Первая информационная революция в истории развития цивилизации. Информационная революция - это что за процесс, какова ее роль

Станислав Шульга, для "Хвилі"

Давеча Сергей Карелов опубликовал статью про неизбежность «большой войны» и другие апокалипсисы. В основе статьи лежало рассмотрение двух конкурирующих гипотез о перспективах «большой войны». Автор концепции «долгого мира» Стивен Пинкер утверждал о спаде насилия после 1945 года, а знаменитый своими «черными лебедями» Нассим Талеб утверждал обратное. Разразилась дискуссия с участием критиков и последователей, в которой стороны обменивались залпами из статистических данных и выводов, сделанных на их основе.

Я не буду касаться самого предмета спора, а хочу акцентировать внимание на его характере. Мы имеем ситуацию, когда стороны обосновано и аргументировано отстаивают диаметрально противоположные точки зрения. Причем так, что без глубокого погружения в предмет понять кто из них прав, а кто нет невозможно. В чем причины такой разности тоже можно долго рассуждать, я выделю только одну – несовершенство применяемых теоретических моделей, описывающих реальные процессы.

Этот пример не единичен. Подобных ситуаций есть множество, что свидетельствует о простом факте – наше представление о процессах, происходящих в реальности далеко от совершенства. В чем причина? Опять же, их целый ряд, я упомяну только одну – ограничения, которые накладывают знаковые системы и информационные технологии, которые применяет человек. Для их более полного понимания перечислю основные вехи, которые привязаны к гуманитарно-технологическим скачкам, или – «информационным революциям», которые приводили нас на новый уровень познания окружающего мира.

Итак, первая информационная революция произошла, когда Предмет Был Назван. Один первобытный человек ткнул в булыжник и сказал «ку», другой согласился и тоже назвал его «ку». Тот, кто продолжал обозначать предметы невербальными методами или называл его «цак» был объявлен невежей, еретиком и тем, кому чужд прогресс. Дальше процесс развивался по накатанной. Предметы и действия были с перекодированы в звуки и установлены правила, произнесения этих звуков. Племя, имеющее в своем арсенале такой мощный организующий фактор, стало сильнее племен, члены которых продолжали мычать невпопад. Собственно, тут мы имеем новый уровень коммуникации, который позволил отдельным частям человечества прогрессировать как в познании окружающего мира, так и в усложнении социальной структуры. И какое-то время все было хорошо.

Вторая информационная революция случилась, когда самый популярный настенный живописец вместо мамонта нарисовал Знак, обозначавший его, мамонта. Так, Звуки Стали Знаками и Появилась Письменность. Говорят, что сначала рисовали все, а потом финикийцы придумали алфавит. После этого человечество пошло по двум дорогам. Некоторые, как китайцы и японцы, до сих пор рисуют, а большинство пользует алфавиты. Кроме того, потомки лучших живописцев и резчиков по камню продолжали копировать мир привычными методами. Художники, что с них возьмешь.

Появление такого мощного инструмента, как письменность привело к тому, что знания перестали умирать вместе с их носителями. Их стали накапливать и передавать из поколения в поколение. Несколько тысяч лет человечество экспериментировало с технологиями сохранения и копирования знаний. В ход шло все - камень, шкуры, глина, сухие листья, ткань, бумага. Параллельно люди зачем-то изобретали все новые и новые языки, алфавиты и знаки. Это говорило, что не все идет так хорошо, как надо бы, но что было, то было.

Эксклюзивными правами на создание и копирование информации обладали специально обученные люди. Их было мало и монополию они держали крепко ибо «знание - сила». Жрецы, монахи, ученые, знать, грамотные простолюдины, сподобившиеся выучиться грамоте. Они умели читать, писать, копировать и хранить информацию. И какое-то время все было хорошо, ибо «ученье свет, а неученых — тьма». Управлять безграмотной толпой куда проще, чем людьми, умеющими читать и писать.

А потом появился Гуттенберг и Федоров и через какое-то время десятки тысяч монахов Европы потеряли работу. Кому нужен переписчик книг, если станок может печатать их в несколько раз быстрее? Это была третья информационная революция , когда Книгу Стали Печатать. Параллельно с этим все больше народа училось читать и писать и уже где-то к середине прошлого века с повальной безграмотностью было покончено. Правда, какое-то время все еще было хорошо, потому как средства для производства и передачи информации все еще контролировались власть имущими.

