Какой бывает переменный ток. Отличие переменного тока от постоянного

Сам по себе электрический ток представляет собой ничто иное, как происходящее в упорядоченном виде движение всех заряженных частиц в газах, электролитах и металлических объектах. К данным элементам, несущим определенный заряд, относятся ионы и электроны. Сегодня мы постараемся прояснить, чем отличается переменный ток от постоянного , ведь на практике приходится часто сталкиваться с обоими видами.

Характеристики постоянного тока

Direct Current или DC так по-английски обозначают подобную разновидность, для которой присуще свойство на протяжении любого отрезка времени не менять свои параметры. Маленькая горизонтальная черточка или две параллельные со штриховым исполнением одной из них – графическое изображение постоянного тока.

Область применения – большинство и электронных устройств, включая компьютерную технику, телевизоры и гаджеты, использование в домашних сетях и автомобилях. Для преобразования переменного тока в постоянный в зоне розетки применяются трансформаторы напряжения с наличием выпрямителей или специализированные блоки питания.

В качестве широко распространенного примера потребления постоянного тока можно привести практически все электроинструменты, которые эксплуатируются с батареями. Аккумуляторное устройство остается в любом случае источником питания постоянного типа. Преобразование в переменный достигается в случае необходимости при помощи инверторов – специальных элементов.

В чем заключается принцип работы переменного тока

Английская аббревиатура АС (Alternating Current) обозначает ток, меняющий на временных отрезках свое направление и величину. Отрезок синусоиды «~» – его условная маркировка на приборах. Применяется также нанесение после этого значка и других характеристик.

Ниже приведен рисунок с главными характеристиками данного вида тока – номинальными показателями частоты и действующего напряжения.

Следует отметить особенности изменения на левом графике, выполненном для однофазного тока, величины и направления напряжения с осуществлением перехода на ноль за определенный промежуток времени Т. На одну треть периода выполняется смещение трех синусоид при трехфазном токе на другом графике.

Отметками «а» и «б» обозначены фазы. Любой из нас имеет представление о наличии в обычной розетке 220В. Но для многих будет открытием, что максимальное или именуемое по-другому амплитудным значение больше действующего на величину равную корню из двух и составляет 311 Вольт.

Очевидно, что в случае с током постоянного вида параметры направления и напряжения остаются неизменными, а вот для переменного наблюдается трансформация данных величин. На рисунке обратное направление – это область графика ниже нуля.

Переходим к частоте. Под этим понятием подразумевают отношение периодов (полных циклов) к условной единице временного отрезка . Данный показатель измеряется в Герцах. Стандартная европейская частота – 50, в США применяемый норматив – 60Г.

Эта ве6личина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние.

Переменный ток присутствует при прямом и в розетках. По какой причине здесь отсутствует постоянный ток? Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов. Эта методика остается лучшим способом передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.

Номинальное напряжение, которое подается мощными генераторами электростанций, на выходе составляет порядка 330 000-220 000 Вольт. На подстанции, расположенной в зоне потребления, происходит трансформация данной величины до показателей 10 000В с переходом в трехфазный вариант 380 Вольт. и на вашу квартиру попадает напряжение однофазного типа. Напряжение между нулем и фазой составит 220 В, а в щите между разными фазами подобный показатель равняется 380 Вольт.

Двигатели асинхронной конструкции, работающие с переменным током, значительно надежнее и отличаются более простой конструкцией, чем аналоги постоянного тока.

Преобразование переменного тока в постоянный

Для варианта подобной трансформации оптимальный способ – использование выпрямителей:

  • Подключение диодного моста – первый шаг в этой процедуре. Конструкция из 4 диодов с необходимой мощностью способствует процессу своеобразного срезания верхних границ уже знакомых нам синусоид переменного вида. Таким образом достигается получение однонаправленного тока.


Изменения в результате снижения пульсации отображены в синем цвете.

  • устанавливаются для уменьшения рабочего уровня пульсации в случае возникшей необходимости.

Преобразователь постоянного тока в переменный

В данном случае процесс выглядит достаточно сложным. Инвертор – стандартный прием в бытовых условиях, представляет собой генератор напряжения периодического вида, получаемого из приближенного к синусоиде постоянного.

