощностью 60-100 Вт производит около 15 люмен на ватт. Люминесцентная лампа - около 100 Лм/Вт. Основной проблемой при разработке мощных светодиодов является падение светового потока при повышении тока, проходящего через кристалл.

В сентябре 2003 года компания Cree продемонстрировала новый тип синего светодиода, производящий 24 мВт при токе 20 мА. Это позволило наладить коммерческого производство белых светодиодов с эффективностью 65 Лм/Вт при токе 20 мА, которые стали наиболее яркими на тот момент на рынке и превысили эффективность ламп накаливания более чем в четыре раза. В 2006 году эта же компания представила прототип белого светодиода со световым выходом 131 Лм/Вт на 20 мА.

Нужно отметить, что мощность СИД 1 Вт и более вполне достаточна для коммерческого применения в качестве источника основного освещения. Типовой ток подобных светодиодов - 350 мА. Хотя ведущие производители и производят светодиоды с эффективностью выше 100 Лм/Вт, в условиях реального использования многое зависит от условий эксплуатации и конструкции светильника. Энергетический департамент США, который в 2008 году проводил тестирование светодиодных ламп, представленных в широкой продаже, предоставил данные, говорящие о том, что большинство таких ламп имеет среднюю эффективность на уровне 31 Лм/Вт.

Компания Cree 19 Ноября 2008 года предоставила данные о лабораторном прототипе светодиода с эффективностью 161 Лм/Вт при комнатной температуре и температуре света 4689 К.

Неисправности и срок жизни светодиодов

Твердотельные устройства, такие как светодиоды, в очень малой степени подвержены повреждениям, когда работают при низких температурах и небольшом токе. Множество светодиодов, произведенных в 70-80 годах, работают по сей день. Теоретически, работоспособность светодиодов неограничена по времени, однако повышенный ток и высокая температура может легко вывести их из строя. Основной признак неисправности светодиода - сильное снижение светового выхода при номинальном рабочем напряжении. Разработка новых типов светодиодов привела к повышению рабочих токов и увеличению температуры кристалла. Реакция материалов, из которых производятся мощные светодиоды, на подобные условия, еще до конца не изучена, поэтому деградация кристаллов - одна из основных причин отказов. Светодиод считается неработоспособным, когда его световой выход падает на 75%.

Материалы

В следующей таблице указана зависимость цвета свечения светодиода от материала полупроводника
Цвет Длина волны (nm) Вольтаж (V) Материал полупроводника
Инфракрасный λ > 760 ΔV < 1.9 Gallium arsenide (GaAs)
Aluminium gallium arsenide (AlGaAs)
Красный 610 < λ < 760 1.63 < ΔV < 2.03 Aluminium gallium arsenide (AlGaAs)

Оранжевый 590 < λ < 610 2.03 < ΔV < 2.10 Gallium arsenide phosphide (GaAsP)
Aluminium gallium indium phosphide (AlGaInP)
Gallium(III) phosphide (GaP)
Желтый 570 < λ < 590 2.10 < ΔV < 2.18 Gallium arsenide phosphide (GaAsP)
Aluminium gallium indium phosphide (AlGaInP)
Gallium(III) phosphide (GaP)
Зеленый 500 < λ < 570 1.9 [ 32] < ΔV < 4.0 Indium gallium nitride (InGaN) / Gallium(III) nitride (GaN)
Gallium(III) phosphide (GaP)
Aluminium gallium indium phosphide (AlGaInP)
Aluminium gallium phosphide (AlGaP)
Синий 450 < λ < 500 2.48 < ΔV < 3.7 Zinc selenide (ZnSe)
Indium gallium nitride (InGaN)
Silicon carbide (SiC) as substrate
Silicon (Si) as substrate - (в разработке)
Фиолетовый 400 < λ < 450 2.76 < ΔV < 4.0 Indium gallium nitride (InGaN)
Пурпурный разные типы 2.48 < ΔV < 3.7 Dual blue/red LEDs,
синий с красным фосфором,
белый с пурпурным фильтром
Ультрафиолетовый λ < 400 3.1 < ΔV < 4.4 diamond (235 nm) [ 33]
Boron nitride (215 nm) [ 34] [ 35]
Aluminium nitride (AlN) (210 nm) [ 36]
Aluminium gallium nitride (AlGaN)
Aluminium gallium indium nitride (AlGaInN) - (down to 210 nm) [ 37]
Белый Широкий спектр ΔV = 3.5 Синий/УФ диод и желтый фосфор

Синие светодиоды

Синий светодиод

Синие светодиоды базируются на сплавах GaN и InGaN. Комбинация с красным и зеленым светодиодами позволяет получить чистый белый цвет, но такой принцип формирования белого сейчас используется редко.

Первый синий светодиод был изготовлен в 1971 году Jacques Pankove (изобретателем нитрида галлия). Но он производил слишком мало света, чтобы его можно было использовать на практике. Первый яркий синий диод был продемонстрирован в 1993 году и получил широкое распостранение.

Белый свет

Существует два пути получения белого света достаточной интенсивности с применением светодиодов. Первый из них - объединение в одном корпусе кристаллов трех основных цветов - красного, синего и зеленого. Смешение этих цветов позволяет получить белый цвет. Другой путь - использование фософора для преобразования синего или ультрафиолетового излучения в белый цвет широкого спектра. Подобный принцип используется при производстве ламп дневного света.

Системы RGB

Белый цвет может быть получен смешением различных цветов, наиболее используемая комбинация - красный, синий и зеленый. Но из-за необходимости контролировать смешение и степень рассеивания цветов стоимость производства RGB-светодиодов довольно высока. Тем не менее этот метод интересен многим исследователям и ученым, так как позволяет получить разные оттенки цвета. При этом эффективность такого способа получения белого света очень высока.

Есть несколько типов многоцветных белых светодиодов - ди-, три-, и тетрахроматичные. Есть несколько ключевых особенностей каждого из этих типов, включая стабильность цвета, цветопередачу и световую эффективность. Высокая световая эффективность подразумевает низкий индекс цветопередачи (CRI). Например, дихроматичный белый светодиод имеет лучшую световую эффективность (около 120 Лм/Вт), но самый низкий CRI. Тетрахроматичный - небольшую световую эффективность, но превосходный CRI. Трихроматичный находится примерно посередине.

Хотя многоцветные светодиоды являются не самым оптимальным решением для получения белого цвета, их использование позволяет создавать системы, производящие миллионы различных оттенков цвета. Основная проблема при этом - разные значения световой эффективности для основных цветов. При повышении температуры это вызывает "уплывание" необходимого цвета и, как следствие, более жестких требований к системам питания и контроля.

Светодиоды на базе фосфора

Спектр белого светодиода определяется синим светом, который излучается кристаллом на базе GaN (пик в районе 465 Нм) и, проходя через желтый фосфор (500-700 Нм) преобразуется в белый. Использование фосфора разных типов и оттенков позволяет получать разные оттенки белого - от теплого до самого холодного. Так же зависит от этого и качество цветопередачи. Нанесение на синий кристалл нескольких слоев фосфора разных типов позволяет добиться самого высокого CRI .

СИД на базе фосфора имеют меньшую эффективность, чем обычные светодиоды, так как часть света рассеивается в слое фосфора, к тому же сам фосфор также подвержен деградации. Тем не менее это способ остается наиболее популярным при коммерческом производстве белых светодиодов. Наиболее часто используется желтый фосфорный материал Ce3+:YAG.

Также белые светодиоды могут быть изготовлены на базе ультрафиолетовых светодиодов с примененим фосфора красного и синего цвета с добавлением сульфида цинка (ZnS:Cu,Al) . Этот принцип аналогичен используемому в лампах дневного света. Этот способ хуже предыдущего, но позволяет добиться лучшей цветопередачи. К тому же ультрафиолетовые диоды имеют большую световую эффективность. С другой стороны, УФ излучение вредно для человека.

Органические светодиоды (OLED)

Если основа излучающей поверхности светодиода имеет органическое происхождение, такой светодиод называют OLED (Organic Light Emitting Diode). Излучающим материалом может быть небольшая молекула в фазе кристаллизации или полимер. Полимерные кристаллы могут быть гибкими, соответсвенно их называют PLED или FLED.

По сравнению с обычными светодиодами, OLED светлее, а полимерные вдобавок позволяют делать источник света гибким. В будущем на базе таких светодиодов планируется изготовление гибких недорогих дисплеев для портативных устройств, источников света, декоративных систем, светящейся одежды. Но пока уровень разработки OLED не допускает их коммерческое применение.

Светодиоды на квантовых точках (экспериментальная разработка)

Новая технология производства светодиодов, разработанная M.Bowers предполагает покрытие синего светодиода "квантовыми точками", которые начинают излучать белый свет при облучении синим светом светодиода. Эта технология позволяет получить теплый желто-белый свет, схожий со светом ламп накаливания. "Квантовые точки" это нанокристаллы полупроводника, имеющие уникальные оптические характеристики. Их цвет излучения может быть изменен в широких пределах - от видимого спектра до невидимого - любой цвет в пределах CIE диаграммы.

В сентябре 2009 года компания Nanoco Group объявила о заключении исследовательского соглашения с одной из крупнейших японских компаний. Темой исследований является дальнейшая разработка технологии "квантовых точек" для применения в жидкокристаллических телевизионных дисплеях.

Продолжение следует

Времена, когда светодиоды использовали только в качестве индикаторов включения приборов, давно прошли. Современные светодиодные приборы могут полностью взаимозаменить лампы накаливания в бытовых, промышленных и . Этому способствуют различные характеристики светодиодов, зная которые можно правильно подобрать LED-аналог. Использование светодиодов, учитывая их основные параметры, открывает обилие возможностей в сфере освещения.

Светодиод (обозначается СД, СИД, LED в англ.) представляет собой прибор, в основе которого лежит искусственный полупроводниковый кристаллик. При пропускании через него электротока создается явление испускания фотонов, что приводит к свечению. Данное свечение имеет очень узкий диапазон спектра, и цвет его находится в зависимости от материала полупроводника.