Четвертая информационная революция грянула, когда пришли Компьютер Настольный и Сеть Глобальная. В 80-х это было еще экзотикой, но уже в 90-х этим мало кого можно было удивить. Сейчас каждый, кто хочет, может постить котиков и писать в свою ленту ФБ экспертные оценки по глобальной геополитике. Эта общедоступность средств производства и передачи информации привела к тому, что количество информации стало расти по экспоненте. Парадокс состоит в том, что «информация» это далеко не всегда «смысл», поэтому обратная медаль общедоступности - это увеличение информационного хаоса и деградация человеческих способностей к восприятию и построению связных картин мира.

Таким образом, всеобщая грамотность и доступность средств производства информации пока привела к еще большим проблемам, чем в те годы, когда информации было мало. Честь и хвала ребятам из Кремниевой долины, которые придумали компьютеры и сделали сеть общедоступной. С другой стороны эти ребята пока не нашли способ справиться с растущим информационным хаосом, а изобретаемые ими прибамбасы зачастую имеют весьма комичное применение. Например, повальное увлечение селфи, бесконечная ярмарка тщеславия в инстаграмме, миллион и маленькая тележка экспертов всех мастей в фейсбуке.

Она еще не произошла и не факт, что произойдет. Но тот, кто ее устроит, станет если не вторым Гуттенбергом, то наверняка не меньшим, чем Стив Джобс. В чем должна состоять суть Пятой Информационной Революции? Перечислю несколько пунктов.

Динамическое Знание. Один из главных недостатков нынешних технологий создания и хранения знания это отставание от реальной ситуации. Скажем, ученый провел серию натурных экспериментов, зафиксировав их в массиве данных. Нужно время на первичную обработку, анализ, формирование результатов. За это время реальная ситуация изменилась и полученный массив данных не отвечает полностью тому, что действительно происходит в реальности. Еще более простой пример - Google Earth, который компилируется на основе спутниковых снимков. При этом некоторые снимки уже не отражают реальной ситуации на площадке. Технологические предпосылки к ликвидации этого лага есть. Фиксация, обработка и складирование данных, которые отстают от реальности не на недели и месяцы, а на минуты и секунды.

Компьютеры, Рождающие Смыслы . Пока компьютеры это большие калькуляторы, которые способны обсчитывать значительные объемы данных. Постановка задач и написание алгоритмов целиком зависит от человека. Необходимы качественно новые фильтрационные вычислительные системы, которые смогут из потоков получать смыслы. Возможно, это будут искины, возможно такое ПО по-прежнему будет работать в связке с человеком-оператором. В любом случае, это будут компьютеры, которые из огромных потоков данных смогут не только отфильтровывать информацию, но и осмысливать ее и давать человеку знание и смыслы.

Метаязык. Одна из проблем, которую человечество таки и не решило, запустив информационную революцию — увеличение «пропускной мощности» коммуникативных способностей самого человека. Мы можем хранить, передавать и обрабатывать на компьютерах огромное количество информации. При этом по-прежнему общаемся с помощью речи и создаем линейные тексты, основанные на языках, которым сотни лет. Ситуация аналогична той, если бы на старую материнскую плату компьютера вешали новые процессоры и память. Можно сколько угодно менять на скоростные процессоры и модули памяти, но шина есть шина, больше чем она есть пропустить не может. Скорость обработки не увеличится.