Высокие цены на подобное устройство обусловлены сложностью конструкции. Стоимость в значительной степени обусловлена максимальной мощностью тока на выходе.

Применяется в довольно редких ситуациях. Например, в случае необходимости подсоединить к электросети автомобиля какой-то инструмент или приборы.

Господа, мы обсудили основные моменты, касающиеся постоянного тока. Теперь пришло время поговорить про переменный ток. Эта тема немного сложнее постоянного тока и одновременно с этим гораздо интереснее. Сегодня мы коротенечко рассмотрим вопросы, касающиеся переменного тока: что он из себя представляет, как выглядит, чем характеризуется и все в таком духе.

Для начала, призвав на помощь нами всеми любимого капитана Очевидность, введем определение. Как он подсказывает нам, переменный ток - это такой ток, который изменяется во времени. Изменяться он может по величине, направлению или по тому и другому вместе. Когда мы рассматривали постоянный ток , мы полагали, что в течении всего времени его величина постоянна: если сейчас течет 10 Ампер, то и полчаса назад текло 10 Ампер и через час будет течь 10 Ампер. Если же величина тока меняется (сейчас 10 Ампер в одну сторону, а через некоторое время 5 Ампер в другую сторону), то мы уже имеем дело с током переменным. То есть переменный ток можно рассматривать как некоторую зависимость (функцию) тока от времени: I(t). В каждые моменты времени t мгн имеет место быть конкретное значение I мгн =I(t мгн).

Переменный ток неразрывно связан с переменным напряжением. И если при постоянном токе они были просто связаны между собой через закон Ома , то здесь в общем случае все чуточку сложнее. Как именно сложнее - будем выяснять по ходу новых статей. Нет-нет, не переживайте, если дело касается обычных резисторов, закон Ома все так же продолжает выполняться . Для определенности мы будем в данной статье использовать термин "переменный ток", но все, что здесь сказано, применимо так же и для переменного напряжения: просто меняем I(t) на U(t) и все останется верным.

Переменный ток может быть периодическим и непериодическим . Периодический - это такой, который через некоторое время, называемое периодом, полностью повторяет свою форму. Ниже на картинках это будет наглядно видно. Непериодический соответственно колбасится как ему вздумается и мы не можем в нем выделить какой бы то ни было период по крайней мере на протяжении времени наблюдения.

На рисунка 1-4 приведены различные виды переменных сигналов. С некоторыми из них позднее мы подробно познакомимся.


Рисунок 1 - Синусоидальный ток

Рисунок 2 - Прямоугольный ток


Рисунок 3 - Треугольный ток


Рисунок 4 - Шум

На всех этих картинках по оси Х у нас время, а по оси Y - величина тока в Амперах.

На рисунке 2 изображен ток, форма которого называется синусом . Такая форма тока является одной из самых важных и мы будем его подробно рассматривать в дальнейшем. А начнем его изучать прямо в этой статье.

На рисунке 3 изображен прямоугольный ток . Он тоже весьма важен и его тоже мы будем потом подробно рассматривать.

На рисунке 4 изображен треугольный ток . И такая форма тока встречается не редко.

На рисунке 5 я изобразил ток хаотичной формы (шумовой) . С ним постоянно приходится иметь дело в радиотехнике. В ближайшее время его касаться не планирую, но со временем - вполне возможно.

Это лишь часть возможных форм токов, каждый из которых можно считать переменным. Безусловно, существуют и другие формы, главное, чтобы этот ток менялся во времени.

Знакомство с переменным током мы начнем с синусоидального тока. В общем виде закон изменения этого тока можно описать вот таким вот хитрым выражением

Давайте разберемся что здесь есть что. Для этого взглянем на рисунок 5 . Там наглядно все прорисовано.


Рисунок 5 - Синусоидальный ток

А m называется амплитудой тока. Она показывает, какую максимальную величину имеет синусоидальный ток, а именно величину того «пика», которого достигает синус. Это становится возможным благодаря тому, что чистый "математический" синус без какого бы то ни было множителя А m достигает в пике единички . Ясно, что если мы на единичку умножим наше число А m то получим в пике как раз это самое число А m . Очевидно, что чем больше А m , тем большего значения достигает ток.