Светодиоды с красным и желтым свечением производят из неорганических полупроводниковых материалов на базе арсенида галлия, зеленые и синие изготавливают на основе индия-галлия-нитрида. Чтобы увеличить яркость светового потока используют различные присадки или применяют метод многослойности, когда слой чистого нитрида алюминия размещают между полупроводниками. В результате образования в одном кристаллике нескольких электронно-дырочных (p-n) переходов, яркость его свечения возрастает.

Различают два типа светодиодов: для индикации и освещения. Первые используют для индикации включения в сеть различных приборов, а также как источники декоративной подсветки. Они представляют собой цветные диоды, помещенные в просвечивающийся корпус, каждый из них имеет четыре вывода. Приборы, излучающие инфракрасный свет, используют в устройствах для удаленного управления приборами (пульт ДУ).

В области освещения используют светодиоды, излучающие белый свет. По цвету различают светодиоды с холодным белым, нейтральным белым и теплым белым свечением. Существует классификация применяемых для освещения светодиодов по способу монтажа. Маркировка светодиода SMD означает, что прибор состоит из алюминиевой или медной подложки, на которой размещен кристаллик диода. Сама подложка располагается в корпусе, контакты которого соединены с контактами светодиода.

Другой тип светодиодов обозначается OCB. В таком приборе на одной плате размещается множество кристаллов, покрытых люминофором. Благодаря такой конструкции достигается большая яркость свечения. Такую технологию используют при производстве с большим световым потоком на относительно малой площади. В свою очередь это делает производство светодиодных ламп наиболее доступным и недорогим.

Обратите внимание! Сравнивая лампы на SMD и COB светодиодах можно отметить, что первые поддаются ремонту путем замены вышедшего из строя светодиода. Если не работает лампа на COB светодиодах, придется менять всю плату с диодами.

Характеристики светодиодов

Выбирая для освещения подходящую светодиодную лампу, следует учитывать параметры светодиодов. К ним относят напряжение питания, мощность, рабочий ток, эффективность (светоотдача), температуру свечения (цвет), угол излучения, размеры, срок деградации. Зная основные параметры, можно будет без труда выбрать приборы для получения того или иного результата освещенности.

Величина тока потребления светодиода

Как правило, для обычных светодиодов предусмотрена сила тока величиной 0,02А. Однако бывают светодиоды, рассчитанные на 0,08А. К таким светодиодам относят более мощные приборы, в устройстве которых задействованы четыре кристалла. Они располагаются в одном корпусе. Так как каждый из кристаллов потребляет по 0,02А, в сумме один прибор будет потреблять 0,08А.

Стабильность работы светодиодных приборов зависит от величины тока. Даже незначительное увеличение силы тока способствует снижению интенсивности излучения (старению) кристалла и увеличению цветовой температуры. Это в конечном результате приводит к тому, что светодиоды начинают отливать синим цветом и преждевременно выходят из строя. А если показатель силы тока увеличивается существенно, светодиод сразу перегорает.

Чтобы ограничить потребляемый ток, в конструкциях LED-ламп и светильников предусмотрены стабилизаторы тока для светодиодов (драйверы). Они преобразуют ток, доводя его до нужной светодиодам величины. В случае, когда требуется подключить отдельный светодиод к сети, нужно использовать токоограничительные резисторы. Расчет сопротивления резистора для светодиода выполняют с учетом его конкретных характеристик.

Полезный совет! Чтобы правильно подобрать резистор, можно воспользоваться калькулятором расчета резистора для светодиода, размещенным в сети интернет.

Напряжение светодиодов

Как узнать напряжение светодиодов? Дело в том, что параметра напряжения питания как такового у светодиодов нет. Вместо этого используется характеристика падения напряжения на светодиоде, что означает величину напряжения на выходе светодиода при прохождении через него номинального тока. Значение напряжения, указанное на упаковке, отражает как раз падение напряжения. Зная эту величину, можно определить оставшееся на кристалле напряжение. Именно это значение берется во внимание при расчетах.

Учитывая применение различных полупроводников для светодиодов, напряжение у каждого из них может быть разным. Как узнать, на сколько Вольт светодиод? Определить можно по цвету свечения приборов. Например, для синих, зеленых и белых кристаллов напряжение составляет около 3В, для желтых и красных – от 1,8 до 2,4В.

При использовании параллельного подключения светодиодов идентичного номинала с величиной напряжения в 2В можно столкнуться со следующим: в результате разброса параметров одни излучающие диоды выйдут из строя (сгорят), а другие будут очень слабо светиться. Это произойдет ввиду того, что при увеличении напряжения даже на 0,1В наблюдается увеличение силы тока, проходящего через светодиод, в 1,5 раза. Поэтому так важно следить, чтобы ток соответствовал номиналу светодиода.

Светоотдача, угол свечения и мощность светодиодов

Сравнение светового потока диодов с другими источниками света проводят, учитывая силу издаваемого ими излучения. Приборы размером около 5 мм в диаметре дают от 1 до 5 лм света. В то время как световой поток лампы накаливания в 100Вт составляет 1000 лм. Но при сопоставлении необходимо учитывать, что у обычной лампы свет рассеянный, а у светодиода – направленный. Поэтому необходимо принимать во внимание угол рассеивания светодиодов.

Угол рассеивания разных светодиодов может составлять от 20 до 120 градусов. При освещении светодиоды дают более яркий свет по центру и снижают освещенность к краям угла рассеивания. Таким образом, светодиоды лучше освещают конкретное пространство, используя при этом меньше мощности. Однако если требуется увеличить площадь освещенности, в конструкции светильника используют рассеивающие линзы.

Как определить мощность светодиодов? Чтобы определить мощность светодиодной лампы, требующейся для замены лампы накаливания, необходимо применять коэффициент, равный 8. Так, заменить обычную лампу мощностью 100Вт можно светодиодным прибором мощностью не менее 12,5Вт (100Вт/8). Для удобства можно воспользоваться данными таблицы соответствия мощности ламп накаливания и LED-источников света:

Мощность лампы накаливания, Вт Соответствующая мощность светодиодного светильника, Вт
100 12-12,5
75 10
60 7,5-8
40 5
25 3

При использовании светодиодов для освещения очень важен показатель эффективности, который определяется отношением светового потока (лм) к мощности (Вт). Сопоставляя эти параметры у разных источников света, получаем, что эффективность лампы накаливания составляет 10-12 лм/Вт, люминесцентной – 35-40 лм/Вт, светодиодной – 130-140 лм/Вт.

Цветовая температура LED-источников

Одним из важных параметров светодиодных источников является температура свечения. Единицы измерения этой величины – градусы Кельвина (К). Следует отметить, что все источники света по температуре свечения разделяют на три класса, среди которых теплый белый имеет цветовую температуру менее 3300 К, дневной белый – от 3300 до 5300 К и холодный белый свыше 5300 К.

Обратите внимание! Комфортное восприятие человеческим глазом светодиодного излучения непосредственно зависит от цветовой температуры LED-источника.

Цветовая температура обычно указывается на маркировке светодиодных ламп. Она обозначается четырехзначным числом и буквой К. Выбор LED-ламп с определенной цветовой температурой напрямую зависит от особенностей применения ее для освещения. Предложенная ниже таблица отображает варианты использования светодиодных источников с разной температурой свечения:

Цвет свечения светодиодов Цветовая температура, К Варианты использования в освещении
Белый Теплый 2700-3500 Освещение бытовых и офисных помещений как наиболее подходящий аналог лампы накаливания
Нейтральный (дневной) 3500-5300 Отличная цветопередача таких ламп позволяет применять их для освещения рабочих мест на производстве
Холодный свыше 5300 Используется в основном для освещения улиц, а также применяется в устройстве ручных фонарей
Красный 1800 Как источник декоративной и фито-подсветки
Зеленый -
Желтый 3300 Световое оформление интерьеров
Синий 7500 Подсветка поверхностей в интерьере, фито-подсветка

Волновая природа цвета позволяет выразить цветовую температуру светодиодов, используя длину волны. Маркировка некоторых светодиодных приборов отражает цветовую температуру именно в виде интервала различных длин волн. Длина волны имеет обозначение λ и измеряется в нанометрах (нм).

Типоразмеры SMD светодиодов и их характеристики

Учитывая размер SMD светодиодов, приборы классифицируются в группы с различными характеристиками. Наиболее популярные светодиоды с типоразмерами 3528, 5050, 5730, 2835, 3014 и 5630. Характеристики SMD светодиодов в зависимости от размеров рознятся. Так, разные типы SMD светодиодов отличаются по яркости, цветовой температуре, мощности. В маркировке светодиодов первые две цифры показывают длину и ширину прибора.

Основные параметры светодиодов SMD 2835

К основным характеристикам SMD светодиодов 2835 относят увеличенную площадь излучения. В сравнении с прибором SMD 3528, который имеет круглую рабочую поверхность, площадь излучения SMD 2835 имеет прямоугольную форму, что способствует большей светоотдаче при меньшей высоте элемента (около 0,8 мм). Световой поток такого прибора составляет 50 лм.

Корпус светодиодов SMD 2835 выполнен из термостойкого полимера и может выдерживать температуру до 240°С. Следует отметить, что деградация излучения в этих элементах составляет менее 5% в течение 3000 часов функционирования. Кроме того, прибор имеет достаточно низкое тепловое сопротивление перехода кристалл-подложка (4 С/Вт). Рабочий ток в максимальном значении – 0,18А, температура кристалла – 130°С.

По цвету свечения выделяют теплый белый с температурой свечения 4000 К, дневной белый – 4800 К, чистый белый – от 5000 до 5800 К и холодный белый с цветовой температурой 6500-7500 К. Стоит отметить, что максимальная величина светового потока у приборов с холодным белым свечением, минимальная – у светодиодов теплого белого цвета. В конструкции прибора увеличены контактные площадки, что способствует лучшему отводу тепла.

