Правильное использование внешних носителей информации. Виды носителей информации. Хранение информации

Потребность хранить какую-либо информацию у человека появилась еще в доисторические времена, чему яркий пример - наскальная живопись, которая сохранилась и по сей день. Наскальные рисунки можно по праву назвать самым износостойким носителем информации на данный момент, хотя с портативностью и удобством использования есть некоторые трудности. С появлением ЭВМ (и ПК в частности) разработка емких и удобных в использовании носителей информации стала особенно актуальной.

Бумажные носители

В первых компьютерах использовалась перфокарты и перфорированная бумажная лента, намотанная на бобины, так называемая перфолента. Ее прародителями были автоматизированные ткацкие станки, в частности машина Жаккара, финальный вариант которой был создан изобретателем (в честь которого она и названа) в 1808 году. Для автоматизации процесса подачи нитей использовались перфорированные пластины:

Перфокарты - картонные карточки, которые использовали подобный метод. Их было много разновидностей, как с отверстиями, которые отвечали за "1" в двоичном коде, так и текстового вида. Самым распространенным был формат IBM: размер карты составлял 187х83 мм, на ней инфомация располагалась в 12 строк и 80 столбцов. В современных терминах, одна перфокарта хранила 120 байт информации. Для ввода информации перфокарты нужно было подавать в определенной последовательности.

В перфоленте используется тот же принцип. Информация хранится на ней в виде отверстий. Первые компьютеры, созданные в 40-х годах прошлого века работали как с вводимыми с помощью перфоленты в реальном времени данными, так и использовали некое подобие оперативной памяти, преимущественно с использованием электронно-лучевых трубок. Бумажные носители активно использовались в 20-50 годах, после чего постепенно начали заменяться магнитными носителями.

Магнитные носители

В 50-х годах началось активное развитие магнитных носителей. За основу взято было явление электромагнетизма (образование магнитного поля в проводнике при пропускании тока через него). Магнитный носитель состоит из поверхности, покрытой ферромагнетиком и считывающей/пишущей головки (сердечник с обмоткой). По обмотке протекает ток, появляется магнитное поле определенной полярности (в зависимости от направления тока). Магнитное поле воздействует на ферромагнетик и магнитные частицы в нем поляризуются в направлении действия поля и создают остаточную намагниченность. Для записи данных на разные участки производится воздействие магнитным полем разной полярности, а при считывании данных регистрируются зоны, в которых изменяется направление остаточной намагниченности ферромагнетика. Первыми такими носителями были магнитные барабаны: большие металлические цилиндры, покрытые ферромагнетиком. Вокруг них устанавливались считывающие головки.

После них появился жесткий диск в 1956 году, это был 305 RAMAC компании IBM, который состоял из 50 дисков диаметром 60 см, по размером был соизмерим с большим холодильником современного формата Side-by-Side и весил чуть меньше тонны. Его объем составлял невероятные по тем временам 5 МБ. Головка свободно перемещалась по поверхности диска и скорость работы была выше, чем у магнитных барабанов. Процесс погрузки 305 RAMAC в самолет:

Объем быстро начал увеличиваться и в конце 60-х годов IBM выпустила высокоскоростной накопитель с двумя дисками емкостью по 30 МБ. Производители активно работали над уменьшением габаритов и к 1980 году жесткий диск имел размеры 5.25-дюймового привода. С тех времен конструкция, технологии, объем, плотность и размеры претерпели колоссальных изменений и самыми популярными стали форм-факторы и 3.5, 2.5 дюйма, в меньшей мере - 1.8 дюйма, а объемы уже достигают десятка терабайт на одном носителе.

Некоторое время использовался еще формат IBM Microdrive, который представлял из себя миниатюрный жесткий диск в форм-факторе карты памяти CompactFlash тип II. Выпущен в 2003 году, позже продан компании Hitachi.

Параллельно развивалась магнитная лента. Появилась она вместе с выходом первого американского коммерческого компьютера UNIVAC I в 1951 году. Опять же постаралась компания IBM. Магнитная лента представляла из себя тонкую пластиковую полосу с магниточувствительным покрытием. С тех времен использовалась в самых разных форм-факторах.

Начиная с бобин, ленточных картриджей и заканчивая компакт-кассетами и видеокассетами VHS. В компьютерах использовались начиная с 70 годов и заканчивая 90-ми (уже в значительно меньших количествах). Часто в качестве внешнего носителя к ПК использовался подключаемый магнитофон.

Накопители на магнитной ленте под названием Стримеры применяются и сейчас, преимущественно в промышленности и крупном бизнесе. На данный момент используются бобины стандарта Linear Tape-Open (LTO), а рекорд в этом году поставили IBM и FujiFilm, умудрившись записать на стандартную бобину 154 терабайта информации. Предыдущий рекорд - 2.5 терабайт, LTO 2012 года.

Еще один тип магнитных носителей - дискеты или флоппи-диск. Тут слой ферромагнетика наносится на гибкую, легкую основу и помещается в пластиковый корпус. Такие носители были просты с точки зрения изготовления и отличались невысокой стоимостью. Первая дискета имела форм-фактор 8 дюймов и появилась в конце 60-х. Создатель - опять IBM. К 1975 году емкость достигла 1 МБ. Хотя популярность дискеты заработали благодаря выходцам из IBM, которые основали собственную компанию Shugart Associates и в 1976 году выпустили дискету формата 5.25 дюйма, емкость составляла 110 КБ. К 1984 году емкость уже составляла 1.2 МБ, а Sony подсуетилась с более компактным форм-фактором 3.5 дюйма. Такие дискеты до сих пор можно найти у многих дома.

Компания Iomega выпустила в 1980-х картриджи с магнитными дисками Bernoulli Box, емкостью 10 и 20 МБ, а в 1994 году - так называемые Zip размера 3.5 дюйма объемом 100 МБ, до конца 90-х они достаточно активно использовались, но конкурировать с компакт-дисками им было не по зубам.

Оптические носители

Оптические носители имеют форму дисков, чтение с них ведется с помощью оптического излучения, обычно лазера. Луч лазера направляется на специальный слой и отражается от него. При отражении луч модулируется мельчайшими выемками на специальном слое, при регистрации и декодировании этих изменений восстанавливается записанная на диск информация. Впервые технологию оптической записи с использованием светопропускающего носителя была разработана Дэвидом Полом Греггом в 1958 году и запатентована в 1961 и 1990 годах, а в 1969 году компания Philips создала так называемый LaserDisc , в котором свет отражался. Впервые публике LaserDisc был показан в 1972 году, а в продажу поступил в 1978. По размеру он был близок к виниловым пластинкам и предназначался для фильмов.