Второй момент. Существуют сотни языков, тысячи знаковых систем, миллионы книг, статей и заметок. Порожденная нами информация о мире дефрагментирована и слабо связана. Специалисты из разных отраслей подчас не имеют единой терминологической базы для общения друг с другом. Есть области знаний, которые практически не связаны друг с другом, хотя описывают одни и те же предметы. Для того, чтобы связать разрозненные массивы данных и создать один знаменатель для знаковых систем, нужен Метаязык. С его помощью, скажем, ученый-геолог сможет без проблем подвязывать к своим выкладкам информацию из материалов этнографических экспедиций. Зачем, спросите вы? А разве маршруты миграции племен не могут указывать на наличие тех или иных природных ископаемых? Подобных примеров можно привести десятки.
Попытки решить проблему с помощью технологий подобных Big Data вряд ли приведет к качественному скачку. Первый раз я услышал о Data Warehouse еще в середине 90-х и что с тех пор что-то сильно поменялось? Способности многочисленных аналитиков и синктанков прогнозировать будущее хорошо показали Brexit и Трамп. Да, в чем-то прогресс есть, но мы все равно не можем толком предсказать даже, казалось бы, вполне обсчитываемые события.

Нужна принципиально новая «база» — новые языки, которые заменят те языки, и знаковые системы, на которых человечество общается сейчас. Символы в этих языках будут намного более смыслоемкими и образовывать большее количество комбинаций, что позволит создавать более компактную информацию. В своих рассказах я описывал таких людей. Ниже приведен отрывок из рассказа «Трафик-трекер» .

«…Трафикер тоже «давит кнопки». На экране его «ладошки» мелькают кубики со странными символами. Они складываются в цепи и кубы, исчезают и появляются вновь. Со стороны это выглядит как игра-головоломка. Отчасти это правда. «Сайскрит» или «кибернетический санскрит» — сам по себе головоломка для тех, кто продолжает пользоваться примитивными линейными алфавитами. Слова и предложения из него содержат на два-три порядка больше информации, чем обычные тексты такой же длины. Это модифицированная версия «джимала», языка, на котором «работает» Кибернетический Глобус. Сейчас он пишет на нем запросы по базам данных Глобуса, а те через полчаса запустят на него нужный поток данных…»

Конечно, это вариант маловероятный. Попытки создания искусственных языков типа эсперанто не были успешными. Да и артикуляционный аппарат тоже дело такое, попробуйте выучить в зрелом возрасте иностранный язык.

Так что скорее вероятен вариант, когда «новые» языки создаст искусственный интеллект. Искины будут способны упаковывать огромные массивы информации с помощью гораздо более сложных знаковых систем, чем те, которыми мы пользуемся сейчас. Подвижки в этом плане уже есть. Относительно недавно по сети прошла новость о том, что нейронная сеть Google, которая обеспечивает сервис переводов Google Translate, изобрела собственный внутренний язык для перевода с одного языка на другой.

Вот тогда и произойдет настоящая информационная революция, которая будет способна изменить сами подходы к постижению вещей и вызвать ряд качественных скачков практически во всех областях человеческой деятельности. А до тех пор пока это не произошло мы будем довольствоваться «революциями» типа выхода очередной игрушки от Apple и процессорами в 100500 ядер.

Роль информации в развитии общества.

Ряд исследователей истории цивилизации считают что история человечества может рассматривается как закономерная последовательность технологических революций. Под технологической революцией понимается радикальное изменение средств и способов организации общественного производства и жизнеобеспечения общества.

Однако прослеживается тесная связь между технологическими и информационными революциями в истории развития цивилизации. В основе каждой технологической революции лежит информационная революция , которая и создает необходимые условия для перехода общества на качественно новый уровень технологического развития.

Существо информационной революции заключается в изменении инструментальной основы способов передачи и хранения информации, а также объема информации, доступной для активной части населения. Можно выделить шесть информационных революций за всю историю развития цивилизации.

Первая информационная революция связана с появление языка и человеческой речи . Язык сделал возможным развитие процессов абстрактного мышления а также накопления и распространения знаний, которые передавались из поколения в поколение в виде легенд, мифов и сказаний.

В этих условиях процессы накопления и распространения знаний в обществе осуществлялись чрезвычайно медленно, а сохранение уже накопленных знаний было недостаточно надежным. Смерть носителя знаний требовала повторного накопления знаний, на что уходили многие столетия.

Вторая информационная революция с вязана с появлением письменности. Это изобретение человека позволило не только обеспечить сохранность уже накопленных знаний, но и повысить достоверность этих знаний, создать условия для их широкого распространения. Стало возможным распространение науки и культуры в современном понимании этих терминов

Изменилась и информационная среда общества, стали возможны новые виды информационных коммуникаций между людьми посредством обмена письменными сообщениями. Появились образованные люди , ставшие двигателями технического и культурного прогресса.