Полезный совет! Светодиоды SMD 2835 могут быть использованы для любого типа монтажа.

Характеристики светодиодов SMD 5050

В конструкции корпуса SMD 5050 размещены три однотипных светодиода. LED источники синего, красного и зеленого цвета имеют технические характеристики, аналогичные кристаллам SMD 3528. Значение рабочего тока каждого из трех светодиодов составляет 0,02А, следовательно суммарная величина тока всего прибора 0,06А. Для того, чтобы светодиоды не вышли из строя, рекомендуется не превышать эту величину.

LED приборы SMD 5050 имеют прямое напряжение величиной 3-3,3В и светоотдачу (сетевой поток) 18-21 лм. Мощность одного светодиода складывается из трех величин мощности каждого кристалла (0,7Вт) и составляет 0,21Вт. Цвет свечения, испускаемый приборами, может быть белым во всех оттенках, зеленым, синим, желтым и многоцветным.

Близкое расположение светодиодов разных цветов в одном корпусе SMD 5050 позволило реализовать многоцветные светодиоды с отдельным управлением каждым цветом. Для регулирования светильников с использованием светодиодов SMD 5050 используют контроллеры, благодаря чему цвет свечения можно плавно изменять от одного к другому через заданное количество времени. Обычно такие приборы имеют несколько режимов управления и могут регулировать яркость свечения светодиодов.

Типовые характеристики светодиода SMD 5730

Светодиоды SMD 5730 – современные представители LED-приборов, корпус которых имеет геометрические размеры 5,7х3 мм. Они относятся к сверхярким светодиодам, характеристики которых стабильны и качественно отличаются от параметров предшественников. Изготовленные с применением новых материалов, эти светодиоды отличаются повышенной мощностью и высокоэффективным световым потоком. Кроме того, они могут работать в условиях повышенной влажности, устойчивы к перепадам температур и вибрации, имеют длительный срок службы.

Существует две разновидности приборов: SMD 5730-0,5 с мощностью 0,5Вт и SMD 5730-1 с мощностью 1Вт. Отличительной особенностью приборов является возможность их функционирования на импульсном токе. Величина номинального тока SMD 5730-0,5 составляет 0,15А, при импульсной работе прибор может выдерживать силу тока до 0,18А. Данный тип светодиодов обеспечивает световой поток до 45 лм.

Светодиоды SMD 5730-1 работают на постоянном токе 0,35А, при импульсном режиме – до 0,8А. Эффективность светоотдачи такого прибора может составить до 110 лм. Благодаря термостойкому полимеру, корпус прибора выдерживает температуру до 250°С. Угол рассеивания обоих типов SMD 5730 равен 120 градусам. Степень деградации светового потока составляет менее 1% при работе в течение 3000 часов.

Характеристики светодиодов Cree

Компания Cree (США) занимается разработкой и выпуском сверхъярких и самых мощных светодиодов. Одна из групп светодиодов Cree представлена серией приборов Xlamp, которые делятся на однокристальные и многокристальные. Одной из особенностей однокристальных источников является распределение излучения по краям прибора. Это инновация позволила выпускать светильники с большим углом свечения, используя минимальное количество кристаллов.

В серии LED-источников XQ-E High Intensity угол свечения составляет от 100 до 145 градусов. Имея небольшие геометрические размеры 1,6х1,6 мм, мощность сверхярких светодиодов – 3 Вольта, а световой поток – 330 лм. Это одна из новейших разработок компании Cree. Все светодиоды, конструкция которых разработана на базе одного кристалла, имеют качественную цветопередачу в пределах CRE 70-90.

Статья по теме:

Как сделать или починить LED-гирлянду самостоятельно. Цены и основные характеристики наиболее популярных моделей.

Компания Cree выпустила несколько вариантов многокристальных LED-приборов с новейшими типами питания от 6 до 72 Вольт. Многокристальные светодиоды делятся на три группы, в которые входят приборы с высоким напряжением, мощностью до 4Вт и выше 4Вт. В источниках до 4Вт собраны 6 кристаллов в корпусе типа MX и ML. Угол рассеивания составляет 120 градусов. Купить светодиоды Cree такого типа можно с белым теплым и холодным цветом свечения.

Полезный совет! Несмотря на высокую надежность и качество света, купить мощные светодиоды серии MX и ML можно по относительно небольшой цене.

В группу свыше 4Вт входят светодиоды из нескольких кристаллов. Самыми габаритными в группе являются приборы мощностью 25Вт, представленные серией MT-G. Новинка компании – светодиоды модели XHP. Один из крупных LED-приборов имеет корпус 7х7 мм, его мощность 12Вт, светоотдача 1710 лм. Светодиоды с высоким напряжением питания объединяют в себе небольшие габариты и высокую светоотдачу.

Схемы подключения светодиодов

Существуют определенные правила подключения светодиодов. Беря во внимание, что проходящий через прибор ток движется только в одном направлении, для длительного и стабильного функционирования LED-приборов важно учитывать не только определенное напряжение, но и оптимальную величину тока.

Схема подключения светодиода к сети 220В

В зависимости от используемого источника питания, различают два вида схем подключения светодиодов к 220В. В одном из случаев используется с ограниченным током, во втором – специальный , стабилизирующий напряжение. Первый вариант учитывает использование специального источника с определенной силой тока. Резистор в данной схеме не требуется, а количество подключаемых светодиодов ограничивается мощностью драйвера.

Для обозначения светодиодов на схеме используются пиктограммы двух видов. Над каждым схематическим их изображением находятся две небольшие параллельные стрелочки, направленные вверх. Они символизируют яркое свечение LED-прибора. Перед тем как подключить светодиод к 220В используя блок питания, необходимо в схему включить резистор. Если это условие не выполнить, это приведет к тому, что рабочий ресурс светодиода существенно сократится или он попросту выйдет из строя.

Если при подключении использовать блок питания, то стабильным в схеме будет лишь напряжение. Учитывая незначительное внутреннее сопротивление LED-прибора, включение его без ограничителя тока приведет к сгоранию прибора. Именно поэтому в схему включения светодиода вводят соответствующий резистор. Следует отметить, что резисторы бывают с разным номиналом, поэтому их следует правильно рассчитывать.

Полезный совет! Негативным моментом схем включения светодиода в сеть 220 Вольт с использованием резистора становится рассеивание большой мощности, когда требуется подключить нагрузку с повышенным потреблением тока. В этом случае резистор заменяют гасящим конденсатором.

Как рассчитать сопротивление для светодиода

При расчете сопротивления для светодиода руководствуются формулой:

U = IхR ,

где U – напряжение, I – сила тока, R – сопротивление (закон Ома). Допустим, необходимо подключить светодиод с такими параметрами: 3В – напряжение и 0,02А – сила тока. Чтобы при подключении светодиода к 5 Вольтам на блоке питания он не вышел из строя, надо убрать лишние 2В (5-3 = 2В). Для этого необходимо включить в схему резистор с определенным сопротивлением, которое рассчитывается с помощью закона Ома:

R = U/I .

Таким образом, отношение 2В к 0,02А составит 100 Ом, т.е. именно такой необходим резистор.

Очень часто бывает, что учитывая параметры светодиодов, сопротивление резистора имеет нестандартное для прибора значение. Такие ограничители тока нельзя отыскать в точках продажи, например, 128 или 112,8 Ом. Тогда следует использовать резисторы, сопротивление которых имеет ближайшее большее значение по сравнению с расчетным. При этом светодиоды будут функционировать не в полную силу, а лишь на 90-97%, но это будет незаметно для глаза и положительно отразится на ресурсе прибора.

В интернете представлено множество вариантов калькуляторов расчетов светодиодов. Они учитывают основные параметры: падение напряжения, номинальный ток, напряжение на выходе, количество приборов в цепи. Задав в поле формы параметры LED-приборов и источников тока, можно узнать соответствующие характеристики резисторов. Для определения сопротивления маркированных цветом токоограничителей также существуют онлайн расчеты резисторов для светодиодов.

Схемы параллельного и последовательного подключения светодиодов

При сборке конструкций из нескольких LED-приборов используют схемы включения светодиодов в сеть 220 Вольт с последовательным или параллельным соединением. При этом для корректного подключения следует учитывать, что при последовательном включении светодиодов требуемое напряжение представляет собой сумму падений напряжений каждого прибора. В то время как при параллельном включении светодиодов складывается сила тока.

Если в схемах используются LED-приборы с разными параметрами, то для стабильной работы необходимо рассчитать резистор для каждого светодиода отдельно. Следует отметить, что двух совершенно одинаковых светодиодов не существует. Даже приборы одной модели имеют незначительные отличия в параметрах. Это приводит к тому, что при подключении большого их количества в последовательную или параллельную схему с одним резистором, они могут быстро деградировать и выйти из строя.

Обратите внимание! При использовании одного резистора в параллельной или последовательной схеме можно подключать лишь LED-приборы с идентичными характеристиками.

Расхождение в параметрах при параллельном подключении нескольких светодиодов, допустим 4-5 шт., не повлияет на работу приборов. А если в такую схему подключить много светодиодов – это будет плохим решением. Даже если LED-источники имеют незначительный разброс характеристик, это приведет к тому, что некоторые приборы будут излучать яркий свет и быстро сгорят, а другие – будут слабо светиться. Поэтому при параллельном подключении следует всегда использовать отдельный резистор для каждого прибора.

Что касается последовательного соединения, то здесь имеет место экономное потребление, так как вся цепь расходует количество тока, равное потреблению одного светодиода. При параллельной схеме, потребление составляет сумму расходования всех включенных в схему LED-источников, включенных в схему.

Как подключить светодиоды к 12 Вольтам

В конструкции некоторых приборов резисторы предусмотрены еще на этапе изготовления, что дает возможность подключения светодиодов к 12 Вольт или 5 Вольт. Однако такие приборы не всегда можно найти в продаже. Поэтому в схеме подключения светодиодов к 12 вольт предусматривают ограничитель тока. Первым делом необходимо выяснить характеристики подключаемых светодиодов.