В семидесятых годах началась разработка оптических носителей нового образца, в результате Philips и Sony представили в 1980 году формат CD (Compact Disk), который был впервые продемонстрирован в 1980 году. В продажу компакт-диски и аппаратура поступили в 1982 году. Изначально использовались для аудио, помещалось до 74 минут. В 1984 году Philips и Sony создали стандарт CD-ROM (Compact Disc Read Only Memory) для любых типов данных. Объем диска составлял 650 МБ, позже - 700 МБ. Первые диски, которые можно было записывать в домашних условиях, а не на заводе были выпущены в 1988 году и получили названиеCD-R (Compact Disc Recordable), а CD-RW, позволяющие многократную перезапись данных на диске, появились уже в 1997.

Форм-фактор не менялся, увеличивалась плотность записи. В 1996 году появился формат DVD (Digital Versatile Disc), который имел ту же форму и диаметр 12 см, а объем - 4.7 ГБ или 8.5 ГБ у двухслойного. Для работы с DVD-дисками были выпущены соответствующие приводы, обратно совместимые с CD. В последующие годы было выпущено еще несколько стандартов DVD.

В 2002 году миру были представлены два разных и несовместимых формата оптических дисков нового поколения: HD DVD и Blu-ray Disc (BD). В обоих случаях для записи и чтения данных используется голубой лазер с длинной волны 405 нм, что позволило еще увеличить плотность. HD DVD способен хранить 15 ГБ, 30 ГБ или 45 ГБ (один, два или три слоя), Blu-ray - 25, 50, 100 и 128 ГБ. Последний стал более популярен и 2008 году компания Toshiba (один из создателей) отказалась от HD DVD.

Полупроводниковые носители

В 1984 году компания Toshiba предложила полупроводниковые носители, так называемую флэш-память NAND, которая стала популярна спустя десятилетие после изобретения. Второй вариант NOR был предложен Intel в 1988 году и используется для хранения программных кодов, например BIOS. NAND-память используется сейчас в картах памяти , флэшках, SSD-накопителях и гибридных жестких дисках.

Технология NAND позволяет создавать чипы с высокой плотностью записи, она компактна, менее энергозатратна в использовании и имеет более высокую скорость работы (в сравнении с жесткими дисками). Основным минусом на данный момент является достаточно высокая стоимость.

Облачные хранилища

С развитием всемирной сети, увеличением скоростей и мобильного интернета появились многочисленные облачные хранилища, в которых данные хранятся на многочисленных распределенных в сети серверах. Данные хранятся и обрабатываются в так называемом виртуальном облаке и пользователь имеет к ним доступ при наличии доступа в интернет. Физически серверы могут находиться удаленно друг от друга. Есть как специализированные сервисы типа Dropbox, так и варианты компаний-производителей ПО или устройств. У Microsoft - OneDrive (ранее SkyDrive), iCloud у Apple, Google Диск и так далее.

Носитель информации (информационный носитель) – любой материальный объект, используемый человеком для хранения информации. Это может быть, например, камень, дерево, бумага, металл, пластмассы, кремний (и другие виды полупроводников), лента с намагниченным слоем (в бобинах и кассетах), фотоматериал, пластик со специальными свойствами (напр., в оптических дисках) и т. д., и т. п.

Носителем информации может быть любой объект, с которого возможно чтение (считывание) имеющейся на нём информации.

Носители информации применяются для:

  • записи;
  • хранения;
  • чтения;
  • передачи (распространения) информации.

Зачастую сам носитель информации помещается в защитную оболочку, повышающую его сохранность и, соответственно, надёжность сохранения информации (например, бумажные листы помещают в обложку, микросхему памяти – в пластик (смарт-карта), магнитную ленту – в корпус и т. д.).

К электронным носителям относят носители для однократной или многократной записи (обычно цифровой) электрическим способом:

  • оптические диски (CD-ROM, DVD-ROM, Blu-ray Disc);
  • полупроводниковые (флеш-память, дискеты и т. п.);
  • CD-диски (CD – Compact Disk, компакт диск), на который может быть записано до 700 Мбайт информации;
  • DVD-диски (DVD – Digital Versatile Disk, цифровой универсальный диск), которые имеют значительно большую информационную ёмкость (4,7 Гбайт), так как оптические дорожки на них имеют меньшую толщину и размещены более плотно;
  • диски HR DVD и Blu-ray, информационная ёмкость которых в 3–5 раз превосходит информационную ёмкость DVD-дисков за счёт использования синего лазера с длиной волны 405 нанометров.

Электронные носители имеют значительные преимущества перед бумажными (бумажные листы, газеты, журналы):

  • по объёму (размеру) хранимой информации;
  • по удельной стоимости хранения;
  • по экономичности и оперативности предоставления актуальной (предназначенной для недолговременного хранения) информации;
  • по возможности предоставления информации в виде, удобном потребителю (форматирование, сортировка).

Есть и недостатки:

  • хрупкость устройств считывания;
  • вес (масса) (в некоторых случаях);
  • зависимость от источников электропитания;
  • необходимость наличия устройства считывания/записи для каждого типа и формата носителя.

Накопитель на жёстких магнитных дисках или НЖМД (англ. hard (magnetic) disk drive, HDD, HMDD), жёсткий диск – запоминающее устройство (устройство хранения информации), основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие пластины, покрытые слоем ферромагнитного материала – магнитные диски. В НЖМД используется одна или несколько пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной («парковочной») зоне, где исключён их нештатный контакт с поверхностью дисков.

Также, в отличие от гибкого диска, носитель информации обычно совмещают с накопителем, приводом и блоком электроники. Такие жёсткие диски часто используются в качестве несъёмного носителя информации.

Оптические (лазерные) диски в настоящее время являются наиболее популярными носителями информации. В них используется оптический принцип записи и считывания информации с помощью лазерного луча.

DVD-диски могут быть двухслойными (емкость 8,5 Гбайт), при этом оба слоя имеют отражающую поверхность, несущую информацию. Кроме того, информационная емкость DVD-дисков может быть еще удвоена (до 17 Гбайт), так как информация может быть записана на двух сторонах.

Накопители оптических дисков делятся на три вида:

  • без возможности записи - CD-ROM и DVD-ROM (ROM – Read Only Memory, память только для чтения). На дисках CD-ROM и DVD-ROM хранится информация, которая была записана на них в процессе изготовления. Запись на них новой информации невозможна;
  • с однократной записью и многократным чтением – CD-R и DVD±R (R – recordable, записываемый). На дисках CD-R и DVD±R информация может быть записана, но только один раз;
  • с возможностью перезаписи – CD-RW и DVD±RW (RW – Rewritable, перезаписываемый). На дисках CD-RW и DVD±RW информация может быть записана и стерта многократно.

