Чем отличается дискретный сигнал от цифрового. Виды сигналов: аналоговый, цифровой, дискретный

Любая система цифровой обработки сигналов независимо от ее сложности содержит цифровое вычислительное устройство - универсальную цифровую вычислительную машину, микропроцессор или специально разработанное для решения конкретной задачи вычислительное устройство. Сигнал, поступающий на вход вычислительного устройства, должен быть преобразован к виду, пригодному для обработки на ЭЦВМ. Он должен иметь вид последовательности чисел, представленных в коде машины.

В некоторых случаях задача представления входного сигнала в цифровой форме решается сравнительно просто. Например, если нужно передать словесный текст, то каждому символу (букве) этого текста нужно поставить в соответствие некоторое число и, таким образом, представить передаваемый сигнал в виде числовой последовательности. Легкость решения задачи в этом случае объясняется тем, что словесный текст по своей природе дискретен.

Однако большинство сигналов, с которыми приходится иметь дело в радиотехнике, являются непрерывными. Это связано с тем, что сигнал является отображением некоторого физического процесса, а почти все физические процессы непрерывны по своей природе.

Рассмотрим процесс дискретизации непрерывного сигнала на конкретном примере. Допустим, на борту некоторого космического аппарата производится измерение температуры воздуха; результаты измерения должны передаваться на Землю в центр обработки данных. Температура

Рис. 1.1. Виды сигналов: а - непрерывный (континуальный) сигнал; 6 - дискретный сигнал; в - АИМ-колебание; г - цифровой сигнал

воздуха измеряется непрерывно; показания датчика температуры также являются непрерывной функцией времени (рис. 1.1, а). Но температура изменяется медленно, достаточно передавать ее значения один раз в минуту. Кроме того, нет необходимости измерять ее с точностью выше чем 0,1 градуса. Таким образом, вместо непрерывной функции можно с интервалом в 1 мин передавать последовательность числовых значений (рис. 1.1, г), а в промежутках между этими значениями можно передавать сведения о давлении, влажности воздуха и другую научную информацию.

Рассмотренный пример показывает, что процесс дискретизации непрерывных сигналов состоит из двух этапов: дискретизации по времени и дискретизации по уровню (квантования). Сигнал, дискретизированный только по времени, называют дискретным; он еще не пригоден для обработки в цифровом устройстве. Дискретный сигнал представляет собой последовательность, элементы которой в точности равны соответствующим значениям исходного непрерывного сигнала (рис. 1.1, б). Примером дискретного сигнала может быть последовательность импульсов с изменяющейся амплитудой - амплитудно-импульсно-модулированное колебание (рис. 1.1, в). Аналитически такой дискретный сигнал описывается выражением

где исходный непрерывный сигнал; единичный импульс АИМ-колебания.

Если уменьшать длительность импульса сохраняя его площадь неизменной, то в пределе функция стремится к -функции. Тогда выражение для дискретного сигнала можно представить в виде

Для преобразования аналогового сигнала в цифровой после дискретизации по времени должна следовать дискретизация по уровню (квантование). Необходимость квантования вызвана тем, что любое вычислительное устройство может оперировать только числами, имеющими конечное число разрядов. Таким образом, квантование представляет собой округление передаваемых значений с заданной точностью. Так в рассмотренном примере производится округление значений температуры до трех значащих цифр (рис. 1.1, г). В других случаях число разрядов передаваемых значений сигнала может быть иным. Сигнал, дискретизированный и по времени, и по уровню, называется цифровым.

Правильный выбор интервалов дискретизации по времени и по уровню очень важен при разработке цифровых систем обработки сигналов. Чем меньше интервал дискретизации, тем точнее дискретизированный сигнал соответствует исходному непрерывному. Однако при уменьшении интервала дискретизации по времени возрастает число отсчетов, и для сохранения общего времени обработки сигнала неизменным приходится увеличивать скорость обработки, что не всегда возможно. При уменьшении интервала квантования требуется больше разрядов для описания сигнала, вследствие чего цифровой фильтр становится более сложным и громоздким.