Такой параметр, как прямое падение напряжения у типовых LED-приборов составляет около 2В. Номинальный ток у этих светодиодов соответствует 0,02А. Если требуется подключить такой светодиод к 12В, то «лишние» 10В (12 минус 2) необходимо погасить ограничительным резистором. С помощью закона Ома можно рассчитать для него сопротивление. Получим, что 10/0,02 = 500 (Ом). Таким образом, необходим резистор с номиналом 510 Ом, который является ближайшим по ряду электронных компонентов Е24.

Чтобы такая схема работала стабильно, требуется еще вычислить мощность ограничителя. Используя формулу, исходя из которой мощность равна произведению напряжения и тока, рассчитываем ее значение. Напряжение величиной 10В умножаем на ток 0,02А и получаем 0,2Вт. Таким образом, необходим резистор, стандартный номинал мощности которого составляет 0,25Вт.

Если в схему необходимо включить два LED-прибора, то следует учитывать, что напряжение падающее на них, будет составлять уже 4В. Соответственно для резистора останется погасить уже не 10В, а 8В. Следовательно, дальнейший расчет сопротивления и мощности резистора делается на основании этого значения. Расположение резистора в схеме можно предусмотреть в любом месте: со стороны анода, катода, между светодиодами.

Как проверить светодиод мультиметром

Один из способов проверки рабочего состояния светодиодов – тестирование мультиметром. Таким прибором можно диагностировать светодиоды любого исполнения. Перед тем как проверить светодиод тестером, переключатель прибора устанавливают в режиме «прозвонки», а щупы прикладывают к выводам. При замыкании красного щупа на анод, а черного на катод, кристалл должен излучать свет. Если поменять полярность, на дисплее прибора должна отображаться показание «1».

Полезный совет! Перед тем как проверить светодиод на работоспособность, рекомендуется приглушить основное освещение, так как при тестировании ток очень низкий и светодиод будет излучать свет так слабо, что при нормальном освещении этого можно не заметить.

Тестирование LED-приборов можно произвести, не используя щупы. Для этого в отверстия, расположенные в нижнем углу прибора, анод вставляют в отверстие с символом «Е», а катод – с указателем «С». Если светодиод в рабочем состоянии – он должен засветиться. Этот метод тестирования подходит для светодиодов с достаточно длинными контактами, очищенными от припоя. Положение переключателя при таком способе проверки не имеет значения.

Как проверить светодиоды мультиметром, не выпаивая? Для этого необходимо припаять к щупам тестера кусочки от обычной скрепки. В качестве изоляции подойдет текстолитовая прокладка, которая укладывается между проводами, после чего обрабатывается изолентой. На выходе получается своеобразный переходник для подключения щупов. Скрепки хорошо пружинят и надежно фиксируются в разъемах. В таком виде можно подключить щупы к светодиодам, не выпаивая их из схемы.

Что можно сделать из светодиодов своими руками

Многие радиолюбители практикуют сборку различных конструкций из светодиодов своими руками. Собранные самостоятельно изделия не уступают по качеству, а иногда и превосходят аналоги производственного изготовления. Это могут быть цветомузыкальные устройства, мигающие конструкции светодиодов, бегущие огни на светодиодах своими руками и многое другое.

Сборка стабилизатора тока для светодиодов своими руками

Чтобы ресурс светодиода не выработался раньше положенного срока, необходимо чтобы ток, протекающий через него, имел стабильное значение. Известно, что светодиоды красного, желтого и зеленого цвета могут справляться с повышенной нагрузкой по току. В то время как сине-зеленые и белые LED-источники даже при небольшой перегрузке сгорают за 2 часа. Таким образом, для нормальной работы светодиода необходимо решить вопрос с его питанием.

Если собрать цепочку из последовательно или параллельно соединенных светодиодов, то обеспечить им идентичное излучение можно в том случае, если ток, проходящий через них, будет иметь одинаковую силу. Кроме того, импульсы обратного тока могут негативно повлиять на ресурс LED-источников. Чтобы такого не произошло, необходимо включить в схему стабилизатор тока для светодиодов.

Качественные признаки светодиодных светильников зависят от применяемого драйвера – устройства, которое преобразует напряжение в стабилизированный ток с конкретным значением. Многие радиолюбители собирают схему питания светодиодов от 220В своими руками на базе микросхемы LM317. Элементы для такой электронной схемы имеют небольшую стоимость и такой стабилизатор легко сконструировать.

При использовании стабилизатора тока на LM317 для светодиодов регулируют ток в пределах 1А. Выпрямитель на базе LM317L стабилизирует ток до 0,1А. В схеме устройства используют всего лишь один резистор. Его рассчитывают посредством онлайн калькулятора сопротивления для светодиода. Для питания подойдут имеющиеся подручные устройства: блоки питания от принтера, ноутбука или другой бытовой электроники. Более сложные схемы собирать самостоятельно не выгодно, так как их проще приобрести в готовом виде.

ДХО из светодиодов своими руками

Применение на автомобилях дневных ходовых огней (ДХО) заметно повышает видимость автомобиля в светлое время другими участниками дорожного движения. Многие автолюбители практикуют самостоятельную сборку ДХО с использованием светодиодов. Один из вариантов – устройство ДХО из 5-7 светодиодов мощностью 1Вт и 3Вт на каждый блок. Если использовать менее мощные LED-источники, световой поток не будет соответствовать нормативам для таких огней.

Полезный совет! При изготовлении ДХО своими руками, учитывайте требования ГОСТа: световой поток 400-800 Кд, угол свечения в горизонтальной плоскости – 55 градусов, в вертикальной – 25 градусов, площадь – 40 см².

Для основания можно использовать плату из алюминиевого профиля с площадками для крепления светодиодов. Светодиоды фиксируются на плате с помощью теплопроводного клеящего состава. В соответствии с типом LED-источников подбирается оптика. В данном случае подойдут линзы с углом свечения 35 градусов. Линзы устанавливаются на каждый светодиод отдельно. Провода выводятся в любую удобную сторону.

Далее изготавливается корпус для ДХО, служащий одновременно и радиатором. Для этого можно использовать П-образный профиль. Готовый светодиодный модуль располагают внутри профиля, закрепив его на винтах. Все свободное пространство можно залить прозрачным герметиком на силиконовой основе, оставив на поверхности только линзы. Такое покрытие будет служить в качестве влагозащиты.

Подключение ДХО к питанию производится с обязательным использованием резистора, сопротивление которого предварительно просчитывается и проверяется. Способы подключения могут быть разными, учитывая модель автомобиля. Схемы подключения можно отыскать в сети интернет.

Как сделать, чтобы светодиоды мигали

Наиболее популярными мигающими светодиодами, купить которые можно в готовом виде, являются приборы, регулируемые уровнем потенциала. Мигание кристалла происходит за счет изменения питания на выводах прибора. Так, двухцветный красно-зеленый LED-прибор излучает свет в зависимости от направления проходящего по нему тока. Эффект мигания в RGB-светодиоде достигается подключением трех выводов для отдельного управления к конкретной системе регулирования.

Но можно сделать мигающим и обычный одноцветный светодиод, имея в арсенале минимум электронных компонентов. Перед тем как сделать мигающий светодиод, необходимо выбрать работающую схему, которая будет простой и надежной. Можно использовать схему мигающего светодиода, которая будет запитана от источника с напряжением 12В.

Схема состоит из транзистора небольшой мощности Q1 (подойдет кремниевый высокочастотный КТЗ 315 или его аналоги), резистора R1 820-1000 Ом, 16-вольтового конденсатора С1 емкостью 470 мкФ и LED-источника. При включении схемы конденсатор заряжается до 9-10В, после этого транзистор на миг открывается и отдает накопленную энергию светодиоду, который начинает мигать. Данную схему можно реализовать только в случае питания от источника 12В.

Можно собрать более усовершенствованную схему, которая работает по аналогии с транзисторным мультивибратором. В схему входят транзисторы КТЗ 102 (2 шт.), резисторы R1 и R4 по 300 Ом каждый, чтобы ограничить ток, резисторы R2 и R3 по 27000 Ом, чтобы задавать ток базы транзисторов, 16-вольтовые полярные конденсаторы (2 шт. емкостью 10 мкФ) и два LED-источника. Данная схема питается от источника постоянного напряжения 5В.

Схема работает по принципу «пары Дарлингтона»: конденсаторы С1 и С2 попеременно заряжаются и разряжаются, что служит причиной открывания конкретного транзистора. Когда один транзистор отдает энергию С1, загорается один светодиод. Далее плавно заряжается С2, а ток базы VT1 снижается, что приводит к закрытию VT1 и открытию VT2 и загорается другой светодиод.

Полезный совет! Если использовать напряжение питания свыше 5В, потребуется применить резисторы с другим номиналом, чтобы исключить выход из строя светодиодов.

Сборка цветомузыки на светодиодах своими руками

Чтобы реализовать достаточно сложные схемы цветомузыки на светодиодах своими руками, необходимо сначала разобраться, как работает простейшая схема цветомузыки. Она состоит из одного транзистора, резистора и LED-прибора. Такую схему можно запитать от источника с номиналом от 6 до 12В. Функционирование схемы происходит за счет каскадного усиления с общим излучателем (эмиттером).

На базу VT1 поступает сигнал с изменяющейся амплитудой и частотой. В том случае, когда колебания сигнала превышают заданный порог, транзистор открывается и загорается светодиод. Минусом данной схемы является зависимость мигания от степени звукового сигнала. Таким образом эффект цветомузыки будет проявляться только при определенной степени громкости звука. Если звук увеличить. светодиод будет все время гореть, а при уменьшении – чуть вспыхивать.