Величины ω на рисунке 5 нет. Зато на рисунке 5 есть величина f и T. Что же это такое?

Т - это период тока. Это время в секундах, за которое сигнал совершает полный цикл своих изменений. Взглянете на рисунок 5. В точке А ток пересекает ось времени, начинает расти, идет вверх до точки B, где прекращает расти и начинает убывать, снова пересекает ось времени в точке С, идет в отрицательную полуплоскость до точки D, там перестает расти и начинает убывать и становится равным нулю в точке E. Видно, что начиная с точки Е характер изменения тока будет точно таким же, как если бы он начинался с точки А. Посему время, за которое ток изменяется от точки А до точки Е и есть период Т.

Частота f - величина, обратная периоду:

Она показывает сколько периодов (по рисунку 5 - изменений от точки А до точки Е) умещается в одной секунде времени. Соответсвенно чем больше частота, тем меньше пириод и наоборот.

Изменяется частота в герцах. Если частота 1 Гц - это значит, что время изменения тока от точки А до точки Е равно 1 секунда. Если частота, например, 50 Гц (как в наших с вами розетках), это значит, что за 1 секунду успевает произойти 50 полных циклов изменения тока от точки А до точки Е. Если частота 2,4 ГГц (как в некоторых процессорах, и, кроме того, на такой частоте работает всеми нами любимый Wi-Fi), это значит, что за 1 секунду сигнал претерпевает аж 2,4 миллиарда итераций от точки А до точки Е!

С периодом Т (и, соответственно, с частотой f) плотно связана другая величина - как раз та самая ω, которая стоит в нашей формуле под синусом. Называется она круговая частота и связана она следующим образом

Господа, надеюсь, вы помните из курса математики, что синус - сама по себе функция периодическая и период синуса как раз равен 2·π радиан. Ну или 360°, что тоже самое, однако я предпочитаю обычно вести расчет в радианах. То есть для простого классического математического синуса расстояние от точки А до точки Е равно 2·π=6,28 радиан. Как же теперь увязать эти радианы со временем и с нашим периодом? Ведь в нашем графике тока у нас по оси Х именно время, а не радианы. Очень просто. Полагаем, что 2·π радианам соответствует наш период Т. Для того же, чтобы посчитать скольки радианам соответствует произвольное время t 1 надо выполнить следующее преобразование: . Знаю, звучит запутанно, поэтому давайте разберем на примере. Давайте запишем зависимость тока от времени для периода Т=4 секунды. Как будет выглядеть преобразованная формула синуса для этого случая? Как-то так

Изображаем это на рисунке 6.


Рисунок 6 - Синусоидальный ток с периодом 4 секунды

Видите, все честно, на графике наглядно видно, что период синуса равен, как мы и хотели, четырем секундам.

Итак, с амплитудой разобрались, с круговой частотой вроде тоже. Осталось последнее - φ 0 - начальная фаза. Что же это такое? Все просто, господа. Фаза здесь - это просто сдвиг графика тока по временной оси . То есть график тока будет стартовать не с нуля, а с какого-то другого значения. Действительно, если мы в нашу формулу для зависимости тока от времени подставим время, равное нулю, то получим

Из этого выражения очевидно еще и то, что фаза измеряется в градусах или радианах: только градусы или радианы имеют право стоять под синусом.

Давайте возьмем наш график тока с периодом Т=4 секунды и положим, что начальная фаза равна 30° или, что тоже самое, 0,52 радина. Имеем

Построим график для данного случая на рисунке 7.



Рисунок 7 - Синусоидальный ток с периодом 4 секунды и начальной фазой 30°

Внимательный читатель, посмотрев попристальнее на график, изображенный на рисунке 7, скажет: так фаза вообще какая-то скользкая штука. Она ж зависит от того, где мы поставим нолик , то есть когда начнем наблюдать сигнал. И вообще может быть чуть ли не любой. Господа, замечание абсолютно верно! Сама по себе как таковая фаза достаточно редко когда интересна. Гораздо интереснее разность фаз между несколькими сигналами. Взгляните на рисунок 9. На нем изображены два графика: один зеленый имеет начальную фазу в φ 0_зелен =90°, а второй синий - φ 0_син =90° . Разность фаз между ними

Рисунок 8 - Два сигнала, сдвинутые по фазе

И заметьте, господа, эта разность фаз одна и таже всегда для любой точки этих графиков . Без привязки к нулю и к началу. Вот это уже гораздо интереснее и может много где пригодиться.