Появление письменности послужило мощным фактором для накопления и распространения знаний в области организации многих производственных процессов.

Третья информационная революция с вязана с изобретением книгопечатания . Широкое внедрение этого изобретения в социальную практику привело к первому информационному взрыву:

Возросло число использованных в обществе документов;

Началось более широкое распространение информации, научных знаний.

Появились библиотеки печатных книг. В обществе появились широкие возможности для получения знаний и самообразовании. Например, Колумб не смог бы получить необходимые знания для своего путешествия к берегам Америки, если в его время не существовало бы печатных изданий, рукописей путешественников Плиния, Марко Поло.



Типографии стали одним из распространенных видов промышленных предприятий Появились газеты, журналы, справочники.

Четвертая информационная революция с вязана с изобретением телеграфа (Шиллинг, Бодо, Морзе), телефона, радио (Попов А.С., Маркони) и телевидения. Благодаря этим средствам люди оказались подключенными к общему информационному пространству не только своей страны, но и значительной части планеты.

Электронные средства позволяют передавать информацию с высокой скоростью и в больших объемах. События становятся общим достоянием практического всего населения страны. Информационная революция изменила общественное сознание всего человечества, сделав его более глобальным.

Пятая информационная революция н ачалась с момента появления цифровой вычислительной техники . Появление ЭВМ вызвало бурный рост новых информационных технологий, ориентированных на возможности ЭВМ и ПЭВМ.

Человечество вступило в новую эру – эру информации. Создается распределенная система общенациональных и региональных знаний. В ближайшем будущем информация станет не только результатом труда населения планеты, но и объектом этого труда. Все сферы деловой активности людей во все большей степени связаны с использованием информации и научных знаний.

Шестая информационная революция, свидетелями которой мы являемся, создала условия для формирования на планете новой цивилизации – информационного общества, в котором процесс создания, преобразования и потребления информации происходит на основе информационных технологий.

Глобальная информатизация общества активно содействует развитию новых геополитических процессов:

Глобализации экономики, проявляющейся в создании транснациональных корпораций, международного разделения труда и международных рынков сбытов продукции;

Глобализации науки за счет создания распределенных международных коллективов ученых, работающий над общим научным рабочим проектом;

Интенсификации процессов международного обмена научной информации;

Глобализации образования, проявляющейся в развитии систем дистанционно образования, создании открытых территориально распределенных университетов, центров повышения профессиональной квалификации;

Глобализации культуры.

В истории развития цивилизации произошло несколько информационных революций - преобразований общественных отношений из-за кардинальных изменений в сфере обработки информации. Следствием подобных преобразований являлось приобретение человеческим обществом нового качества.

  • Первая революция связана с изобретением письменности , что привело к гигантскому качественному и количественному скачку. Появилась возможность передачи знаний от поколения к поколениям.

    Письменность появилась около пяти тысяч лет назад в Месопотамии и Египте, затем (независимо, но несколько тысяч лет спустя) - в Китае и еще на 1500 лет позднее - в Центральной Америке у индейцев племени майя. Ее ранние примеры - глиняные дощечки с клинописью жителей Вавилона - представляют собой деловые расписки и правительственные документы, летописи или описания методов земледелия.

    До изобретения письменности идеи могли передаваться только устно. Помимо прочего, это означало, что пока вы лично не встретитесь с конкретным человеком, которому принадлежат новая концепция или открытие, о его работе вы, в лучшем случае, узнаете из вторых рук, и поэтому ваши знания могут оказаться неточными. Хотя устные традиции человечества, несомненно, богаты, таким путем информацию никогда не удавалось распространить достаточно быстро, широко и точно. Изобретение письменности стало ключевым элементом экономической базы древней цивилизации.

  • Вторая революция (середина XVI века) вызвана изобретением книгопечатания , которое радикально изменило индустриальное общество, культуру, организацию деятельности.