Чем измерительный сигнал отличается от сигнала? Приведите примеры измерительных сигналов, используемых в различных разделах науки и техники

Измерительный сигнал - это материальный носитель информации, содержащий количественную информацию об измеряемой физической величине и представляющий собой некоторый физический процесс, один из параметров которого функционально связан с измеряемой физической величиной. Такой параметр называют информативным. А сигнал несет количественную информацию только об информативном параметре, а не об измеряемой физической величине.

Примерами измерительных сигналов могут быть

Выходные сигналы различных генераторов (магнитогидродинамического, лазеров, мазеров и др.), трансформаторов (дифференциального, тока, напряжения)

Различные электромагнитные волны (радиоволны, оптическое излучение и др.)

Перечислите признаки, по которым классифицируются измерительные сигналы

По характеру измерения информативного и временного параметров измерительные сигналы делятся на аналоговые, дискретные и цифровые. По характеру изменения во времени сигналы делятся на постоянные и переменные. По степени наличия априорной информации переменные измерительные сигналы делятся на детерминированные, квазидетерминированные и случайные.

Чем аналоговый, дискретный и цифровой сигналы отличаются друг от друга?

Аналоговый сигнал - это сигнал, описываемый непрерывной или кусочно-непрерывной функцией Y a (t), причем как сама эта функция, так и ее аргумент t могут принимать любые значения на заданных интервалах (Y min ; Y max) и (t min ; t max).

Дискретный сигнал - это сигнал, изменяющийся дискретно во времени или по уровню. В первом случае он может принимать в дискретные моменты времени nТ, где Т = const - интервал (период) дискретизации, n = 0; 1; 2; ... - целое, любые значения в интервале (Y min ; Y max)называемые выборками, или отсчетами. Такие сигналы описываются решетчатыми функциями. Во втором случае значения сигнала Yд(t) существуют в любой момент времени t в интервале (t min ; t max) однако они могут принимать ограниченный ряд значений h j = nq, кратных кванту q.

Цифровые сигналы - квантованные по уровню и дискретные по времени сигналы Y ц (nТ), которые описываются квантованными решетчатыми функциями (квантованными последовательностями), принимающими в дискретные моменты времени nТ лишь конечный ряд дискретных значений - уровней квантования h 1 h 2 , ... , h n .

Расскажите о характеристиках и параметрах случайных сигналов

Случайный сигнал - это изменяющаяся во времени физическая величина, мгновенное значение которой является случайной величиной.

Семейство реализаций случайного процесса является основным экспериментальным материалом, на основе которого можно получить его характеристики и параметры.

Каждая реализация является неслучайной функцией времени. Семейство реализаций при каком-либо фиксированном значении времени t o представляет собой случайную величину, называемую сечением случайной функции, соответствующим моменту времени t o . Следовательно, случайная функция совмещает в себе характерные признаки случайной величины и детерминированной функции. При фиксированном значении аргумента она превращается в случайную величину, а в результате каждого отдельного опыта становится детерминированной функцией.

Наиболее полно случайные процессы описываются законами распределения: одномерным, двумерным и Т.д. Однако оперировать с такими, в общем случае многомерными функциями очень сложно, поэтому в инженерных приложениях, каковым является метрология, стараются обойтись характеристиками и параметрами этих законов, которые описывают случайные процессы не полностью, а частично. Характеристики случайных процессов, в отличие от характеристик случайных величин, которые подробно рассмотрены в гл. 6, являются не числами, а функциями. К важнейшим из них относятся математическое ожидание и дисперсия.

Математическим ожиданием случайной функции X(t) называется неслучайная функция

mx(t) = M = хр(х, t)dx,

которая при каждом значении аргумента t равна математическому ожиданию соответствующего сечения. Здесь р(х, t) - одномерная плотность распределения случайной величины х в соответствующем сечении случайного процесса X(t). Таким образом, математическое ожидание в данном случае является средней функцией, вокруг которой группируются конкретные реализации.

Дисперсией случайной функции X(t) называется неслучайная функция

Dx(t) = D = 2 p(x, t)dx,

значение которой для каждого момента времени равно дисперсии соответствующего сечения, т.е. дисперсия характеризует разброс реализаций относительно mx(t).