Чтобы добиться полноценного эффекта, используют схему цветомузыки на светодиодах с разбивкой диапазона звука на три части. Схема с трехканальным преобразователем звука питается от источника напряжением 9В. Огромное количество схем цветомузыки можно найти в интернете на различных форумах радиолюбителей. Это могут быть схемы цветомузыки с использованием одноцветной ленты, RGB-светодиодной ленты, а также схемы плавного включения и выключения светодиодов. Так же в сети можно отыскать схемы бегущих огней на светодиодах.

Конструкция индикатора напряжения на светодиодах своими руками

Схема индикатора напряжения включает резистор R1 (переменное сопротивление 10 кОм), резисторы R1, R2 (1кОм), два транзистора VT1 КТ315Б, VT2 КТ361Б, три светодиода – HL1, HL2 (красные), HLЗ (зеленый). X1, X2 – 6-вольтовые источники питания. В данной схеме рекомендуется использовать LED-приборы с напряжением 1,5В.

Алгоритм работы самодельного светодиодного индикатора напряжения представляет собой следующее: когда подается напряжение, светится центральный LED-источник зеленого цвета. В случае падения напряжения, включается светодиод красного цвета, расположенный слева. Увеличение напряжения заставляет светиться красный светодиод, размещенный справа. При среднем положении резистора все транзисторы будут в закрытом положении, и напряжение поступит лишь на центральный зеленый светодиод.

Открытие транзистора VT1 происходит, когда ползунок резистора передвигают вверх, тем самым повышая напряжение. В этом случае поступление напряжения на HL3 прекращается, и оно подается на HL1. При перемещении ползунка вниз (понижение напряжение) происходит закрытие транзистора VT1 и открытие VT2, что даст питание светодиоду HL2. С незначительной задержкой LED HL1 погаснет, HL3 один раз мелькнет и засветится HL2.

Такую схему можно собрать, используя радиодетали от устаревшей техники. Некоторые собирают ее на текстолитовой плате, соблюдая масштаб 1:1 c размерами деталей, чтобы все элементы могли разместиться на плате.

Безграничный потенциал LED-освещения дает возможность самостоятельно конструировать из светодиодов различные светотехнические приборы с отличными характеристиками и достаточно низкой стоимостью.

У многих возникает вопрос, почему диод одинаковой мощности (например 50W) стоит в китайском интернет магазине 100р, а в России 500 руб. Китайские продавцы и производители грамотно используют характеристики светодиодов, которые нельзя измерить без специального оборудования. К тому же научились производить очень дешевые и низкокачественные. 99% покупателей в них не разбираются и сталкиваются с ними впервые. Большая разница в цене даёт хороший повод для обмана, всегда можно впарить барахло по цене фирменного, что они умело и делают.


  • 1. Размер чипа
  • 2. Сила тока на кристалле
  • 3. Параметры сверхярких светодиодов от 10W
  • 4. Характеристики 5050, 2835, 5730, 5630, 3528
  • 5. Характеристики светодиодов для фонариков
  • 6. Основные характеристики
  • 7. Подробное описание

Размер чипа

Наверное вы видали, что иногда продавец пишет в характеристиках размер кристалла, указывая его в «mil». Так обозначаются тысячные доли дюйма, в миллиметрах получается 0,0254мм. Типовой кристалл имеет размеры 30*30mil и 45*45mil. В миллиметрах 0,762*0,762мм и 1,143*1,143мм. Измерить не очень просто, но можно сравнить на глаз, если есть эталон. Я использую цифровой штангенциркуль, с точностью до 0,01мм. Для замеров нужен инструмент с острыми концами, обычный микрометр не подходит, так как кристалл утоплен в корпусе.

Соответствие размеров и мощности:

  1. 1W — 45*45mil;
  2. 1W — 30*30mil;
  3. 0,75W — 24*40mil;
  4. 0,5W — 24*24mil.

Сила тока на кристалле

На светодиодных матрицах мощность можно узнать по количеству установленных КР. Они в виде точек видны под желтым люминофором. У цветных и RGB люминофора нет, их видно отлично.

На мощных светодиодах 1 КР имеет мощность 1W и номинальный ток 300мА. При таком токе обеспечивается штатный долговременный режим работы. Если видно 50 КР, то соответственно будут равны 50W.

Параметры сверхярких светодиодов от 10W

Рассмотрим особенности мощных светодиодных матриц белого света. Чтобы удешевить стоимость, китайцы решили ставить кристаллы поменьше и похуже на 0,5W и 0,75W, для которых номинальный ток 150мА и 220мА. Для них 300мА будет слишком много, они будут сильно деградировать и греться. Хорошие должны иметь длину и ширину от 30*30mil до 45*45mil.

Когда делаете выбор в магазине, то используйте эту информацию для вычисления реальных параметров мощных матриц от 10вт, 20вт, 30вт, 50вт, 70вт, 100вт.

Для визуального определения качества мощного светодиода, используйте геометрические параметры. Лучше всего если чипы под люминофором будут квадратные. Прямоугольные — это практически гарантия завышенных характеристик.

Характеристики 5050, 2835, 5730, 5630, 3528

..

Цифры в маркировке обозначают только размер SMD корпуса. И это никак не связано с его мощностью. Например для SMD5050 габариты будут 5,0мм на 5,0мм.

В больших корпусах SMD5630, SMD 5730 европейские и америкаские бренды Samsung, LG, Philips производят лед чипы на 0,5W. Китайцы этим умело пользуются, и ставят в стандартный корпус 5630 и 5730 слабый КР на 0,01W,продавая их как 0,5W. Поэтому китайские лампы-кукурузы утыканы слабыми диодами.

Технические характеристики китайских

Характеристики светодиодов для фонариков

Кроме изготовления низкокачественных LED, китайцы научились производить подделки сверхярких светодиодов для фонариков, светодиодных балок, велофар. Они на 95-99% копируют внешний вид, но параметры всё равно остаются китайские, на 30-40% хуже оригиналов.

Этим объясняется низкая стоимость аккумуляторных светодиодных фонарей на Cree Q5, Cree XML T6, Cree XHP50. В самых дешевых на 100% стоят подделки. Проверял сам лично, купив 10 разных фонариков на Крии Q5 и Т6. Все они оказались на поддельных КРИ производства LatticeBright.

Характеристики ярких светодиодов для фонариков подробно описаны по ссылкам:

Основные характеристики

Есть много вариантов его удешевить, заменить дорогостоящие материалы дешевыми. Самая главная особенность, что такая замена никак не сказывается на внешнем виде, поэтому и возникают такие вопросы.

Список отличий влияющих на цену:

  1. материал основания, медь или алюминий;
  2. количество проводников идущих к кристаллу;
  3. материал проводников;
  4. масса светодиода;
  5. срок службы по стандарту L70 или L80;
  6. максимальная рабочая температура;
  7. количество Люмен на 1 Ватт;
  8. качество люминофора;
  9. индекс цветопередачи CRI;
  10. размер кристалла;
  11. качество кристалла;
  12. разброс технических характеристик;
  13. точность пайки и сборки.

Некоторые параметры можно будет определить только после 5000ч. работы:

  • скорость деградации КР;
  • эффективный срок эксплуатации;
  • качество жёлтого люминофора.

Считаю, что на окупаемость первостепенную роль играет эффективный период службы по стандартам L80 и L70. Для уличных светодиодных светильников второстепенные параметры особой роли не играют.

Подробное описание

1. На дешевых светодиодах основание делают из алюминия, его теплопроводность хуже, чем у меди. Это значительно влияет на массу. Скорость отвода тепла от КР уменьшается, при работе их температура становится выше.

2. Кристалл имеет очень маленькие размеры, для подачи питания его соединяют тонкими проводниками с внешними контактами. Лучше всего если их 4,хуже всего 2 штуки.

3. В фирменных диодах проводники изготавливают из тонких золотых нитей, они выдерживают скачки тока, особенно в автомобиле. Золото заменяют на медь или позолоченную медь. Наверное многие из вас видали дневные ходовые огни или светодиодные лампы которые мигают. При нагреве контакт с Кр теряется, при охлаждении появляется снова.

4. Медь гораздо тяжелей алюминия или других сплавов на его основе. Поэтому хороший LED должен быть тяжелым. Для маломощных 1W, 3W, 5W разница будет небольшой. А начиная от 10W и до 100W, разница в весе будет 2-3 раза.

5. Стандарт L70 и L80 определяют количество часов, которые он проработает до снижения светового потока до 70% и 80% от первоначального. Китайцы пишут для всех стандартное значение в 30.000ч. и 50.000ч.

6. По характеристикам светодиоды имеют максимальную рабочую температуру в 60°. Уже 70° для них критические, требуется большая система охлаждения. Хорошие проработают положенное время в 50-70 тысяч часов при 110°.

7. Самые плохие дают 50 лм/вт, хорошие до 130лм/вт, лучшие до 200 лм/вт. Покупая у китайцев не надейтесь, что будет более 100 лм/вт.

8. Все белые лед чипы без люминофора светят синим цветом. Для придания ему теплого белого или нейтрально белого цвета наносят желтый люминфор. Он бывает разным, недорогой быстро выгорает. Это приводит к смещению цвета в сторону голубого и изменению индекса цветопередачи. Индекс CRI ниже 80 не пригоден для жилых помещений.

9. Цветопередача отвечает за точность передачи цветов предметом, которые мы видим при светодиодном освещении. При низком CRI <80 цвета будут сильно искажены, поэтому светодиодные светильники и лампы с CRI <80 используют в уличном освещении, в подсобных и нежилых помещениях.

10.От размера КР зависит сила тока, которую можно на него подавать. Квадратные светодиодные COB матрицы (сборки, модули) состоят из обычных кристаллов на 1W и 3W. Для них стандартный 30mil, 45mil. Для мощных COB LED на 10W, 20W, 30W, 50W, 100W могут быть размерами 24*24mil, 24*44mil, 44*44mil.

Для маломощных LED могут быть разных размеров, даже по 2-3 КР в одном корпусе, подключенных последовательно или параллельно.

11. Это же относится и к мощным светодиодам RGB. По размерам КР на 1W и 3W могут быть одинаковыми. Плохие маркируются как на 1Вт, которые лучше обозначаются 3Вт.