    Немец Иоганн Гуттенберг (1399-1468) между 1450 и 1455 годами изобрел печатный пресс и наборный шрифт. Орнамент и иллюстрации воспроизводили сначала ксилографией (гравюра на дереве), появившейся еще раньше книгопечатания. Хотя печатное дело впервые возникло в XI в. в Китае, именно печатный станок Гуттенберга и примененный им метод съемных шрифтов способствовали ею распространению.

    На момент изобретения печатного пресса Гуттенбергом в Европе существовала мощная информационная индустрия. В многочисленных монастырях жили сотни хорошо обученных монахов. Каждый из них трудился от рассвета до заката шесть дней в неделю, переписывая книги от руки. Умелый, хорошо подготовленный монах мог переписать четыре страницы в день, или 25 страниц за шестидневную рабочую неделю; ежегодная производительность, таким образом, составляла 1200-1300 рукописных страниц.

    К 1505 тиражи книг в 500 экземпляров стали массовым явлением. Это означало, что группа печатников могла выпускать по 25 млн. печатных страниц в год, переплетенных в 125 000 готовых к продаже книг - 2500000 страниц на одного работника против 1200-1300, которые мог изготовить монах-переписчик всего за 50 лет до этого.

    В середине XV века книги были роскошью, которую могли себе позволить только очень богатые и образованные люди. Но когда в 1522 из печати вышла немецкая Библия Мартина Лютера (свыше 1000 страниц), цена ее была настолько невысокой, что даже бедная крестьянская семья могла ее приобрести.

    За очень незначительное время революция в книгопечатании изменила институты общества, включая и систему образования. Книгопечатание сделало возможной протестантскую Реформацию. Но не только ее. Именно печатный станок принес с собой массовое производство и стандартизацию процесса обработки информации, проложивших дорогу промышленной революции. В последовавшие за ней десятилетия по всей Европе были созданы новые университеты, но, в отличие от ранее существовавших, где основное внимание уделялось теологии, здесь преподавали светские дисциплины: право, медицину, математику, натуральную философию (естественные науки). Революция в печати быстро сформировала новый класс специалистов по информационной технологии, точно так же, как современная информационная революция создала множество информационных предприятий, специалистов по ИС и ИТ, разработчиков программного обеспечения и руководителей информационных служб.

  • Третья революция (конец XIX века) обусловлена изобретением электричества , благодаря которому появились телеграф, телефон, радио, позволяющие оперативно передавать информацию.

    Телеграф

    В 1855 г. английский изобретатель Д. Э. Юз (1831-1900) разработал буквопечатающий аппарат, нашедший широкое распространение. В основу работы телеграфного аппарата был положен принцип синхронного движения скользуна передатчика и колеса приемника. Опытный телеграфист на аппарате Юза мог передать до 40 слов в минуту. Быстрый рост телеграфного обмена и увеличение производительности телеграфных аппаратов натолкнулись на ограниченные возможности телеграфистов, способных достичь скорости передачи при длительной работе только до 240-300 букв в минуту.

    В 1870 г. в России существовало 90,6 тыс.км телеграфных проводов и 714 телеграфных станций. В 1871 г. была закончена постройка длиннейшей по тому времени линии между Москвой и Владивостоком. К началу XX века протяженность телеграфных линий в России составляла 300 тыс.км.

    Совершенствование техники и технологии изготовления кабелей, повышение их качества и износостойкости позволяло строить подземные телеграфные линии. С 1877 по 1881 г. в Германии, например, было проведено 20 подземных линий общей протяженностью около 5,5 тыс. км. В конце XIX века в Европе было протянуто 2840 тыс. км кабеля, а в США - свыше 4 млн. км. Общая протяженность телеграфных линий в мире в начале XX века составила около 8 млн. км.

    Телефон

    Наряду с совершенствованием проволочного телеграфа в последней четверти XIX века появился телефон. Телефонный аппарат И. Ф. Рейса, сконструированный в начале 60-х гг. XIX века, не получил практического применения.

    Дальнейшая разработка телефона связана с именами американских изобретателей И. Грея (1835-1901) и А. Г. Белла (1847-1922). Участвуя в конкурсе по практическому разрешению проблемы уплотнения телеграфных цепей, они обнаружили эффект телефонирования. 14 февраля 1876 г. оба американца сделали заявку на практически применимые телефонные аппараты. Поскольку заявка Грея была сделана на 2 часа позже, патент был выдан Беллу, а возбужденный Греем процесс против Белла был им проигран.