Основные характеристики оптических дисководов:

  • емкость диска (CD – до 700 Мбайт, DVD – до 17 Гбайт)
  • скорость передачи данных от носителя в оперативную память – измеряется в долях, кратных скорости 150 Кбайт/сек для CD-дисководов;
  • время доступа – время, нужное для поиска информации на диске, измеряется в миллисекундах (для CD 80–400 мс).

В настоящее время широкое распространение получили 52х-скоростные CD-дисководы – до 7,8 Мбайт/сек. Запись CD-RW дисков производится на меньшей скорости (например, 32х-кратной). Поэтому CD-дисководы маркируются тремя числами «скорость чтения х скорость записи CD-R х скорость записи CD-RW» (например, «52х52х32»).
DVD-дисководы также маркируются тремя числами (например, «16х8х6»).

При соблюдении правил хранения (хранение в футлярах в вертикальном положении) и эксплуатации (без нанесения царапин и загрязнений) оптические носители могут сохранять информацию в течение десятков лет.

Флеш-память (flash memory) – относится к полупроводникам электрически перепрограммируемой памяти (EEPROM). Благодаря техническим решениям, невысокой стоимости, большому объёму, низкому энергопотреблению, высокой скорости работы, компактности и механической прочности, флеш-память встраивают в цифровые портативные устройства и носители информации. Основное достоинство этого устройства в том, что оно энергонезависимое и ему не нужно электричество для хранения данных. Всю хранящуюся информацию во флэш-памяти можно считать бесконечное количество раз, а вот количество полных циклов записи, к сожалению, ограничено.

У флеш-памяти есть как свои преимущества перед другими накопителями (жесткие диски и оптические накопители) , так и свои недостатки, с которыми вы можете познакомиться из таблицы, расположенной ниже.

Тип накопителя Преимущества Недостатки
Жесткий диск Большой объём хранимой информации. Высокая скорость работы. Дешевизна хранения данных (в расчете на 1 Мбайт) Большие габариты. Чувствительность к вибрации. Шум. Тепловыделение
Оптический диск Удобство транспортировки. Дешевизна хранения информации. Возможность тиражирования Небольшой объём. Нужно считывающее устройство. Ограничения при операциях (чтение, запись). Невысокая скорость работы. Чувствительность к вибрации. Шум
Флеш-память Высокая скорость доступа к данным. Экономное энергопотребление. Устойчивость к вибрациям. Удобство подключения к компьютеру. Компактные размеры Ограниченное количество циклов записи

Носители информации – материал, который предназначен для записи, хранения и последующего воспроизведения информации.

Носитель информации - строго определённая часть конкретной информационной системы, служащая для промежуточного хранения или передачи информации.

Носитель информации – это физическая среда, в которой она фиксируется.

В роли носителя могут выступать бумага, фотопленка, клетки мозга, перфокарты, перфоленты, магнитные ленты и диски или ячейки памяти компьютера. Современная техника предлагает все новые и новые разновидности носителей информации. Для кодирования информации в них используются электрические, магнитные и оптические свойства материалов. Разрабатываются носители, в которых информация фиксируется даже на уровне отдельных молекул.

В современном обществе можно выделить три основных вида носителей информации:

1) Перфорационные – имеют бумажную основу, информация заносится в виде пробивок в соответствующей строке и столбце. Объем информации – 800 бит или 100 КБ;

2) Магнитные – в качестве них используются гибкие магнитные диски и кассетные магнитные ленты;

3) оптический.

К носителям информации относят:

Магнитные диски;

- магнитные барабаны - ранняя разновидность компьютерной памяти, широко использовавшаяся в 1950-1960. Изобретена Густавом Таушеком в 1932 в Австрии. В дальнейшем магнитный барабан был вытеснен памятью на магнитных сердечниках.

- дискеты - портативный магнитный носитель информации, используемый для многократной записи и хранения данных сравнительно небольшого объема. Запись и считывание осуществляется с помощью специального устройства - дисковода;

- магнитные ленты - носитель магнитной записи, представляющий собой тонкую гибкую ленту, состоящую из основы и магнитного рабочего слоя;

- оптические диски - носитель информации в виде диска с отверстием в центре, информация с которого считывается с помощью лазера. Изначально компакт-диск был создан для цифрового хранения аудио, однако в настоящее время широко используется как устройство хранения данных широкого назначения;

- flash память - разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти. Флэш-память может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (обычно около 10 тысяч раз). Стирание происходит участками, поэтому нельзя изменить один бит или байт без перезаписи всего участка.

Все носители можно разделить на:

1. Человекочитаемые (документы).

2. Машиночитаемые (машинные) – для промежуточного хранения информации (диски).

3. Человекомашиночитаемые – комбинированные носители узкоспециального назначения (бланки с магнитными полосками).

Однако быстрое развитие средств вычислительной техники стерло грань между 1ой и 3ей группой – появился сканер, который позволяет вводить информацию с документов в память ЭВМ.

Все имеющиеся в настоящее время носители информации могут подразделяться по различным признакам. В первую очередь, следует различать энергозависимые и энергонезависимые накопители информации.

Энергонезависимые накопители, используемые для архивирования и сохранения массивов данных, подразделяют:

1. по виду записи:

магнитные накопители (жесткий диск, гибкий диск, сменный диск);

– магнитно-оптические системы, называемые также МО;

– оптические, такие, как CD (Compact Disk, Read Only Memory) или DVD (Digital Versatile Disk);

2. по способам построения:

– вращающаяся пластина или диск (как у жесткого диска, гибкого диска, сменного диска, CD, DVD или MО);

– ленточные носители различных форматов;

– накопители без подвижных частей (например, Flash Card, RAM (Random Access Memory), имеющие ограниченную область применения из-за относительно небольших объемов памяти по сравнению с вышеназванными).

Если требуется быстрый доступ к информации, как, например, при выводе или передаче данных, то используются носители с вращающимся диском. Для архивирования, выполняемого периодически (Backup), наоборот, более предпочтительными являются ленточные носители. Они имеют большие объемы памяти в сочетании с невысокой ценой, правда, при относительно невысоком быстродействии.

По назначению носители информации различаются на три группы:

1. распространение информации : носители с предварительно записанной информацией, такие как CD ROM или DVD-ROM;

2. архивирование : носители для одноразовой записи информации, такие как CD-R или DVD-R (R (record able) – для записи);

3. резервирование (Backup) или передача данных : носители с возможностью многоразовой записи информации, такие как дискеты, жесткий диск, MO, CD-RW (RW (rewritable) – перезаписываемые и ленты.