Математическое ожидание случайного процесса и его дисперсия являются весьма важными, но не исчерпывающими характеристиками, так как определяются только одномерным законом распределения. Они не могут характеризовать взаимосвязь между различными сечениями случайного процесса при различных значениях времени t и t". Для этого используется корреляционная функция - неслучайная функция R(t, t") двух аргументов t и t", которая при каждой паре значений аргументов равна ковариации соответствующих сечений случайного процесса:

Корреляционная функция, называемая иногда автокорреляционной, описывает статистическую связь между мгновенными значениями случайной функции, разделенными заданным значением времени ф = t"-t. При равенстве аргументов корреляционная функция равна дисперсии случайного процесса. Она всегда неотрицательна.

На практике часто используется нормированная корреляционная функция

Она обладает следующими свойствами: 1) при равенстве аргументов t и t" r(t, t") = 1; 2) симметрична относительно своих аргументов: r(t,t") = r(t",t); 3) ее возможные значения лежат в диапазоне [-1;1], т.е. |r(t,t")| ? 1. Нормированная корреляционная функция по смыслу аналогична коэффициенту корреляции между случайными величинами, но зависит от двух аргументов и не является постоянной величиной.

Случайные процессы, протекающие во времени однородно, частные реализации которых с постоянной амплитудой колеблются вокруг средней функции, называются стационарными. :Количественно свойства стационарных процессов характеризуются следующими условиями.

* Математическое ожидание стационарного процесса постоянно, Т.е. m х (t) = m х = const. Однако это требование не является существенным, поскольку от случайной функции X(t) всегда можно перейти к центрированной функции, для которой математическое ожидание равно нулю. Отсюда вытекает, что если случайный процесс нестационарен только за счет переменного во времени (по сечениям) математического ожидания, то операцией центрирования его всегда можно свести к стационарному.

* Для стационарного случайного процесса дисперсия по сечениям является постоянной величиной, Т.е. Dx(t) = Dx = const.

* :Корреляционная функция стационарного процесса зависит не от значения аргументов t и t", а только от промежутка ф = t"-t, т.е. R(t,t") = R(ф). Предыдущее условие является частным случаем данного условия, Т.е. Dx(t) = R(t, t) = R(ф = О) = const. Таким образом, зависимость автокорреляционной функции только от интервала "t является единственным существенным условием стационарности случайного процесса.

Важной характеристикой стационарного случайного процесса является его спектральная плотность S(щ), которая описывает частотный состав случайного процесса при щ?0 и выражает среднюю мощность случайного процесса, приходящуюся на единицу полосы частот:

Спектральная плотность стационарного случайного процесса является неотрицательной функцией частоты S(щ)?0. Площадь, заключенная под кривой S(щ), пропорциональна дисперсии процесса. Корреляционная функция может быть выражена через спектральную плотность

R(ф) = S(щ)cosщфdщ.

Стационарные случайные процессы могут обладать или не обладать свойством эргодичности. Стационарный случайный процесс называется эргодическим если любая его реализация достаточной продолжительности является как бы "полномочным представителем" всей совокупности реализаций процесса. В таких процессах любая реализация рано или поздно пройдет через любое состояние независимо от того, в каком состоянии находился этот процесс в начальный момент времени.

Для описания погрешностей используются теория вероятностей и математическая статистика. Однако прежде необходимо сделать ряд существенных оговорок:

* применение методов математической статистики к обработке результатов измерений правомочно лишь в предположении о независимости между собой отдельных получаемых отсчетов;

* большинство используемых в метрологии форму л теории вероятностей правомерны только для непрерывных распределений, в то время как распределения погрешностей вследствие неизбежного квантования отсчетов, строго говоря, всегда дискретны, Т.е. погрешность может принимать лишь счетное множество значений.

Таким образом, условия непрерывности и независимости для результатов измерений и их погрешностей соблюдаются приближенно, а иногда и не соблюдаются. В математике под термином "непрерывная случайная величина" понимается существенно более узкое, ограниченное рядом условий понятие, чем "случайная погрешность" в метрологии.

С учетом этих ограничений процесс появления случайных погрешностей результатов измерений за вычетом систематических и прогрессирующих погрешностей обычно может рассматриваться как центрированный стационарный случайный процесс. Его описание возможно на основе теории статистически независимых случайных величин и стационарных случайных процессов.