    Радио

    Когда в 1887 г. своими экспериментами немецкий физик Г. Р. Герц (1857-1894) доказал справедливость гипотезы Дж. К. Максвелла (1831-1879) о существовании электромагнитных волн, распространяющихся со скоростью света (называемых теперь радиоволнами), многие изобретатели в разных странах занялись вопросом использования этих волн для беспроволочной передачи сигналов. Немалый вклад внесли в это французский физик Э. Бранли (1844-1940), а также английский ученый О. Дж. Лодж (1851-1940).

    Первая в мире радиопередача была осуществлена в России знаменитым изобретателем и ученым А. С. Поповым (1859-1906). Сам изобретатель из-за своей скромности и бескорыстия (академик А. Н. Крылов впоследствии назвал это «идеализмом») не закрепил за собой собственности на изобретение, не взяв никакого патента.

    Между тем летом 1896 г. в печати появились (без сообщения каких-либо технических подробностей) сведения о том, что итальянец Маркони открыл способ «беспроволочного телеграфирования». Г. Маркони (1874-1937) не имел специального образования, но обладал энергичной коммерческой и технической предприимчивостью. Тщательно изучив все, что было опубликовано по вопросу о передаче излучений без проводов, он сам сконструировал соответствующие приборы и отправился в Англию. Там он сумел заинтересовать руководство почтового ведомства и других предпринимателей. 2 июня 1896 г. он получил английский патент на устройства для «беспроволочного телеграфирования» и лишь после этого ознакомил публику с конструкцией своего изобретения. Оказалось, что оно в основном воспроизводит аппаратуру Попова.

    В 1916 году началось регулярное вещание первой радиостанции - 9XM в США. В середине 20-х появились первые удобные и доступные радиоприемники. Тогда же начались первые эксперименты по передаче видеосигнала.

  • Четвертая революция (70-ые годы XX века) связана с изобретением микропроцессорной технологии и появлением персональных компьютеров . На микропроцессорах и интегральных схемах создаются компьютеры, компьютерные сети, системы передачи данных (информационные коммуникации).
    • переход от механических и электрических средств преобразования информации к электронным средствам;
    • миниатюризация всех узлов, устройств, приборов, машин;
    • создание программно-управляемых устройств и процессов.

    Последняя информационная революция выдвигает на первый план новую отрасль - информационную индустрию, связанную с производством технических средств, методов, технологий для производства новых знаний. Важнейшими составляющими информационной индустрии становятся все виды информационных технологий, особенно телекоммуникации. Современная информационная технология опирается на достижения в области компьютерной техники и средств связи. Информационная технология - процесс, использующий совокупность средств и методов сбора, обработки и передачи данных (первичной информации) для получения информации нового качества о состоянии объекта, процесса или явления.

Сегодня мы переживаем пятую информационную революцию, связанную с формированием и развитием трансграничных глобальных информационно-телекоммуникационных сетей, охватывающих все страны и континенты, проникающих в каждый дом и воздействующих одновременно и на каждого человека в отдельности, и на огромные массы людей.

Наиболее яркий пример такого явления и результат пятой революции - Интернет. Суть этой революции заключается в интеграции в едином информационном пространстве по всему миру программно-технических средств, средств связи и телекоммуникаций, информационных запасов или запасов знаний как единой информационной телекоммуникационной инфраструктуры, в которой активно действуют юридические и физические лица, органы государственной власти и местного самоуправления. В итоге неимоверно возрастают скорости и объемы обрабатываемой информации, появляются новые уникальные возможности производства, передачи и распространения информации, поиска и получения информации, новые виды традиционной деятельности в этих сетях.

Бурное развитие компьютерной техники и информационных технологий послужило толчком к развитию общества, построенного на использовании различной информации и получившего название информационного общества.

Конец ХХ века называют новым информационным веком и связывают с четвертой информационной революцией - распространением компьютеров и Интернета. Большинство этих эпитетов восходят к понятию «постиндустриальное общество», популяризированному десятилетие назад гарвардским социологом Д. Беллом. Оно описывает характерные черты информационного века.