(электромагнитное излучение) и т. д. и т. п.

Носителем информации может быть любой объект, с которого возможно (но не обязательно) чтение имеющейся (записанной) информации.

Зачастую сам носитель информации помещается в защитную оболочку, повышающую его сохранность и, соответственно, надёжность сохранения И (к примеру: бумажные листы - в обложку, микросхему памяти - в пластик (смарт-карта), магнитную ленту - в корпус и т. д.).

Носители информации в быту, науке (библиотеки), технике (скажем, для нужд связи), общественной жизни (СМИ) применяются для:

  • записи
  • хранения
  • чтения
  • передачи (распространения)
  • создания произведений компьютерного искусства

В общем случае границы между этими разновидностями носителей довольно расплывчаты и могут варьироваться в зависимости от ситуации и внешних условий.

Основные материалы

  • бумага (перфолента, перфокарта, листы);
  • пластик (штрих-код, оптические диски);
  • магнитные материалы (магнитные ленты и диски);

Также ранее имели распространение: обожжённая глина , камень , кость , древесина , пергамент , берёста , папирус , воск , ткань и др.

Для внесения изменений в структуру материала носителя используются различные виды воздействия:

  • термическое (выжигание);

Электронные носители

К электронным носителям относят носители для однократной или многократной записи (обычно цифровой ) электрическим способом: CD-ROM , DVD -ROM, полупроводниковые (флеш-память и т. п.), дискеты .

Имеют значительное преимущество перед бумажными (листы, газеты , журналы) по объёму и удельной стоимости. Для хранения и предоставления оперативной (не долговременного хранения) информации - имеют подавляющее преимущество, также имеются значительные возможности по предоставлению И в удобном потребителю виде (форматирование , сортировка). Недостаток - малый размер экрана (или значительный вес) и хрупкость устройств считывания, зависимость от .

В настоящее время электронные носители активно вытесняют бумажные, во всех отраслях жизни, что приводит к значительному сбережению древесины. Минусом их является то, что для считывания И для каждого типа и формата носителя необходимо соответствующее ему устройство считывания.

Устройства хранения

Недостатком данного носителя являлось то, что со временем он темнел и ломался. Дополнительным недостатком стало то, что египтяне ввели запрет на вывоз папируса за границу.

Азия

Недостатки носителей информации (глина, папирус, воск) стимулировали поиск новых носителей. На этот раз сработал принцип «всё новое - хорошо забытое старое»: в Персии для письма издревле использовался дефтер - высушенные шкуры животных (в турецком и родственных ему языках слово «дефтер» и сейчас означает тетрадь), о чём вспомнили греки.

Европа

На территории Европы высокоразвитые народы (греки и римляне) нащупывали свои способы записи. Сменяются множество различных носителей: свинцовые листы, костяные пластинки и т. д.

Начиная с VII века до н. э. запись производится острой палочкой - стилусом (как и на глине) на деревянных дощечках, покрытых слоем податливого воска (т. н. восковые таблички). Стирание информации (ещё одно преимущество данного носителя) производилось обратным тупым концом стилуса. Скрепляли такие дощечки по четыре штуки (отсюда и слово «тетрадь», так как др.-греч. τετράς в переводе с греческого - четыре).

Однако на воске надписи недолговечны, и проблема сохранения записей была весьма актуальной.

Америка

В XI-XVI веках коренные народы Южной Америки придумали узелковое письмо «кипу » (quipu в переводе с языка индейцев кечуа - узел) . Из верёвок (к ним привязывали ряды шнурков) составлялись «сообщения». Тип, число узелков, цвета и количества нитей, их расположения и переплетения представлял собой «кодировку» («алфавит») кипу.
Нанизанными на шнуры небольшими раковинами кодировали свои сообщения индейские племена Северной Америки. Этот вид письменности назывался «вампум» - от индейского слова wampam (сокращённое от wampumpeag) - белые бусы . Переплетения шнуров образовывали полоску, которую обычно носили как пояс. Комбинацией цветных ракушек и рисунков на них могли составляться целые послания.

Древняя Русь

Как носитель использовалась берёста (верхний слой берёзовой коры). Буквы на ней прорезывали писалом (костяная или металлическая палочка).

К концу XVI века на Руси появляется своя бумага (в русский язык слово «бумага» пришло скорее всего из итальянского, bambagia - хлопок).

Средневековье

В античном мире и Средневековье восковые таблички использовались в качестве записных книжек, для хозяйственных пометок и для обучения детей письму.

Новое время

Современность

Сейчас люди используют компьютеры для обработки и хранения информации.

См. также

  • Носитель имени
  • Носитель фамилии
  • Нуклеиновые кислоты (ДНК, РНК)

Ссылки

Примечания

Образовательные:

· Способствовать формированию системы знаний, умений и навыков в сфере информационных и коммуникационных технологий используемых в образовании.

· Познакомить с современными цифровыми носителями информации.

· Рассмотреть способы взаимодействия педагога с субъектами педагогического процесса и представителями профессионального сообщества в сетевой информационной среде.

Развивающие:

· Развивать и стимулировать исследовательскую деятельность студентов.

· Развивать способности оценивания преимуществ, ограничений и выбора аппаратных средств для решения профессиональных и образовательных задач.

· Способствовать совершенствованию профессиональных знаний и умений путем использования возможностей информационной среды.

Воспитательные:

· Формировать мотивацию к информационной педагогической деятельности.

IV. Жёсткие диски.

V. Микросхемы SDRAM .

I. Современные цифровые носители информации.

Как правило, мультимедийные фрагменты занимают большой объем компьютерной памяти. И если хранение больших объемов информации в компьютере, в частности, на Web-сервере, особых проблем не вызывает, то передача большого количества информации может занять очень много времени. Например, передача информации объемом в 20 мегабайт через модем, работающий со скоростью 56 килобит в секунду по сети Internet, будет осуществляться почти час. Конечно, информацию можно сжать и тем самым сократить время передачи. Однако, лучше всего приспособлены для хранения и транспортировки мультимедийных учебных программ лазерные диски , которые сегодня широко распространены и известны под названием CD-ROM.

Наиболее распространенные в настоящее время ЗУ:

§ Флеш-память: USB-накопители, карты памяти в телефонах и фотоаппаратах, SSD

§ Оптические диски: CD, DVD, Blu-Ray и др.

§ Жёсткие диски (НЖМД)

§ Микросхемы SDRAM (DDR и XDR)

К основным параметрам ЗУ относятся информационная ёмкость (бит), потребляемая мощность, время хранения информации, быстродействие.