При выполнении измерений требуется количественно оценить погрешность. Для такой оценки необходимо знать определенные характеристики и параметры модели погрешности. Их номенклатура зависит от вида модели и требований к оцениваемой погрешности. В метрологии принято различать три группы характеристик и параметров погрешностей. Первая группа - задаваемые в качестве требуемых или допускаемых нормы характеристик погрешности измерений (нормы погрешностей). Вторая группа характеристик - погрешности, приписываемые совокупности выполняемых по определенной методике измерений. Характеристики этих двух групп применяются в основном при массовых технических измерениях и представляют собой вероятностные характеристики погрешности измерений. Третья группа характеристик - статистические оценки погрешностей измерений отражают близость отдельного, экспериментально полученного результата измерения к истинному значению измеряемой величины. Они используются в случае измерений, проводимых при научных исследованиях и метрологических работах.

В качестве характеристик случайной погрешности используют СКО случайной составляющей погрешности измерений и, если необходимо, ее нормализованную автокорреляционную функцию.

Систематическая составляющая погрешности измерений характеризуется:

* СКО неисключенной систематической составляющей погрешности измерений;

* границами, в которых неисключенная систематическая составляющая погрешности измерений находится с заданной вероятностью (в частности, и с вероятностью, равной единице).

Требования к характеристикам погрешности и рекомендации по их выбору приведены в нормативном документе МИ 1317-86 "ГСИ. Результаты и характеристики погрешности измерений. Формы представления. Способы использования при испытаниях образцов продукции и контроле их параметров".

Входы и выходы — это базовое понятие любого контроллера умного дома, будь то промышленный контроллер (Beckhoff, Овен, Siemens, ABB — любой) или распределённая система KNX или HDL. В любой системе есть элементы типа «Модуль бинарных входов» или «Блок аналоговых выходов».

Поскольку для расчёта системы и вообще понимания того, откуда берётся её стоимость, очень важно знать разницу между входами и выходами, расскажу подробнее о них.

Вход контроллера

Вход — это клемма для подключения какого либо устройства, которое передаёт информацию в контроллер . На входы контроллера подключаются источники сигнала.

Выключатель — это источник сигнала. Сигнал может быть либо «нажато» либо «не нажато». То есть, либо логический ноль, либо логическая единица. Выключатель подключается к клемме контроллера, которая видит, нажат он или нет.

Тут мы переходим к понятию того, что вход и выход может быть дискретным (бинарным или цифровым его могут называть) или аналоговым. Дискретный — значит, воспринимающий либо единицу, либо ноль. Выключатель подключается к дискретному входу, так как он либо нажат, либо не нажат, других вариантов нет.

Дискретный вход может либо ожидать появления какого-то напряжения, либо замыкания входа на землю. Например, контроллер ОВЕН ПЛК воспринимает как логическую единицу появление на входе напряжения от +15 до +30 вольт. А контроллер WirenBoard ожидает, что на входе появится земля (GND). В первом случае на выключатель надо подать +24В, чтобы при нажатии кнопки на вход контроллера пришли +24 вольта, во втором — на выключатель подаём общий минус (землю), при нажатии она придёт на контроллер.

Датчик движения также подключается к дискретному входу контроллера. Датчик либо подаёт сигнал о том, что движение есть, либо о том, что движения нет. Вот схема подключения датчика Colt XS:

Два левых контакта — напряжение питания датчика, +12 вольт. Два средних контакта — тревожный контакт, он нормально-замкнут. То есть, если движения нет, то N и С замкнуты, если движение появляется, то N и С размыкаются. Так сделано для того, чтобы если злоумышленник перережет провод датчика или повредит датчик, то цепь разорвётся, что приведёт к сработке сигнализации.

В случае с контроллером Овен (а также Beckhoff и большинством других контроллеров), нам надо подать на N +24 вольта, а С подключить ко входу контроллера. Если контроллер видит на входе +24В, то есть, логическую единицу, то всё в порядке, движения нет. Как только сигнал пропадает, значит, датчика сработал. В случае с контроллером, который детектирует не напряжение, а землю, мы подключаем N к общему минусу контроллера, С так же к его входу.