В США, например, уже в 1985 в сфере информационной индустрии работало около 50% всех рабочих и служащих. А в материалах, распространявшихся в Конгрессе США при рассмотрении национальной информационной инфраструктуры, говорилось о том, что около 2/3 работающих в стране связаны с информационной деятельностью, а остальные заняты в производстве, сильно зависящем от неё.

К концу 80-х гг. ХХ в. обработка, передача информации и операции с нею были основным занятием каждого четвёртого работающего в США, или даже каждого третьего, если считать учителей и других работников сферы образования. Аналогичным образом с началом последнего десятилетия ХХ в. более 40% всех новых капиталовложений в производство и оборудование было сделано в сфере информационных технологий (компьютеры, фотокопировальные и факсимильные аппараты и тому подобное), что в два раза больше, чем 10 лет назад. Бывший министр финансов США У. Майкл Блюменталь так резюмировал это в 1988 в статье, озаглавленной «Мировая экономика и изменения в технологии»: «Информация,- писал он, - стала рассматриваться как ключ к современной экономической деятельности - базовый ресурс, имеющий сегодня такое же значение, какое в прошлом имели капитал, земля и рабочая сила». Объём имеющейся у нас информации с каждым днём увеличивается всё быстрее. За последнее столетие мы добавили к общей сумме знаний больше, чем за всю предыдущую историю человечества



Существующая в развитых странах информационная индустрия, по объёмам производства и номенклатуре выпускаемой продукции сопоставимая с важнейшими отраслями хозяйства, потребовала создания соответствующего рынка. Мировой рынок средств информатизации уже к 1990 достиг 660 млрд. долларов. Из них около 50% приходилось на компьютеры. Только за 1995 в мире было произведено около 60 млн. персональных компьютеров. Информационная деятельность во всем мире стала одной из самых прибыльных сфер приложения капитала.

Кодирование информации

Для любой операции над информацией (даже такой простой, как сохранение) она должна быть как-то представлена (записана, зафиксирована). Следовательно, прежде всего необходимо договориться об определенном способе представления информации, т.е. ввести некоторые обозначения и правила их использования (порядок записи, возможности комбинации знаков и др.). Когда все это аккуратно определено, используя указанные соглашения, информацию можно записывать, причем с уверенностью, что она будет однозначно воспринята. Вследствие важности данного процесса он имеет специальное название - кодирование информации.

Кодирование информации необычайно разнообразно. Указания водителю автомобиля по проезду дороги кодируются в виде дорожных знаков, а также специальных индикаторных устройств (светофоров и всевозможных светящихся табло около них). Музыкальное произведение кодируется с помощью знаков нотной грамоты, для записи шахматных партий и химических формул также созданы специализированные нотации (системы записи). Менее стандартными, но легко интуитивно понимаемыми являются комбинации изображений солнышка и облаков, компактно описывающие погоду. Весьма специфическую азбуку флажков придумали моряки. Устная речь человека, которая служит одним из важных каналов передачи информации, состоит из стандартного набора звуков (имеющего свои особенности для каждого национального языка) в различных сочетаниях. Любой грамотный компьютерный пользователь знает о существовании кодировок символов ASCII, Unicode и некоторых других. Правила записи чисел в десятичной системе - это тоже способ кодирования, предназначенный для произвольных чисел. Географическая карта по определенным правилам кодирует информацию о рельефе местности и относительном расположении объектов, электрическая схема или сборочный чертеж - о соединении деталей. Высота столбика термометра или отклонение стрелки амперметра на фоне нарисованной шкалы представляют данные о температуре или силе тока и т.д.

Понятие кодирования используется в информатике необычайно широко, причем существуют даже разные уровни кодирования информации. Например, из практики известна проблема с выбором кодировки русских текстов; это своего рода теоретическая проблема - какие коды выбрать для каждой буквы.

Теория кодирования информации является одной из дисциплин, которые входят в состав информатики. Она занимается вопросами экономичности (архивация, ускорение передачи данных), надежности (обеспечение восстановления переданной информации в случае повреждения) и безопасности (шифрование) кодирования информации.