II. Флеш_память (англ. flashmemory ) разновидность полупроводниковой технологии электрически перепрограммируемой памяти (EEPROM). Благодаря компактности, дешевизне, механической прочности, большому объему, скорости работы и низкому энергопотреблению флеш-память широко используется в цифровых портативных устройствах и носителях информации.

Специфические внешние условия могут катастрофически сократить срок хранения данных. Например, повышенные температуры или радиационное (гамма-лучевое и высокоэнергичными частицами) облучение.

Скорость стирания варьируется от единиц до сотен миллисекунд в зависимости от размера стираемого блока. Скорость записи - десятки-сотни микросекунд.

Обычно скорость чтения для NOR-микросхем нормируется в десятки наносекунд. Для NAND-микросхем скорость чтения десятки микросекунд.

Существует два основных применения флеш-памяти: как мобильный носитель информации и как хранилище программного обеспечения («прошивки») цифровых устройств. Зачастую эти два применения совмещаются в одном устройстве.

Флеш-память позволяет обновлять прошивку устройств в процессе эксплуатации.

Задание на выполнение выпускной письменной

Экзаменационной работы

Выдано учащемуся группы 35 Романову Андрею Алексеевичу

Профессия: «Мастер по обработке цифровой информации »

Тема: «Запись информации на съемные носители»

I. Описательная часть

Введение.

1. Основные термины и понятия

2. Обзор носителей информации, их достоинства и недостатки, принципы работы, характеристики.

4. Выбор программы для записи информации на носитель

Заключение.

Список литературы.

Приложения.

II. Практическое задание

1. Создать инструкцию по записи информации на выбранный съемный носитель информации

2. Создать тест по работе

3. Создать презентацию по работе

Задание выдал мастер п/о О.С. Кряк

Задание получил учащийся А.А. Романов


Министерство образования и науки Удмуртской республики

Автономное профессиональное образовательное учреждение

Удмуртской республики

«Техникум радиоэлектроники и информационных технологий»

Выпускная письменная квалификационная работа

по профессии «Мастер по обработки цифровой информации»

учащегося группы № 35

Тема: «Запись информации на съемные носители»

Ижевск, 2015


Введение

Носитель информации (информационный носитель) - любой материальный объект или среда, содержащий (несущий) информацию, могущий достаточно длительное время сохранять в своей структуре занесённую в/на него информацию. Изначально, объём информации, помещавшийся на носителях, был мал (от 128 Мб до 5,2Гб). Постепенно на носители стало помещаться гораздо больше информации (до 3Тбт).

Основные носители информации: НГМД (дискеты), НЖМД (винчестеры), CD, DVD (и про Blu-ray в том числе), flash-memory (флэшки, карты памяти).

CD и DVD прочно вошли в нашу жизнь. Сложно представить, где бы мы хранили гигабайты музыки, кино и фотографий, если бы кто-то в свое время не придумал эти круглые пластинки с зеркальной поверхностью.

На данный момент эта тема актуальна, потому что современный человек не в состоянии жить без информации. Но информации имеет такую особенность - ее надо где–то хранить. Систем хранения информации сейчас довольно много. Ее можно хранить на магнитных носителях, можно хранить на оптических и магнитооптических носителях. Но перед человеком в наше время также стоит довольно важная проблема - перенос информации из одного места в другое, а также не менее важная проблема хранения информации, и как следствие, надежность носителей. Именно поэтому так быстро развивались технологии, связанные с хранением информации.

Целью данной выпускной квалификационной письменной работы является:

1. Создать инструкцию по записи информации на выбранный съемный носитель информации.

Исходя из данной цели поставлены следующие задачи:

1. Сделать обзор съемныйх носителей, выявить их достоинства и недостатки

2. Выбрать программу для записи на съемные носители

Основные термины и определения

Информация - сведения, воспринимаемые человеком или специальными устройствами как отражение фактов материального мира в процессе коммуникации.

Запись информации - это способ фиксирования информации на материальном носителе.

Съемный носитель информации - носитель информации, предназначенный для ее автономного хранения и независимого от места записи использования.

Обзор носителей информации

НГМД (Носитель на Гибких Магнитных Дисках) или Дискета (англ. Floppy Disk Drive) – портативный носитель информации, используемый для многократной записи и хранения данных, представляющий собой помещённый в защитный пластиковый корпус гибкий магнитный диск (диск диаметром 3,5″ имеет более жёсткий футляр, чем диск диаметром 5,25″, тогда как диск диметром 8″ заключен в очень гибкий футляр), покрытый ферромагнитным слоем. Дискеты обычно имеют функцию защиты от записи, посредством которой можно предоставить доступ к данным только в режиме чтения. Дискеты были массово распространены с 1970-х и до конца 1990-х годов, в начале XXI века уступив более ёмким и удобным CD и флеш-накопителям.

Достоинства :

1. Огромная плотность записи при небольших размерах носителя.

2. Низкое энергопотребление по сравнению с аналогичными носителями большой емкости.

3. Высокая надежность и стабильность работы.

Недостатки :

1. Малая емкость для записи (по сути, на диск нельзя записать даже одну песню).

2. Ненадежность хранения информации, дискета размагничивается под действием больших магнитных полей.

НЖМД (Носители на Жёстких Магнитных Дисках) или Винчестер или Жёсткий Диск (англ. HDD – Hard Disc Drive) – устройство хранения информации, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров. Совмещён с накопителем, приводом и блоком электроники и (в персональных компьютерах в подавляющем количестве случаев) обычно установлен внутри системного блока компьютера, но так же бывают и подключаемые извне.

Информация записывается на жёсткие (алюминиевые или стеклянные) пластины, покрытые слоем ферромагнитного материала, чаще всего двуокиси хрома. В НЖМД используется одна или несколько пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной зоне, где исключён их нештатный контакт с поверхностью дисков.

Принцип работы жёстких дисков похож на работу магнитофонов. Рабочая поверхность диска движется относительно считывающей головки (например, в виде катушки индуктивности с зазором в магнитопроводе). При подаче переменного электрического тока (при записи) на катушку головки возникающее переменное магнитное поле из зазора головки воздействует на ферромагнетик поверхности диска и изменяет направление вектора намагниченности доменов в зависимости от величины сигнала. При считывании перемещение доменов у зазора головки приводит к изменению магнитного потока в магнитопроводе головки, что приводит к возникновению переменного электрического сигнала в катушке из-за эффекта электромагнитной индукции.

В последнее время для считывания применяют магниторезистивный эффект и используют в дисках магниторезистивные головки. В них изменение магнитного поля приводит к изменению сопротивления, в зависимости от изменения напряжённости магнитного поля. Подобные головки позволяют увеличить вероятность достоверности считывания информации (особенно при больших плотностях записи информации).