Вообще фаза такая штука, что как-то традиционно на нее обращается не очень много внимания, между тем, как на самом деле это очень важная величина. Фазовая модуляция, трехфазные цепи, фазированные антенные решетки, фазовые системы автоподстройки частоты, когерентная обработка сигналов - вот лишь малая область систем, где фаза сигнала является одним из главнейших факторов. Поэтому, господа, постарайтесь с ней подружиться .

На сегоня заканчиваем, господа. Сегодня была вводная статья в мир переменного тока. Дальше будем разбираться в нем более подробно. Всем вам большой удачи, и пока!

Вступайте в нашу

В данной расскажем что такое переменный электрический ток и трехфазный переменный переменный ток.

Понятие переменного электрического тока даётся в учебнике физики общеобразовательного учебного заведения — школы. — ток имеющий форму гармонического синусоидального сигнала, основными характеристиками которого являются действующее напряжение и частота, с течением времени изменяется по направлению и величине.

Частота – это количество полных изменений полярности переменного электрического тока за одну секунду. Это означает, что ток, в обычной бытовой розетке частотой 50 Герц за одну секунду меняет своё направление с положительного значения на отрицательное и обратно ровно пятьдесят раз. Одно полное изменение направления (полярности) электрического тока с положительного значения на отрицательное и снова на положительное называют — периодом колебания электрического тока . В течение периода Т переменный электрический ток меняет своё направление дважды.

Для визуального наблюдения синусоидальной формы переменного тока обычно используют . Для исключения поражения электрическим током и защиты осциллографа от сетевого напряжения по входу, используют разделительные трансформаторы. Для измерения периода нет разницы, по каким равнозначным (равноамплитудным) точкам его измерять. Можно по максимальным положительным, или отрицательным вершинам, а можно и по нулевому значению. Это поясняется на рисунке.

Из учебника физики мы знаем, что переменный электрический ток вырабатывается с помощью электрической машины – генератора. Простейшая модель генератора это магнитная рамка, вращающаяся в магнитном поле постоянного магнита.

Представим себе прямоугольную проволочную рамку с несколькими витками, равномерно вращающуюся в однородном магнитном поле. Возникающая в этой рамке э.д.с. индукции меняется по синусоидальному закону. Период колебания Т переменного электрического тока – это один полный оборот магнитной рамки вокруг своей оси.

магнитная рамка

Одними из важных характеристик электрического тока являются две величины переменного электрического тока – максимальное значение и среднее значение.

Максимальное значение напряжения электрического тока Umax — это величина напряжения, соответствующая максимальному значению синусоиды.

Среднее значение напряжения электрического тока Uср — это величина напряжения, равная значению 0,636 от максимального. Математически это выглядит так:

U ср = 2 * U max / π = 0,636 U max

Синусоиду максимального напряжения можно проконтролировать на экране осциллографа. Понять, что такое среднее значение переменного электрического напряжения можно проведя эксперимент по рисунку и описанию ниже.

Используя осциллограф, подключите к его входу синусоидальное напряжение. Ручкой вертикального смещения развёртки переместите «ноль» развёртки на самую нижнюю линию шкалы экрана осциллографа. Растяните и сместите горизонтальную развёртку так, чтобы одна полуволна синусоидального напряжения поместилась в десять (пять) клеток экрана осциллографа. Ручкой вертикальной развёртки (усилением) растяните развёртку так, чтобы максимальная амплитуда полуволны поместилась ровно в десять (пять) клеток экрана осциллографа. Определите амплитуду синусоиды на десяти участках. Суммируйте все десять значений и поделите на десять – найдите его «средний балл». В результате Вы получите значение напряжения, приблизительно равное 6,36 от его максимального значения — 10.