Контакты Т датчика — это тампер. Они также нормально замкнуты, размыкаются при вскрытии корпуса датчика. Такие контакты есть у многих элементов охранных систем.

Датчик протечки воды — также подключается к дискретному входу. Принцип тот же, но он, как правило, нормально-разомкнут. То есть, при отсутствии протечки сигнала нет.

Аналоговый вход контроллера видит не просто есть сигнал или нет сигнала, он видит величину сигнала. Универсальный аналоговый сигнал — это от 0 до 10 вольт постоянного тока, такой сигнал даёт множество разных датчиков. Либо от 1 до 10 вольт. Есть ещё токовый сигнал — от 4 до 30 миллиампер. Почему не от нуля, а от 1 вольта или 4 миллиампер? Чтобы понимать, работает ли вообще датчик. Если датчик с выходным сигналом 1-10 вольт выдаёт 1 вольт, значит, это соответствует минимальному уровню измеряемой величины. Если 0 вольт — значит, он выключен или сломан или провод оборван.

Датчики температуры могут выдавать от 0 до 10 вольт. Если по паспорту датчик измеряет температуру в диапазоне от 0 до +50 градусов, значит, сигнал 0 вольт соответствует 0 градусов, сигнал 5 вольт соответствует +25 градусов, сигнал 10 вольт соответствует +50 градусов. Если датчика измеряет температуру в диапазоне от -50 до +50 градусов, то 5 вольт от датчика соответствуют 0 градусов, а, скажем, 8 вольт от датчика соответствуют +30 градусам.

То же с датчиком влажности или освещённости. Смотрим диапазон измерения параметра, смотрим выходной сигнал и можем получить точную измеряемую величину.

То есть, аналоговый вход измеряет величину сигнала: ток или напряжение. Или, например, сопротивление, если говорить о резистивных датчиках. Многие датчики выпускаются в разных модификациях: с выходом по току или по напряжению. Если нам для системы надо найти какой-то редкий датчик, например, уровня определённого газа в воздухе, то, скорее всего, у него будет выход либо 0-10В, либо 4-20мА. У более продвинутых — интерфейс RS485, о нём чуть позже.

Датчики угарного газа, природного газа (метана) и пропана обычно имеют дискретный выход, то есть, подключаются к дискретному входу контроллера и подают сигнал, когда значение измеряемой концентрации газа становится опасным. Датчики уровня углекислого газа или кислорода дают аналоговое значение, соответствующее уровню газа в воздухе, чтобы контроллер сам мог принимать решение о каком-то действии.

Выходы контроллера

Выходы — это клеммы, на которые сам контроллер может подать сигнал. Контроллер подаёт сигнал, чтобы чем-то управлять.

Дискретный выход — это выход, на который контроллер может подать либо логический ноль, либо логическую единицу. То есть, либо включить, либо выключить.

Свет без регулировки яркости подключается к дискретному выходу.

Электрический тёплый пол — тоже к дискретному выходу.

Клапан перекрывания воды или электрическая розетка, или вентилятор вытяжки или привод радиатора — они подключаются к дискретным выходам контроллера.

В зависимости от конкретного модуля дискретных выходов выход может быть либо транзисторным, то есть, требующим реле для управления каким-то мощным прибором, либо релейным, то есть, к нему сразу можно что-то подключить. Надо смотреть характеристики выхода — коммутируемое напряжение и ток. Важно понимать, что если написано, что выход коммутирует 230 вольт 5 ампер резистивной нагрузки, то это относится только к лампочке накаливания. Светодиодная лампа — надо делить ток на десять. Блоки питания и электромоторы тоже далеко не резистивная нагрузка.

Аналоговый выход — клемма, на которую контроллер может подать сигнал не только включено-выключено, но определённое значение управления. Это те же 0-10 (или 1-10) вольт либо 4-20 миллиампер. Далее на этот управляющий сигнал мы подключаем либо диммер освещения, либо регулятор скорости вращения вентилятора либо что-то ещё, имеющее соответствующий вход.

Управление освещением — это силовой диммер, который в зависимости от сигнала 0-10 вольт с контроллера даёт на выходе от 0 до 230 вольт переменного тока для питания ламп накаливания или диммируемых светодиодных ламп.