Достоинства :

1. Позволяют записывать и прочитывать информацию много раз.

2. При выключении компьютера информация, оставленная на винчестере, сохраняется.

3. Большой объем хранимой информации.

4. Высокая надежность хранения данных. Среднее время наработки на отказ составляет около 300000 часов, т.е. порядка 30 лет.

Недостатки:

1. Невозможность его переноски, так как он стационарно крепится к системному блоку.

2. Относительно маленькое быстродействие, особенно по сравнению с оперативной памятью.

Методы записи

На данный момент существует несколько методов записи:

· Метод продольной записи.

· Метод перпендикулярной записи.

· Метод тепловой магнитной записи.

Компакт-диск или CD (англ. Compact Disc) - оптический носитель информации в виде пластикового диска с отверстием в центре, процесс записи и считывания информации которого осуществляется при помощи лазера. Дальнейшим развитием компакт-дисков стали DVD (о них чуть позже).

Изначально компакт-диск был создан для хранения аудиозаписей в цифровом виде, однако в дальнейшем стал широко использоваться как носитель для хранения любых данных в двоичном виде.

CD-ROM (англ. Compact Disc Read-Only Memory, читается: «сиди́-ром») - разновидность компакт-дисков с записанными на них данными, доступными только для чтения (read-only memory - память «только для чтения»). CD-ROM - доработанная версия CD-DA (диска для хранения аудиозаписей), позволяющая хранить на нём прочие цифровые данные (физически от первого ничем не отличается, изменён только формат записываемых данных). Позже были разработаны версии с возможностью как однократной записи (CD-R), так и многократной перезаписи (CD-RW) информации на диск. Дальнейшим развитием CD-ROM-дисков стали диски DVD-ROM.

Диски CD-ROM - популярное и самое дешёвое средство для распространения программного обеспечения, компьютерных игр, мультимедиа и прочих данных. CD-ROM (а позднее и DVD-ROM) стал основным носителем для переноса информации между компьютерами, вытеснив с этой роли флоппи-диск (сейчас он уступает эту роль более перспективным твердотельным носителям).

Формат записи на CD-ROM также предусматривает запись на один диск информации смешанного содержания - одновременно как компьютерных данных (файлы, ПО, чтение доступно только на компьютере), так и аудиозаписей (воспроизводимых на обычном проигрывателе аудио компакт-дисков), видео, текстов и картинок. Такие диски, в зависимости от порядка следования данных, называются усовершенствованными (англ. Enhanced CD) либо Mixed-Mode CD.

CD-R (Compact Disc-Recordable, Записываемый Компакт-Диск) - разновидность компакт-диска (CD), разработанная компаниями Philips и Sony для однократной записи информации. CD-R поддерживает все возможности стандарта «Red Book» и плюс к этому позволяет записать данные.

Обычный CD-R представляет собой тонкий диск из прозрачного пластика (поликарбоната) толщиной 1,2мм, диаметром 120мм (стандартный), вес 16-18гр. или 80мм (мини). Ёмкость стандартного CD-R составляет 74 минуты аудио или 650МБ данных. Однако, на данный момент стандартной ёмкостью CD-R можно считать 702МБ данных или 79 минут 59 секунд и 74 фрейма.

Поликарбонатный диск имеет спиральную дорожку для направления луча лазера при записи и считывании информации. Со стороны со спиральной дорожкой диск покрыт записывающим слоем, состоящего из очень тонкого слоя органического красителя, затем отражающим слоем из серебра, его сплава или золота. Уже этот слой покрывается защитным фотополимеризуемым лаком и отверждается ультрафиолетовым излучением. И уже на этот защитный слой наносятся различные надписи краской.

На CD-R всегда есть служебная дорожка с сервометками ATIP - Absolute Time In Pregroove - абсолютное время в служебной дорожке. Эта служебная дорожка нужна для системы слежения, которая удерживает луч лазера при записи на дорожке и следит за скоростью записи. Помимо функций синхронизации, служебная дорожка также содержит информацию об изготовителе этого диска, сведения о материале записывающего слоя, длине дорожки для записи и т. п. Служебная дорожка не разрушается при записи данных на диск, и многие системы защиты от копирования используют её для того, чтобы отличить оригинал от копии.

CD-RW (англ. Compact Disc-ReWritable, Перезаписываемый компакт-диск) - разновидность компакт-диска (CD), разработанный в 1997 году для многократной записи информации

CD-RW является логическим развитием CD-R, однако, в отличие от него, позволяет многократно перезаписывать данные. Этот формат был представлен в 1997 году и в процессе разработки назывался CD-Erasable (CD-E, Стираемый Компакт-Диск). CD-RW во многом похож на CD-R, но его записывающий слой изготавливается из специального сплава халькогенидов, который при нагреве выше температуры плавления переходит из кристаллического агрегатного состояния в аморфное.

DVD (англ. Digital Versatile (Video) Disc - цифровой многоцелевой (видео-) диск) - носитель информации, выполненный в форме диска, имеющего размер компакт-диска, но с более плотной структурой рабочей поверхности, что позволяет хранить и считывать больший объём информации за счёт использования лазера с меньшей длиной волны и линзы с большей числовой апертурой.

Первые диски и проигрыватели DVD появились в ноябре 1996 года в Японии и в марте 1997 года в США.

В начале 1990-х годов разрабатывалось два стандарта для оптических информационных носителей высокой плотности. Один из них назывался Multimedia Compact Disc (MMCD) и разрабатывался компаниями Philips и Sony, второй - Super Disc - поддерживали 8 крупных корпораций, в числе которых были Toshiba и Time Warner. Позже усилия разработчиков стандартов были объединены под началом IBM, которая не хотела повторения войны форматов, как было со стандартами кассет VHS и Betamax в 1970-х. Официально DVD был анонсирован в сентябре 1995 года, тогда же была опубликована первая версия спецификаций DVD. Изменения и дополнения в спецификации вносит организация DVD Forum (ранее называвшаяся DVD Consortium), членами которой являются 10 компаний-основателей и более 220 частных лиц.

Стандарт записи DVD-R(W) был разработан в 1997 году японской компанией Pioneer и группой компаний, примкнувших к ней и вошедших в DVD Forum, как официальная спецификация записываемых (впоследствии и перезаписываемых) дисков.

В накопителях на магнитных лентах (чаще всего в качестве таких устройств выступают стримеры) запись производится на мини-кассеты. Ёмкость таких кассет - от 40 Мб до 13 Гб, скорость передачи данных - от 2 до 9 Мб в минуту, длина ленты - от 63,5 до 230 м, количество дорожек - от 20 до 144.