Измерительные приборы – вольтметры, цешки, мультиметры для измерения переменного напряжения имеют в своей схеме выпрямитель и сглаживающий конденсатор. Эта цепочка «округляет» множитель разницы максимального и измеряемого напряжения до числа 0,7. Поэтому, если Вы будете наблюдать на экране осциллографа синусоиду напряжения амплитудой 10 вольт, то вольтметр (цешка, мультиметр) покажет не 10, а около 7 вольт. Вы думаете что в Вашей домашней розетке – 220 вольт? Так и есть, но не совсем так! 220 вольт – это среднее значение напряжения бытовой розетки, усреднённое измерительным прибором — вольтметром. Максимальное же напряжение следует из формулы:

U max = U изм / 0,7 = 220 / 0,7 = 314,3 вольт

Именно поэтому, когда Вас «бъёт» током от электрической розетки 220 вольт, знайте, что это Ваша иллюзия. На самом деле, Вас трясёт напряжение около 315 вольт.

Трехфазный ток

Наряду с простым синусоидальным переменным током в технике широко используется так называемый трехфазный переменный ток . Мало того, трёхфазный электрический ток — это основной вид энергии используемый во всём мире. Трёхфазный ток приобрёл популярность по причине менее затратной передачи энергии на большие расстояния. Если для обычного (однофазного) электрического тока требуется два провода, то для трёхфазного тока, у которого энергия в три раза больше, требуется всего три провода. Физический смысл Вы узнаете в этой статье позже.

Представьте, если вокруг общей оси вращается не одна, а три одинаковые рамки, плоскости которых повернуты друг относительно друга на 120 градусов. Тогда возникающие в них синусоидальные э.д.с. также будут сдвинуты по фазе на 120 градусов (см. на рис).

Такие три согласованных переменных тока называют трехфазным током. Упрощённое расположение проволочных обмоток в генераторе трёхфазного тока иллюстрируется на рисунке.


Подключение обмоток генератора по трём независимым линиям показано на рисунке ниже.

Такое подключение шестью проводами довольно громоздко. Так как для явлений в электрических цепях важны только разности потенциалов, то один проводник может использоваться сразу для двух фаз, без снижения нагрузочной способности по каждой из фаз. Другими словами, в случае подключения обмоток генератора по схеме «звезда» с использованием «нуля», передача энергии от трёх источников производится по четырём проводам (см. рис.), в которых один является общим – нулевым проводом.

По трём проводам может передаваться энергия сразу от трёх (фактически независимых) источников электрического тока соединённых «треугольником».

В промышленных генераторах и преобразующих трансформаторах «треугольником» обычно подключается межфазное напряжение 220 вольт. При этом «нулевой» провод отсутствует.

«Звезда» применяется для передачи напряжения сети с использованием «нуля». При этом на фазе относительно «нуля» действует напряжение 220 вольт. Межфазное напряжение при этом равно 380 вольт.

Частым явлением во времена «нагло ворующей демократии» было сгорание бытовой аппаратуры в квартирах добропорядочных граждан, когда из-за слабой проводки сгорал общий «ноль», тогда в зависимости от того, какое количество бытовых приборов включено в квартирах, горели телевизоры и холодильники у того, кто их меньше всего включал. Вызвано это явлением «перекоса фаз», которое возникало при обрыве нуля. В розетку добропорядочных граждан вместо 220 вольт устремлялось межфазное напряжение 380 вольт. До настоящего времени во многих коммуналках и сооружениях напоминающих жильё наших российских городов и весей это явление до конца не искоренилось.

Постоянный и переменный то к

Чем отличается постоянный ток от переменного

В предыдущей статье, что такое электрический ток ты узнал, как происходит упорядоченное движение электронов в замкнутой цепи. Теперь, я расскажу тебе, каким бывает электрический ток. Электрический ток бывает постоянный и переменный. Чем отличается переменный ток от постоянного? Характеристики постоянного тока.

Постоянный ток

Direct Current или DC так по-английски обозначают электрический ток который на протяжении любого отрезка времени не меняет направление движения и всегда движется от плюса к минусу. На схеме обозначается как плюс (+) и минус (-), на корпусе прибора, работающего от постоянного тока наносят обозначение в виде одной (-) или (=) полос. Важная особенность постоянного электрического тока - это возможность его аккумулирования, т.е. накопления в аккумуляторах или получения его за счет химической реакции в батарейках. Множество современных переносных электрических устройств, работают, используя накопленный электрический заряд постоянного тока, который находится в аккумуляторах или батарейках этих самых устройств.