12. Косвенно о качестве можно узнать по разбросу параметров используемых КР. Их включают, чтобы слегка светились. Некоторые будут светить гораздо ярче других, это большой разброс. Чем равномерней они светят, тем лучше.

13. Качество сборки и установки КР влияет на срок службы. Все элементы подвергаются сильному нагреву и остыванию, материалы расширяются и сжимаются. Если отвод тепла ухудшается, то около него начинает чернеть люминофор.

Повсеместно происходит замена обычных ламп на светодиодные. На сегодняшний день это лучший способ освещения для автомобилей и домов, более долговечный и лёгкий в замене. Итак, в чем заключается принцип работы светодиода и как его правильно выбрать?

Светодиод и принцип его работы

Светодиод - это специальный электроприбор, который перерабатывает ток в некоторое свечение. На сегодняшний день светодиоды более известны как LED, что значит «светоизлучающий диод».

Прибор является полупроводниковым и состоит из кристалла-чипа, корпуса, контактных выводов и оптического устройства. Свет исходит от кристалла, а его цвет может быть различным и зависит от применяемого материала. Яркость светодиода, как и его цвет, также может быть различной. Так, например, для большего светового эффекта в одну лампу часто вставляют несколько кристаллов, вырабатывающих однотонный свет, который в комплексе образует яркое свечение.

Яркость устройства напрямую зависит от силы подаваемого на него электрического тока. В свою очередь, слишком мощный поток электроэнергии вызывает быстрый перегрев внутреннего кристалла и выводит его из строя. Ввиду этого конструкция светодиода несколько затратна по стоимости материалов, что несколько негативно сказывается на выборе таких ламп.

По яркости светодиоды принято делить на категории:

  • ультраяркие, их минимальная мощность - 1 W;
  • светодиоды повышенной яркости - достигают 20 mW;
  • стандартные лампы.

На сегодняшний день широко применяется блок светодиодов, который встраивается в лампу. Благодаря ему возможна и выбор оптимального режима свечения.

Преимущество светодиодов перед другими типами освещения

Светодиод - это лучший на сегодняшний день выбор типа освещения, который имеет ряд преимуществ:

  • Долговечность.
  • Возможность регулировки цвета и яркости лампы.
  • Цветовая насыщенность, возможность подобрать красный, синий, зеленый светодиод или заставить цвет меняться.
  • Возможность электронного управления.
  • Экологически чистые материалы, которые не содержат тяжёлых веществ, вредных для окружения и опасных при неправильной утилизации.
  • Низкая потребляемая мощность, на 1 ватт вырабатывается в несколько раз больше света.
  • Свет чистый и максимально приближён к естественному.
  • Не перегреваются благодаря грамотному светоотводу.
  • Надёжность и прочность.

Почему светодиоды стали популярны в автоиндустрии? Этот тип освещения идеально подходит для автомобилей, постепенно вытесняя галогенные и ксеноновые лампы. Его положительные качества:

  • возможность направления освещения за поворотом руля - создание адаптивных фар;
  • эстетически выглядит лучше других видов фар;
  • повышение безопасности благодаря улучшению видимости на дороге;
  • устойчивость к вибрации;
  • зачастую светодиоды установлены в корпус, куда не проникает влага;
  • достижение рабочего состояния происходит быстрее, по этой причине стоп-сигналы срабатывают лучше.

Конечно, эти преимущества присущи только действительно качественным продуктам, поэтому экономить на них не стоит, тем более, что период их эксплуатации значительно увеличен по сравнению с китайской продукцией. Дополнительно период эксплуатации светодиодных ламп, если сравнивать с обычными, также значительно больше.

Классификация светодиодов

Выделяют 2 основных вида светодиодов - для подсветки (индикаторные) и для освещения. Их сила и долговечность зависят от подачи электротока, ввиду этого второй вид светодиодов служит меньший срок, так как кристалл изнашивается быстрее. Тем не менее, эти осветительные устройства очень долговечны и служат несколько тысяч часов.

Осветительный светодиод - это устройство, обеспечивающее надёжный и мощный свет. Оно широко применяется в дизайне, создавая нужный уровень освещённости.

По типу корпуса принято выделять светодиод в форме «Звезды», «Пираньи» и SMD. Среди них самыми популярными являются «Пираньи», так как их световой поток представляется более качественным. Их конструктивной особенностью является форма прямоугольника с выводами по краям, с помощью них обеспечивается жёсткое сцепление с поверхностью. Кроме того, подложка устройства обладает отличной теплоотводностью. Эти приборы используют широко в автомобилях и в рекламе. Они разнообразны по размерам и цветам: красный, белый, зелёный, синий светодиод.

Индикаторные светодиоды имеют конструкцию попроще, их свет не такой сильный и используется для подсветки дисплеев и приборных панелей. По форме выделяют круглые, овальные и прямоугольные индикаторные светодиоды.

Линзы также отличаются друг от друга, они могут быть встроены и в осветительные, и в Некоторые предназначены для рассеивания света (этих устройств подавляющее большинство), другие - для фокусировки, благодаря направленному пучку производимого света. Причём во второй группе выделяют линзы плоские, конусообразные и круглые.

По цвету линзы светодиоды бывают:

  • бесцветными прозрачными;
  • окрашенными прозрачными;
  • окрашенными матовыми.

Кроме того, цветовая гамма исполнения прибора сейчас очень разнообразна. Существует жёлтый, красный, синий, зеленый светодиод и т. д. Эти цвета умело комбинируются, создавая ещё более широкий спектр. Наиболее сложно, как ни странно, получить чистый белый цвет.

Белый светодиод получают тремя способами:

  • одновременное использование в правильных пропорциях красного, синего и зелёного цветов даёт ощущение белого цвета;
  • применение синего диода с примесью жёлтого;
  • третий метод требует применения люминесцентных материалов, который преобразовывает ультрафиолет, действуя по принципу флуоресцентной лампы.

Белый светодиод наиболее распространён, хоть и получить его несколько сложно. Он бывает холодным и тёплым. На лампочке обычно этот параметр указан в кельвинах, чем меньше показатель, тем цвет будет желтее и теплее. Производители рекомендуют остановить свой выбор на усреднённом параметре, хотя и к холодному, синеватому свету также можно быстро привыкнуть.

Выбор лампы для дома

Выбор лампы для дома включает несколько этапов, где необходимо определиться с типом сети, диаметром цоколя и внешним видом самого осветительного прибора.

Светодиод 220 вольт выпущен в наиболее распространённых типах цоколя - Е27 и Е14. Цифры обозначают диаметр резьбы в миллиметрах. Первый вид ламп зачастую встречается в форме шара, второй - шара или кукурузы.

В чём же заключаются их главные преимущества? Во-первых, это возможность блокировки и настройки яркости свечения самостоятельно. Во-вторых, это выбор цветового освещения и возможность дистанционного управления им. В-третьих, долговечность эксплуатации и повышенная надёжность.

Выбирая форму, нужно обратить внимание на то, что лампы-кукурузы хоть и имеют достаточно неплохие характеристики, они всё же небезопасны. Их контакты выходят наружу, и производители отказываются в последнее время от выпуска устройств подобной формы.

Для освещения нежилых помещений или ванных комнат используются менее мощные лампы, поэтому если нет необходимости применять светодиод 220 вольт, можно обойтись маленькими плоскими приборами с цоколем G53 и GX53. Это круглые лампы, где используется несколько диодов.

Обратить внимание при приобретении лампы стоит и на следующие характеристики:

  • количество диодов - от того, сколько светодиодов находится в лампе, зависит её яркость, особенно при длительном периоде использования, когда они начинают тускнеть и перегорать;
  • режим рабочей температуры - нужно учитывать, что при выборе лампы для улицы она должна быть эффективной и при возможных морозах, это обычно указывается в паспорте устройства;
  • возможность пульсаций - мигание встречается у дешёвых ламп, обычно при покупке дорогостоящей оно сводится к минимуму;
  • условия эксплуатации иногда требуют повышенной защиты устройства, допустим, стойкость к влаге, необходимо об этом параметре поинтересоваться у продавца;
  • при выборе производителя нужно обращать внимание на диаметр цоколя, так как не все импортные разработчики выпускают светодиод 220В;
  • необходимый световой поток, который измеряют в Люменах, - осветительные или индикаторные лампы.

Выбор производителя

На рынке присутствует множество производителей, которые демонстрируют различный уровень качества. Соответственно, их ценовая политика поставщиков также значительно отличается.

Главным недостатком светодиодов является их стоимость. Поэтому, если уже платить немаленькие деньги за продукт, необходимо, чтобы он был действительно качественным. Поэтому стоит с ответственностью подойти к выбору производителя и поставщика.

Производителей условно можно разделить на 5 групп.

  1. Китайские дешёвые никому не известные бренды.
  2. Известные китайские и азиатские производители. Наиболее популярными являются Selecta, Camelion, LG. Они используют современное оборудование, и качество выпущенной продукции у этих компаний достаточно высокое, поэтому достаточно большой сегмент отечественного рынка занят товаром из Азии. Отдельно стоит отметить светодиоды LG, которые с 2016 года значительно уменьшили цену на свой товар благодаря использованию новых технологий в производстве. Причём качество остаётся на прежнем уровне. В этом можно не сомневаться. Специализируется компания на лампах средней мощности и достаточно неплохо себя проявляет относительно аналогов.
  3. Отечественные производители, которые делают продукт высокого качества, но их технология достаточно дорогая, поэтому и цена на лампы соответственная. К сожалению, на территории России поздно узнали о широких возможностях светодиодов и отечественных производителей пока не так много. Это, к примеру, "Оптоман" и Gauss. Эти компании имеют свой модельный ряд продукции и доступны по всей стране.
  4. Европейские производители представлены преимущественно немецкими фирмами Philips, Osram, Bioledex, которые имеют огромный опыт производства ламп. Пожалуй, Philips остаётся лидером в этом сегменте рынка, хотя и стоит он относительно дорого.
  5. Китайско-российские проекты, такие как Ecola, Newera - также неплохие по качеству и цене бренды, которые значительно моложе фирм-конкурентов.