CD-ROM - это оптический носитель информации, предназначенный только для чтения, на котором может храниться до 650 Мб данных. Доступ к данным на CD-ROM осуществляется быстрее, чем к данным на дискетах, но медленнее, чем на жёстких дисках.CD-ROM является односторонним носителем информации.Более популярными являются накопители CD-RW, которые позволяют записывать и перезаписывать диски CD-RW, записывать диски CD-R, читать диски CD-ROM, т.е. являются в определённом смысле универсальными.

Аббревиатура DVD расшифровывается как Digital Versatile Disk, т.е. универсальный цифровой диск . Имея те же габариты, что обычный компакт-диск, и весьма похожий принцип работы, он вмещает чрезвычайно много информации - от 4,7 до 17 Гбайт. Возможно, именно из-за большой емкости он и называется универсальным. Правда, на сегодня реально применяется DVD-диск лишь в двух областях: для хранения видеофильмов (DVD-Video или просто DVD) и сверхбольших баз данных (DVD-ROM, DVD-R).

26-27.устройство ввода-вы́вода - компонент типовой архитектуры ЭВМ, предоставляющий компьютеру возможность взаимодействия с внешним миром и, в частности, с пользователями и другими компьютерами.

Подразделяются на:

---Устройство ввода :-Устройства ввода графической информации Сканер,Видео- и Веб-камера,Цифровой фотоаппарат, Плата видеозахвата, Микрофон, Цифровой диктофон

Устройства ввода текстовой информации:Клавиатура

Указательные (координатные) устройства:Мышь,Трекбол,Трекпоинт,Тачпад,Джойстик,Roller Mousе,Графический планшет,Световое перо,Аналоговый джойстик,Тачскрин

Игровые устройства ввода:Джойстик,Педаль,Геймпад,Руль,Рычаг для симуляторов полёта (штурвал, Ручка управления самолётом),Танцевальная платформа

---Устройство вывода -Устройства для вывода визуальной информации:Монитор (дисплей),Проектор,Принтер, Графопостроитель,Оптический привод с функцией маркировки дисков,Светодиоды (на системном блоке или ноутбуке, например информирующие о чтении/записи диска)

Устройства для вывода звуковой информации:Встроенный динамик,Колонки,Наушники

---Устройства ввода/вывода: Магнитный барабан, Стример, Дисковод, Жёсткий диск, Различные порты, Различные сетевые интерфейсы.

Каналы ввода-вывода (англ. IOC - input-output channel), далее КВВ, и интерфейсы обеспечивают взаимодействие центральных устройств машины и периферийных устройств .

КВВ - самостоятельные в логическом отношении устройства, которые работают под управлением собственных программ, находящихся в памяти.

КВВ и интерфейсы выполняют следующие функции

Позволяют иметь машины с переменным составом периферийных устройств.

Обеспечивают параллельную работу периферийных устройств как между собой, так и по отношению к процессору.

Обеспечивают автоматическое распознавание и реакцию процессора на различные ситуации, возникающие в периферийных устройствах.

Мультиплексный канал

Сам канал быстродействующий, но обслуживает медленное периферийное устройство. При этом, подключившись к одному устройству, подаёт одно машинное слово, и после этого подключается к другому.

Селекторный канал

Канал быстродействующий и обслуживает быстрые устройства. При этом подключившись к одному устройству, передаёт всю информацию, и после этого подключается к другому устройству.

28. Клавиатура, назнач.клавиш - компьютерное устройство, которое располагается перед экраном дисплея и служит для набора текстов и управления компьютером с помощью клавиш, находящихся на клавиатуре.

Все клавиши можно условно разделить на несколько групп:

алфавитно-цифровые клавиши; функциональные клавиши; управляющие клавиши; клавиши управления курсором;

цифровые клавиши. В центре расположены алфавитно-цифровые клавиши, очень похожие на клавиши обычной пишущей машинки. На них нанесены цифры, специальные символы («!», «:», «*» и т.д.), буквы русского алфавита, латинские буквы. С помощью этих клавиш вы будете набирать всевозможные тексты, арифметические выражения, записывать свои программы. В нижней части клавиатуры находится большая клавиша без символов на ней – «Пробел». «Пробел» используется для отделения слов и выражений друг от друга. Русские клавиатуры двуязычные, поэтому на их клавишах нарисованы символы как русского, так и английского алфавитов. В режиме русского языка набираются тексты на русском языке, английского - на английском. Алфавитно-цифровая клавиатура - основная часть клавиатуры с алфавитно-цифровыми клавишами, на которых нарисованы символы, вместе со всеми тесно прилегающими управляющими клавишами. Функциональные клавиши F1 – F12, размещенные в верхней части клавиатуры, запрограммированы на выполнение определенных действий (функций). Так, очень часто клавиша F1 служит для вызова справки.

Для перемещения курсора служат клавиши управления курсором, на них изображены стрелки, направленные вверх, вниз, влево и вправо. Эти клавиши перемещают курсор на одну позицию в соответствующем направлении. Клавиши PageUp и PageDown позволяют «листать» документ вверх и вниз, а клавиши Home и End переводят курсор в начало и конец строки.

Клавиша Esc расположена в верхнем углу клавиатуры. Обычно служит для отказа от только что выполненного действия.

Клавиши Shift, Ctrl, alt корректируют действия других клавиш.

Цифровые клавиши – при включенном индикаторе Num Lock удобная клавишная панель с цифрами и знаками арифметических операций. Расположенными, как на калькуляторе. Если индикатор Num Lock выключен, то работает режим управления курсором

29, Запоминающее устройства эвм.классиф.,принцип работы,осн.хар-ки . запом.устр. - носитель информации, предназначенный для записи и хранения данных. В основе работы запоминающего устройства может лежать любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям.

Классификация запоминающих устройств

По устойчивости записи и возможности перезаписи ЗУ делятся на:-- Постоянные ЗУ (ПЗУ), содержание которых не может быть изменено конечным пользователем (например, BIOS). ПЗУ в рабочем режиме допускает только считывание информации. ---Записываемые ЗУ (ППЗУ), в которые конечный пользователь может записать информацию только один раз (например, CD-R).---Многократно перезаписываемые ЗУ (ПППЗУ) (например, CD-RW).--Оперативные ЗУ (ОЗУ) обеспечивают режим записи, хранения и считывания информации в процессе её обработки. Быстрые, но дорогие ОЗУ (SRAM) строят на триггерах, более медленные, но дешёвые разновидности ОЗУ - динамические ЗУ (DRAM) строят на конденсаторах. В обоих видах ЗУ информация исчезает после отключения от источника питания (например, тока).