Для светодиодных лент используется ШИМ-диммер (или ШИМ-драйвер или блок питания с диммированием), он по сигналу 0-10 либо 1-10 вольт с контроллера подаёт на ленту широтно-импульсно моделированный сигнал для диммирования.

Для вентиляторов используется тиристорный регулятор.

Интерфейсы контроллера

Ещё у любого контроллера есть разные интерфейсы связи, которые определяют, с какими ещё устройствами он может общаться. Интерфейсы связи обычно двухсторонние, то есть, контроллер может передавать на них информацию и получать информацию о состоянии.

Интерфейс Ethernet — это подключение к компьютерной сети и интернету для управления с мобильного приложения или общения с другими контроллерами.

Интерфейс RS-485 ModBus — самый распространённый для связи с разной техникой. Это кондиционеры, вентмашины, различные датчики и исполнительные устройства, модули расширения и много чего ещё.

RS-232 это интерфейс с маленькой дальностью линии. Обычно это, например, GSM модемы.

KNX — интерфейс связи с шиной KNX, на которой может находиться очень много устройств всех видов.

Получаем такую сводную картинку по входам и выходам контроллера:

Пример

Возьмём для примера ОВЕН ПЛК160.

У него 16 дискретных входов, из них 4 быстродействующих, то есть, подходящих для подключения быстро меняющихся сигналов, например, счётчиков импульсов. Напряжение на входе должно быть от 15 до 30 вольт, чтобы контролер считал его единицей.

12 дискретных выходов с коммутацией до 250 вольт 3 ампера. То есть, это 690 ватт при напряжении 230В. Подойдёт для десятка ламп накаливания или светодиодных ламп. Для тёплого пола или розеток надо ставить дополнительное реле с бОльшим током коммутации.

8 аналоговых входов. Входы можно настроить на приём унифицированных сигналов 0-10В, 0-5мА, 0-20мА, 4-20мА.

4 аналоговых выхода. В зависимости от модификации контролера выходной сигнал будет либо по напряжению (0-10), либо по току (4-20), либо изменяемый.

Интерфейсов связи у него много: Ethernet, RS-485, RS-232, USB (для прошивки).

При стоимости в 32 тысячи это отличный контроллер, на котором можно много чего реализовать даже без дополнительных блоков. И это контроллер промышленного класса надёжности.

Про то, что такое умный дом на промышленном контроллере, а также подробнее про входы и выходы можно почитать здесь:

Сигналы могут быть: аналоговые (непрерывные) и дискретные.

Дискретный сигнал - информационный сигнал. Сигнал называется дискретным, если он может принимать лишь конечное число значений.

См. также

Дискретный сигнал - сигнал, имеющий конечное число значений. Обычно сигналы, передаваемые через дискретные каналы, имеют два или три значения. Использование сигналов с тремя значениями обеспечивает синхронизацию передачи.

Литература

  • Самофалов К.Г., Романкевич А.М., Валуйский В.Н., Каневский Ю.С., Пиневич М.М. Прикладная теория цифровых автоматов. - К. : Вища школа, 1987. - 375 с.

Wikimedia Foundation . 2010 .

  • Дискретное преобразование Фурье над конечным полем
  • Дискриминируемые группы населения в Японии

Смотреть что такое "Дискретный сигнал" в других словарях:

    Дискретный сигнал - сигнал, имеющий конечное число значений. Обычно сигналы, передаваемые через дискретные каналы, имеют два или три значения. Использование сигналов с тремя значениями обеспечивает синхронизацию передачи. По английски: Discrete signal Синонимы:… … Финансовый словарь

    дискретный сигнал

    дискретный сигнал - Cигнал, информативный параметр которого может изменяться только прерывисто и иметь только конечное число значений в заданном диапазоне в течение определенного интервала времени. [Источник] EN discretely timed signal discrete signal a signal… … Справочник технического переводчика

    Дискретный сигнал - 13. Дискретный сигнал Сигнал, имеющий конечное число значений величин Источник …

    дискретный сигнал - diskretusis signalas statusas T sritis automatika atitikmenys: angl. sampled signal vok. abgetastetes Signal, n rus. дискретный сигнал, m pranc. signal échantillonné, m; signal discret, m … Automatikos terminų žodynas