Таким образом, среди такого обилия производителей иногда достаточно сложно выбрать достойный бренд, поэтому особенно важно и нужно обращать внимание главным образом на характеристики продукта и условия его эксплуатации.

Приблизительный алгоритм действий при установке светодиода

Если есть хоть малейшие познания в электрике и был опыт установки любых ламп, можно светодиод попробовать установить и самому. Для начала нужно убедиться в работоспособности ламп. Последовательность действий должна быть следующей:

  • изучение технических характеристик и подсчёт, сколько вольт потребляет один светодиод;
  • составление схемы подключения с учётом напряжения;
  • вычисление потребляемой мощности электроцепи;
  • далее нужно подобрать блок питания, который бы подошёл по мощности, это также может быть и драйвер;
  • на ножках светодиода указана полярность, к которым нужно припаять провода;
  • подключение блока питания;
  • установка диодов и их закрепление;
  • если всё в порядке, необходимо измерить такие характеристики, как количество потребляемой энергии, нагрев, электроток;
  • корректировка электротока;
  • прогрев в течение получаса - чтобы ничего не случилось при первоначальной установке и для того, чтобы предупредить перегрев, светодиоды лучше покупать на подложке в форме звезды.

В процессе эксплуатации, особенно, если это продукция китайского производства, иногда необходима замена светодиодов. Чем обращаться к специалистам, замену можно выполнить самостоятельно при наличии нужных инструментов. Раскрутив лампу, с помощью цифрового мультиметра прозванивают диоды. Они, в свою очередь, слабо подсвечиваются, и некоторые из них могут не работать. Ненужные диоды отпаивают и меняют на новые. Конечно, это происходит, когда запасные светодиоды есть в наличии, для этого можно взять старую лампу.

На сегодняшний день популярным дополнением является программа "Ардуино". Светодиод, подключая к нему, можно заставить мигать. Плата "Ардуино" имеет много возможностей, вводы-выводы, а также к ней можно подключить практически любое устройство. Эта программа способна принимать сигналы от различных устройств, что и заставляет воздействовать на них. Это лёгкая и удобная среда для программирования, с которой несложно справиться даже обычному пользователю.

Выбор светодиодов для автомобиля

Автовладельцы всё чаще переходят на новый тип освещения в своей машине. Это действительно хорошее решение не только в плане режима работы, но и относительно внешнего вида автомобиля. Авто значительно преобразится, привлекая взгляды проезжающих мимо водителей. Освещением можно смело заменить все лампы, которые используются в автомобиле.

Как выбрать габариты и свет для передних стоп-сигналов?

Большая часть автопрома применяет лампы без цоколя, устанавливаемые в проёме между передними фарами. Преимуществом светодиодов является их стойкость к любым температурам, так как они находятся вблизи от главной осветительной лампы, возможен перегрев кристалла и преждевременный его выход из строя. Ввиду этого, при выборе освещения необходимо обратить внимание на дополнительную защиту светодиодов - наличие стабилизатора электротока.

При выборе ламп нужно обратить внимание на их серию, допустим, серия SF хоть и не имеет стабилизатора, вполне подходит для автомобиля, так как имеет большое количество диодов и работает в широком диапазоне, отлично освещая пространство.

Нужно также обратить внимание на размеры лампы, так, указанный пример SF - достаточно большое устройство. Нужно хорошо все продумать перед покупкой освещения.

Популярной также является серия для габаритов - СМД, которая имеет отличные характеристики, но и стоит немалых денег.

Заднее освещение автомобиля

Задние стоп-сигналы принято оборудовать цокольными двухконтактными светодиодами. Наиболее популярные серии: МСД, 14НР и 3х1W. Они имеют несколько различный режим работы, отличаются количеством диодов. Но все имеют достаточно высокие показатели. Эти светодиоды являются яркими, обеспечивают насыщенный свет и долговременный срок службы.

Самые доступные по стоимости - лампы серии SF.

Светодиоды для салона

Перед выбором ламп для салона необходимо определиться с типом его освещения и величиной плафона.

В салон нужно подбирать лампу фестонного типа - это продолговатые устройства, размером 31-41 мм. Выделяют 3 вида светодиодов для салона.

  1. Устанавливаются в разъём плафона вместо старой обычной лампочки. По размеру такие светодиоды практически идентичны обычным осветительным приборам, они применяются при невозможности из-за небольшой величины плафона использовать другую лампу.
  2. Светодиоды большего размера, чем стандартная лампочка. Перед установкой нужной убедиться, подойдёт ли такое устройство под плафон. Благодаря большему размеру, увеличивается и количество диодов в лампе. Таким образом, освещение становится значительно ярче обычного.
  3. Матрицы, вмещающее большое количество диодов. Если плафон достаточно большой и может вместить прямоугольную матрицу, то этот тип освещения будет наиболее ярким и насыщенным.

В салонном освещении используются лампы типа SF или СМД.

Кроме того, в автомобилях широко применяется замена противотуманных фар на лампы со светодиодом. Особое внимание стоит обратить автолюбителям, желающим выделиться среди других, на подсветку светодиодной лентой и на «ангельские глазки».

Подводя итог

Светодиод - это отличная альтернатива старым лампочкам, которая помогает решить проблему недостаточного освещения помещения. Даже при большей стоимости, чем обычная лампа, это отличное капиталовложение, так как светодиод способен служить не один год и дарить яркий свет дому и автомобилю.

Светодиоды становятся все более востребованными решениями, причем в самых разных сферах. Они могут задействоваться как декоративные изделия или же в целях освещения помещений, а также различных территорий за пределами зданий. Светодиоды поставляются на рынок в достаточно широком спектре модификаций. При этом разработчики соответствующих изделий периодически предлагают инновационные решения, которые в перспективе способны образовывать новые рыночные ниши. Каковы самые распространенные типы светодиодов сегодня? В каких целях они могут использоваться?

Что представляют собой светодиоды?

Прежде чем рассматривать распространенные типы светодиодов, изучим общие сведения о соответствующих устройствах. Светодиод представляет собой полупроводник, который способен преобразовывать электрический ток в свет. При этом полупроводниковый кристалл, который является его основным компонентом, состоит из нескольких слоев, характеризующихся 2 типами проводимости. А именно - дырочной и электронной.

Проводимость первого типа предполагает переход электрона с одного атома на другой, на котором есть свободное место. В свою очередь, на первый атом приходит другой электрон, на предыдущий — еще один и т. д. Данный механизм действует за счет ковалентных связей между атомами. При этом их перемещения не происходит. По сути дела, перемещается положительный заряд, который физики условно именуют дыркой. При этом при переходе электрона на дырки происходит выделение света.

По своей структуре светодиод в целом схож с выпрямительным диодом. То есть у него есть 2 вывода — анод и катод. Данная особенность предопределяет необходимость соблюдения полярности при подключении светодиода к источнику электрического тока.

Рассчитаны соответствующие изделия в общем случае на прямой ток в 20 миллиампер. В принципе, это значение можно и уменьшить, правда, в этом случае может измениться цвет и снизиться яркость светодиода. В свою очередь, увеличивать соответствующий параметр нежелательно. В случае если ток превышает оптимальное значение, то для того, чтобы уменьшить его до требуемого уровня, применяется ограничивающий резистор.

Существует довольно много нюансов, которые следует иметь в виду при инсталляции светодиодов. Это предопределяется их внутренней структурой, формой исполнения. В ряде случаев может потребоваться применять стабилизатор для светодиодов и иные электронные компоненты для обеспечения функционирования прибора, в который инсталлируется рассматриваемое изделие.

В зависимости от состава полупроводников в светодиоде он может быть красным, желтым, зеленым или же синим. Например, если в структуре соответствующего электронного компонента содержится нитрид галлия, то светодиод будет светиться синим. Собственно, одним из критериев, исходя из которых выделяются те или иные типы светодиодов, может быть их цвет.

Применение

Первые светодиоды, поставляемые на рынок, выпускались в корпусах из металла. Постепенно его стала заменять пластмасса. При этом по цвету она, как правило, выбирается с учетом цвета свечения светодиода. Однако довольно часто встречаются также прозрачные пластмассовые корпуса.

Рассматриваемые электронные устройства находят широкое применение в самых разных сферах. Это обусловлено тем, что практически все характеризуются:

Энергоэффективностью;

Долгим сроком службы;

Возможностью определять цвет свечения, а также регулировать его мощность;

Безопасностью;

Экологичностью.

Если говорить об энергоэффективности, светодиоды при одинаковой световой отдаче могут иметь существенно меньшую мощность, чем обычные лампы. Меньшая мощность светодиода при этом снижает общую нагрузку на энергосистему здания. Срок службы устройств может в несколько десятков раз превышать тот, что характеризует обычные лампы. При этом с точки зрения функций светодиоды могут совершенно не уступать им.

По мере образования массового спроса на подобные изделия, а также их удешевления, светодиоды все чаще применяются в тех же целях, что и обычные лампы. Каких-либо сложностей в инсталляции соответствующих решений в сравнении с традиционными осветительными приборами не возникает. Важно только убедиться в том, подходит ли конкретный светодиод для установки в электросеть помещения. Для этого может потребоваться заблаговременно — перед закупкой светодиодов - выявить ее основные параметры.

Какие еще преимущества могут иметь рассматриваемые решения?

Так, можно отметить, что цветовая температура светодиода может быть практически любой — в том числе при сочетании указанных выше цветов. Кроме того, устройства можно дополнять различными светофильтрами, которые могут значительно расширить сферу применения светодиодов с точки зрения подбора требуемой цветовой температуры.

Возможность управления мощностью свечения — еще одно преимущество рассматриваемых устройств. Данная опция отлично сочетается с их высокой энергоэффективностью. Мощность светодиода может регулироваться в автоматическом режиме — исходя из фактических условий пользования осветительными приборами. И это практически не влияет на срок их службы.