Закодированная информация всегда имеет под собой какую-либо объективную основу, поскольку информация есть отражение тех или иных свойств окружающего нас мира. В то же время, одну и ту же информацию можно закодировать разными способами: число записать в десятичной или двоичной системе, данные о выпуске продукции по годам представить в виде таблицы или диаграммы, текст лекции записать на магнитофон или сохранить в печатном виде, собрание сочинений классика перевести и издать на всех языках народов мира. Существует два принципиально отличных способа представления информации: непрерывный и дискретный .

Если некоторая величина, несущая информацию, в пределах заданного интервала может принимать любое значение, то она называется непрерывной . Наоборот, если величина способна принимать только конечное число значений в пределах интервала, она называется дискретной . Хорошим примером, демонстрирующим различия между непрерывными и дискретными величинами, могут служить целые и вещественные числа. В частности, между значениями 2 и 4 имеется всего одно целое число, но бесконечно много вещественных (включая знаменитое ).

Для наглядного представления о сути явления дискретности можно также сравнить таблицу значений функции и ее график, полученный путем соединения соответствующих точек плавной линией.

Очевидно, что с увеличением количества значений в таблице (интервал дискретизации сокращается) различия существенно уменьшаются, и дискретизированная величина все лучше описывает исходную (непрерывную). Наконец, когда имеется настолько большое количество точек, что мы не в состоянии различить соседние, на практике такую величину можно считать непрерывной.

Компьютер способен хранить только дискретно представленную информацию. Его память, как бы велика она ни была, состоит из отдельных битов, а значит, по своей сути дискретна.

В заключение заметим, что сама по себе информация не является непрерывной или дискретной: таковыми являются лишь способы ее представления. Например, давление крови можно с одинаковым успехом измерять аналоговым или цифровым прибором.

Принципиально важным отличием дискретных данных от непрерывных является конечное число их возможных значений. Благодаря этому каждому из них может быть поставлен в соответствие некоторый знак (символ) или, что для компьютерных целей гораздо лучше, определенное число. Иными словами, все значения дискретной величины могут быть тем или иным способом пронумерованы.

Примечание . Рассмотрим такую, казалось бы, “неарифметическую” величину, как цвет, обычно представляемую в компьютере как совокупность интенсивности трех базовых цветов RGB. Тем не менее, записанные вместе, все три интенсивности образуют единое “длинное” число, которое формально вполне можно принять за номер цвета.

Значение сформулированного выше положения трудно переоценить: оно позволяет любую дискретную информацию свести к единой универсальной форме - числовой. Не случайно поэтому в последнее время большое распространение получил термин “цифровой”, например, цифровой фотоаппарат. Заметим, что для цифрового фотоаппарата важно не столько существование дискретной светочувствительной матрицы из миллионов пикселей (в конце концов “химическая” фотопленка также состояла из отдельных зерен), сколько последующая запись состояния ячеек этой матрицы в числовой форме.

В свете сказанного выше вопрос об универсальности дискретного представления данных становится очевидным: дискретная информация любой природы сводится тем или иным способом к набору чисел. Кстати, данное положение лишний раз подчеркивает, что каким бы “мультимедийным” не выглядел современный компьютер, “в глубине души” он по-прежнему “старая добрая ЭВМ”, т.е. устройство для обработки числовой информации.

Таким образом, проблема кодирования информации для компьютера естественным образом распадается на две составляющие: кодирование чисел и способ кодирования, который сводит информацию данного вида к числам.

В вычислительной технике существует своя система кодирования - она называется двоичным кодированием и основана на представлении данных последовательностью всего двух знаков: 0 и 1. Эти знаки называются двоичными цифрами, по-английски -binarydigit, или, сокращенно,bit (бит).

Одним битом могут быть выражены два понятия: 0 или 1 (да или нет, черное или белое, истина или ложь и т. п.). Если количество битов увеличить до двух, то уже можно выразить четыре различных понятия:

Тремя битами можно закодировать восемь различных значений:

000 001 010 01l 100 101 110 111

Увеличивая на единицу количество разрядов в системе двоичного кодирования, мы увеличиваем в два раза количество значений, которое может быть выражено в данной системе.