    дискретный сигнал - Сигнал, описываемый дискретной функцией времени … Политехнический терминологический толковый словарь

    дискретный сигнал времени - diskretinamojo laiko signalas statusas T sritis radioelektronika atitikmenys: angl. discrete time signal vok. diskretes Zeitsignal, n rus. дискретный сигнал времени, m pranc. signal discret de temps, m … Radioelektronikos terminų žodynas

    Сигнал (техника) - Сигнал в теории информации и связи называется материальный носитель информации, используемый для передачи сообщений по системе связи. Сигналом может быть любой физический процесс, параметры которого изменяются в соответствии с передаваемым… … Википедия

    Дискретный - (от лат. discretus раздельный, прерывистый). Это прилагательное может употребляться в разных контекстах: В дискретной математике дискретным называется счётное множество, эта концепция также важна в комбинаторике и теории вероятностей. В общей… … Википедия

    дискретный - 4.2.6 дискретный: Относящийся к данным, которые состоят из отдельных элементов, таких как символы, или к физическим величинам, имеющим конечное число различных распознаваемых значений, а также к процессам и функциональным блокам, использующим эти … Словарь-справочник терминов нормативно-технической документации


Сигналы могут быть: аналоговые (непрерывные) и дискретные.

Дискретный сигнал - информационный сигнал. Сигнал называется дискретным, если он может принимать лишь конечное число значений.

См. также

Дискретный сигнал - сигнал, имеющий конечное число значений. Обычно сигналы, передаваемые через дискретные каналы, имеют два или три значения. Использование сигналов с тремя значениями обеспечивает синхронизацию передачи.

Литература

  • Самофалов К.Г., Романкевич А.М., Валуйский В.Н., Каневский Ю.С., Пиневич М.М. Прикладная теория цифровых автоматов. - К. : Вища школа, 1987. - 375 с.

Wikimedia Foundation . 2010 .

  • Дискретное преобразование Фурье над конечным полем
  • Дискриминируемые группы населения в Японии

Смотреть что такое "Дискретный сигнал" в других словарях:

    Дискретный сигнал - сигнал, имеющий конечное число значений. Обычно сигналы, передаваемые через дискретные каналы, имеют два или три значения. Использование сигналов с тремя значениями обеспечивает синхронизацию передачи. По английски: Discrete signal Синонимы:… … Финансовый словарь

    дискретный сигнал

    дискретный сигнал - Cигнал, информативный параметр которого может изменяться только прерывисто и иметь только конечное число значений в заданном диапазоне в течение определенного интервала времени. [Источник] EN discretely timed signal discrete signal a signal… … Справочник технического переводчика

    Дискретный сигнал - 13. Дискретный сигнал Сигнал, имеющий конечное число значений величин Источник …

    дискретный сигнал - diskretusis signalas statusas T sritis automatika atitikmenys: angl. sampled signal vok. abgetastetes Signal, n rus. дискретный сигнал, m pranc. signal échantillonné, m; signal discret, m … Automatikos terminų žodynas

    дискретный сигнал - Сигнал, описываемый дискретной функцией времени … Политехнический терминологический толковый словарь

    дискретный сигнал времени - diskretinamojo laiko signalas statusas T sritis radioelektronika atitikmenys: angl. discrete time signal vok. diskretes Zeitsignal, n rus. дискретный сигнал времени, m pranc. signal discret de temps, m … Radioelektronikos terminų žodynas

    Сигнал (техника) - Сигнал в теории информации и связи называется материальный носитель информации, используемый для передачи сообщений по системе связи. Сигналом может быть любой физический процесс, параметры которого изменяются в соответствии с передаваемым… … Википедия

    Дискретный - (от лат. discretus раздельный, прерывистый). Это прилагательное может употребляться в разных контекстах: В дискретной математике дискретным называется счётное множество, эта концепция также важна в комбинаторике и теории вероятностей. В общей… … Википедия

    дискретный - 4.2.6 дискретный: Относящийся к данным, которые состоят из отдельных элементов, таких как символы, или к физическим величинам, имеющим конечное число различных распознаваемых значений, а также к процессам и функциональным блокам, использующим эти … Словарь-справочник терминов нормативно-технической документации