Светодиоды экологичны, поскольку не выделяют вредных для человека видов излучения. Данная характеристика, опять же, расширяет возможности применения рассматриваемых устройств.

Классификация: индикаторные и осветительные решения

Эксперты выделяют 2 основные категории светодиодов — индикаторные, а также осветительные. Первые предназначены главным образом для создания декоративного светового эффекта и используются как элемент украшения здания, комнаты, транспортного средства. Или же как инструмент стилизации текста — например, на рекламном баннере.

В свою очередь, есть осветительные светодиоды. Они предназначены для повышения яркости освещения в помещении или на определенном участке территории — например, если рассматривать светодиоды для авто. Соответствующего типа решения являются альтернативой применению обычных ламп и во многих случаях более выгодной с точки зрения энергоэффективности и экологичности.

Типы исполнения

Но вернемся к классификации светодиодов. Можно определить самый широкий спектр оснований для их отнесения к тем или иным категориям. Распространенный в среде экспертов подход предполагает выделение следующих основных типов светодиодов:

Волоконные;

Рассмотрим их подробнее.

В чем заключается специфика DIP-светодиодов?

Если подробнее изучать то, каким образом указанные типы светодиодов появлялись на рынке, то устройства класса DIP можно отнести к первым, которые стали продаваться массово. Данные решения представляют собой кристаллы, которые размещены в корпусах с оптическими компонентами, в частности линзой, которая создает световой пучок.

Светодиоды DIP относятся к категории индикаторных. У них есть еще одно наименование — DIL. Инсталлируются они на плату, на которой предварительно нужно проделывать отверстия. Можно отметить, что в рамках рассматриваемой категории могут выделяться различные типы светодиодов, которые отличаются диаметром колбы, цветом, материалом изготовления. При этом соответствующие параметры могут быть представлены в самом широком спектре. По форме рассматриваемые решения — цилиндрические. Среди соответствующих светодиодов есть как монохромные, так и многоцветные устройства.

Spider LED

Данного типа светодиоды в целом очень схожи с предыдущими устройствами. Но у них вдвое больше выводов — 4. В то время как у светодиодов DIP — 2. Тот факт, что представленный тип решений имеет больше выходов, оптимизирует теплоотвод и повышает надежность соответствующих компонентов. На практике они используются в разных сферах, в частности как светодиоды для авто.

Светодиоды типа SMD

Данные решения выпускаются с применением концепции поверхностного монтажа. То есть они представляют собой светодиоды, инсталлируемые на какую-либо поверхность, в то время как другие решения могут устанавливаться посредством сквозного монтажа.

Размеры светодиодов этого типа могут быть существенно меньше, чем у альтернативных им решений, равно как и тех конструкций, на которые они инсталлируются. Опять же, в данном случае правомерно вести речь о более оптимальном теплоотводе. Использование светодиодов типа SMD во многих случаях позволяет расширить вариативность исполнения осветительных конструкций.

SMD-светодиоды относятся к категории осветительных. Характеризуются достаточно сложной структурой. Так, сам светодиод состоит из металлической подложки. На ней фиксируется кристалл, который припаивается непосредственно к контактам корпуса подложки. Над кристаллом размещается линза. При этом на одной подложке может быть инсталлировано 1-3 светодиода. К SMD относятся распространенные типы сверхярких светодиодов, таких как 3528. Данные решения имеют высокий уровень востребованности.

Светодиоды типа COB

Следующий популярный тип светодиода — COB. Он изготовлен с применением технологии, которая предполагает инсталляцию кристалла непосредственно на плату. Данное решение характеризуется большим количеством преимуществ:

Защищенность соединения от окисления;

Небольшие габариты конструкции;

Эффективность теплоотвода;

Снижение себестоимости инсталляции светодиодов — в сравнении, в частности, с устройствами типа SMD.

Если рассматривать указанные выше типы светодиодов, то можно отметить, что решения марки COB можно отнести к самым инновационным. Впервые подобная технология была реализована японскими инженерами в конце 2000-х годов. Сейчас данные виды светодиодов продолжают набирать популярность.

Как считают эксперты, рассматриваемые решения могут и вовсе стать наиболее востребованными на рынке, особенно если говорить о коммерческом сегменте, о сфере бытового освещения. Стоит отметить, что есть сферы, в рамках которых применение светодиодов COB может быть затруднено. В числе таковых — производство профессионального осветительного оборудования. Дело в том, что рассматриваемые светодиоды не слишком оптимальны с точки зрения приспособления к организации освещения с установленной кривой силы света. В таких случаях более подходящими могут оказаться устройства типа SMD.

Описываемые диоды относятся к осветительным. Как отмечают эксперты, их можно отнести к лучшим, исходя из характеристик светового потока. Поставляются на рынок в разных цветах, например красном, зеленом, синем, а также белом. Световой поток у этих моделей имеет угол рассеивания в 40-120 градусов.

На одной подложке может быть установлено более 9 светодиодов типа COB. Покрываются они люминофором, вследствие чего приобретают высокую яркость. Можно отметить, что световой поток у данных решений выше, чем у устройств типа SMD. Таким образом, если рассматривать то, какой тип светодиодов лучше, то по указанному критерию преимущество может иметь решение класса COB.

Светодиоды типа COB также находят применение в автомобильной индустрии. Их можно использовать в качестве компонента передних, задних фар, поворотников. Главное — правильно инсталлировать приобретенные устройства. Для этого имеет смысл обратиться к опытным специалистам.

Волоконные светодиоды

К инновационным можно отнести волоконные светодиоды. Они появились на рынке недавно, в 2015 году. Разработаны были рассматриваемые решения инженерами из Южной Кореи.

Использовать данные типы светодиодов можно в производстве одежды. То есть, из них вполне реально сшить рубашку или футболку, которые могут светиться. Производство одежды на основе волоконных светодиодов предполагает также применение различных полимеров, а также соединений алюминия.

Светодиоды Filament

Еще один пример инновационных светодиодов — решения типа Filament. Главное их преимущество — высокая энергоэффективность. При одинаковой мощности, к примеру, с такими светодиодами, как COB, решения типа Filament могут обеспечивать более высокий уровень освещенности.

Рассматриваемый чаще всего используется при изготовлении В числе примечательных характеристик производства соответствующих светодиодов — осуществление монтажа непосредственно на подложку, выполненную из стекла. Данный подход дает возможность распространять свет, излучаемый светодиодом, на 360 градусов.

Как выбрать оптимальный вариант?

Как определить тип светодиода, оптимальный для той или иной конструкции? Существует большое количество критериев, на которые можно ориентироваться в данном вопросе. В принципе, вполне правомерно определить сферу применения светодиода исходя из его классификации по тем признакам, которые мы рассмотрели выше. Изучим специфику выбора соответствующих электронных компонентов с учетом особенностей девайсов:

Выбор светодиодов: особенности решений типа DIP

Как мы отметили выше, DIP-светодиоды относятся к самым ранним продуктам, появившимся на рынке. Таким образом, в них задействованы довольно старые, но до сих пор востребованные технологии. Главные их преимущества — простота установки, удобство формы, низкое энергопотребление, слабый нагрев, а также достаточно высокая степень защищенности от внешнего воздействия.

Чаще всего рассматриваемые светодиоды выпускаются в диаметре 3 и 5 мм. Если проводить сравнения светодиодов по типам, то можно прийти к выводу, что рассматриваемые решения наиболее оптимальны для применения:

В качестве элементов тюнинга автомобилей;

Как декоративные компоненты;

В составе маломощных — как вариант самодельных - фонарей.

Рассматриваемые светодиоды имеют относительно невысокую стоимость и доступность на рынке. Можно отметить, что в числе самых часто встречаемых модификаций — светодиоды на 12 вольт. Они могут присутствовать в различных онлайновых каталогах, а также специализированных магазинах в широком ассортименте. Собственно, любые светодиоды на 12 вольт характеризуются достаточно высокой востребованностью на рынке.

Выбор светодиодов: особенности решений типа SMD

Соответствующего типа решения по внешнему виду принципиально отличаются от других тем, что имеют плоскую форму. Монтаж данных электронных компонентов осуществляется без использования ножек. Ток на светодиоды типа SMD подается на клеммы, которые находятся с их обратной стороны.

Таким образом, инсталляция данных девайсов осуществляется без использования отверстий. Размещение светодиодов можно осуществить очень компактно. Как результат — может уменьшиться и конструкция, на которой соответствующие устройства располагаются.

Основные способы применения рассматриваемых устройств — тот же автотюнинг, различные типы интерьерного освещения. В числе самых значимых преимуществ данных вариантов — высокая яркость, светоотдача. В сочетании с небольшими размерами эти решения обладают существенными преимуществами перед альтернативными моделями изделий.

В числе самых распространенных на современном рынке — тип светодиода 3528. Данные изделия широко применяются при выпуске светодиодных лент. Конструкция соответствующих изделий позволяет выпускать трехцветные светодиоды — с красным, синим, а также зеленым цветами свечения. На базе решений типа 3528 производятся многие другие электронные компоненты, например светодиод типа SMD 5050.

Рассматриваемые изделия также характеризуются ценовой доступностью. Представлены на рынке они обычно в широком ассортименте.

Выбор светодиодов: особенности решений типа COB

Прежде всего стоит отметить, что значительная часть светодиодов соответствующего типа — очень мощные конструкции. Их характерная особенность — быстрое рассеивание света, благодаря размещению кристаллов на поверхности, которая обеспечивает динамичное отведение тепла.

Рассматриваемые светодиоды — очень яркие. Это делает их востребованными как раз для использования в конструкции автомобильных фар. Стоит отметить, что данные изделия следует инсталлировать с учетом ряда значимых нюансов — таковые могут знать только опытные специалисты. Поэтому для установки соответствующих решений рекомендуется обращаться к компетентным сервисным службам.