По типу доступа ЗУ делятся на:--Устройства с последовательным доступом (например, магнитные ленты).--Устройства с произвольным доступом (RAM) (например, оперативная память).---Устройства с прямым доступом (например, жесткие магнитные диски).---Устройства с ассоциативным доступом (специальные устройства, для повышения производительности БД) По геометрическому исполнению:--дисковые (магнитные диски, оптические, магнитооптические);---ленточные (магнитные ленты, перфоленты);--барабанные (магнитные барабаны);--карточные (магнитные карты, перфокарты, флэш-карты, и др.)---печатные платы (карты DRAM, картриджи).

По физическому принципу:--перфорационные (с отверстиями или вырезами) –перфокарта===перфолента==с магнитной записью ==ферритовые сердечники==магнитные диски ==Жёсткий магнитный диск==Гибкий магнитный диск==магнитные ленты==магнитные карты=оптические ==CD==DVD==HD-DVD==Blu-ray Disc

Основные характеристики ЗУ

Важнейшими характеристиками ЗУ являются информационная емкость и быстродействие.

Информационная емкость ЗУ определяется количеством единиц информации, которое может храниться в нем. Как правило, информационной емкостью называется только полезный объем хранимой информации, в нее не включается размер памяти, занятый служебной информацией, например резервные области, синхродорожки, инженерные цилиндры и пр. Быстродействие ЗУ характеризуется его временными характеристиками, к которым относятся:

Время обращения (время цикла) характеризуем максимальную частоту обращения к данному ЗУ при считывании или записи информации. Время считывания (выборки) информации - интервал времени обращения к ЗУ от подачи сигнала считывания и до получения выходного сигнала. Время записи информации - интервал времени от момента подачи сигнала обращения к ЗУ до момента готовности ЗУ к приему следующей порции информации. Важными характеристиками ЗУ являются также надежность, масса устройства, габариты, потребляемая мощность и стоимость.

30, Микропроцессоры ,их хар-ки,конроллеры . Микропроце́ссор - процессор (устройство, отвечающее за выполнение арифметических, логических операций и операций управления, записанных в машинном коде), реализованный в виде одной микросхемы или комплекта из нескольких специализированных микросхем (в отличие от реализации процессора в виде электрической схемы на элементной базе общего назначения или в виде программной модели). Первые микропроцессоры появились в 1970-х и применялись в электронных калькуляторах. Вскоре их стали встраивать и в другие устройства, например терминалы, принтеры и различную автоматику. Доступные 8-битные микропроцессоры с 16-битной адресацией позволили в середине 1970-х создать первые бытовые микрокомпьютеры. Микропроцессоры характеризуется: 1) тактовой частотой, определяющей максимальное время выполнения переключения элементов в ЭВМ;

2) разрядностью, т.е. максимальным числом одновременно обрабатываемых двоичных разрядов. 3) архитектурой. Понятие архитектуры микропроцессора включает в себя систему команд и способы адресации, возможность совмещения выполнения команд во времени, наличие дополнительных устройств в составе микропроцессора, принципы и режимы его работы.Микроконтро́ллер (англ. Micro Controller Unit, MCU) - микросхема, предназначенная для управления электронными устройствами. Типичный микроконтроллер сочетает в себе функции процессора и периферийных устройств, содержит ОЗУ или ПЗУ. По сути, это однокристальный компьютер, способный выполнять простые задачи. Важнейшими характеристиками микропроцессора являются:

31. МикроЭВМ и их клас-я. Компьютеры данного класса доступны многим предприятиям. Организации, использующие микро-ЭВМ, обычно не создают вычислительные центры. Для обслуживания такого компьютера им достаточно небольшой вычислительной лаборатории в составе нескольких человек. В число сотрудников вычислительной лаборатории обязательно входят программисты, хотя напрямую разработкой программ они не занимаются. Необходимые системные программы обычно покупают вместе с микроЭВМ, а разработку нужных прикладных программ заказывают более крупным вычислительным центрам или специализированным организациям. Можно привести следующую классификацию микроЭВМ: -- Универсальные -- Многопользовательские микроЭВМ – это мощные микроЭВМ, оборудованные несколькими видеотерминалами и функционирующие в режиме разделения времени, что позволяет эффективно работать на них сразу нескольким пользователям. -- Персональные компьютеры(ПК) – однопользовательские микроЭВМ удовлетворяющие требованиям общедоступности и универсальности применения, рассчитанные на одного пользователя и управляемые одним человеком--Портативные компьютеры обычно нужны руководителям предприятий, менеджерам, учёным, журналистам, которым приходится работать вне офиса - дома, на презентациях или во время командировок.

Основные разновидности портативных компьютеров:

Laptop. По размерам близок к обычному портфелю. По основным характеристикам (быстродействие, память) примерно соответствует настольным ПК. Сейчас компьютеры этого типа уступают место ещё меньшим.

Notebook. По размерам он ближе к книге крупного формата. Имеет вес около 3 кг. Помещается в портфель-дипломат. Для связи с офисом его обычно комплектуют модемом. Ноутбуки зачастую снабжают приводами CD-ROM. Многие современные ноутбуки включают взаимозаменяемые блоки со стандартными разъёмами. В одно и то же гнездо можно по мере надобности вставлять привод компакт-дисков, накопитель на магнитных дисках, запасную батарею или съёмный винчестер. Ноутбук устойчив к сбоям в энергопитании. Даже если он получает энергию от обычной электросети, в случае какого-либо сбоя он мгновенно переходит на питание от аккумуляторов.

Palmtop (наладонник) - самые маленькие современные персональные компьютеры . Умещаются на ладони. Магнитные диски в них заменяет энергонезависимая электронная память. Нет и накопителей на дисках - обмен информацией с обычными компьютерами идет линиям связи.

Несмотря на относительно невысокую производительность по сравнению с большими ЭВМ, микро-ЭВМ находят применение и в крупных вычислительных центрах. Там им поручают вспомогательные операции, для которых нет смысла использовать дорогие суперкомпьютеры. К таким задачам, например, относится предварительная подготовка данных.

Серверы – многопользовательские мощные микроЭВМ в вычислительных сетях, выделенные для обработки запросов от всех станций сети. Серверы обычно относят к микроЭВМ.Сервер – выделенный для обработки запросов от всех станций вычислительной сети компьютер, предоставляющий этим станциям доступ к общим системным ресурсам (вычислительным мощностям, базам данных, библиотекам программ, принтерам, факсам и др.) и распределяющий эти ресурсы.