Переменный ток

(Alternating Current) или АС английская аббревиатура обозначающая ток, который меняет на временном отрезке свое направление и величину. На электрических схемах и корпусах электрических аппаратов, работающих от переменного тока, символ переменного тока обозначают как отрезок синусоиды «~». Если говорить о переменном токе простыми словами , то можно сказать что в случае подключения электрической лампочки к сети переменного тока плюс и минус на ее контактах будут меняться местами с определенной частотой или иначе, ток будет менять свое направление с прямого на обратное. На рисунке обратное направление - это область графика ниже нуля.

Теперь давай разберемся, что такое частота. Частота это - период времени, в течение которого ток выполняет одно полное колебание, число полных колебаний за 1 с называется частотой тока и обозначается буквой f. Частота измеряется в герцах (Гц) . В промышленности и быту большинства стран используют переменный ток с частотой 50 Гц. Эта ве6личина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние. Иными словами в электрической розетке, которая есть в каждом доме и куда мы включаем утюги и пылесосы, плюс с минусом на правой и левой клеммах розетки будет меняться местами с частотой 50 раз в секунду - это и есть, частота переменного тока. Для чего нужен такой “переменчивый “ переменный ток, почему не использовать только постоянный? Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов. Использование переменного тока позволяет передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.


Напряжение, которое подается мощными генераторами электростанций, составляет порядка 330 000-220 000 Вольт. Такое напряжение нельзя подавать в дома и квартиры, это очень опасно и сложно с технической стороны. Поэтому переменный электрический ток с электростанций подается на электрические подстанции, где происходит трансформация с высокого напряжения на более низкое, которое мы используем.

Преобразование переменного тока в постоянный

Из переменного тока, можно получить постоянный ток, для этого достаточно подключить сети переменного тока диодный мост или как его еще называют “выпрямитель” . Из названия “выпрямитель” как нельзя лучше понятно, что делает диодный мост, он выпрямляет синусоиду переменного тока в прямую линию тем самым заставляя двигаться электроны в одном направлении.


что такое диод и как работает диодный мост , ты можешь узнать в моих следующих статьях.

Переменный электрический ток (AC, аббревиатрура от англ. alternating current) - это меняющийся по своей величине и направлению с определенной периодичностью электрический ток. В электротехнике в качестве буквенного обозначения электрического тока принято использовать знак тильда (~).

Источниками переменного электрического тока служат генераторы переменного тока, создающие переменную электродвижущую силу, изменение величины и направления которой происходит через определенные промежутки времени.

Основные параметры переменного тока

Для его описания используют следующие параметры (см. график):

  • Период (T) - длительность времени в течение которого электрический ток совершает один полный цикл изменений, возвращаясь к своей начальной величине;
  • Частота (f) - параметр, определяющий количество полных колебаний электрического тока за одну секунду, единица измерения - 1 Герц (Гц). Так, напр. стандарт частоты тока, принятый в отечественных энергосистемах составляет 50 Гц или 50 колебаний в секунду.
  • Амплитуда тока (Im) - максимальное достигаемое мгновенное значение величины тока за период, как видно из представленного графика - высота синусоиды;
  • Фаза - состояние переменного синусоидального электрического тока: мгновенное значение, изменение направления, возрастание (убывание) в цепи. Переменный ток может быть как однофазным, так и многофазным.

Наибольшее распространение получили трехфазные системы, представляющие собой три отдельных эл. цепей с одинаковой частотой и ЭДС, с углом сдвига φ=120°. Более подробно с понятием можно ознакомиться в статье Принцип создания трехфазной цепи переменного тока.

Применение переменного тока

Переменный синусоидальный электрический ток используется практически во всех отраслях хозяйства. Широкое применение переменного тока обусловлено во многом экономической эффективностью его использования в системах электроснабжения, простотой в преобразовании из энергии низкого напряжения в энергию более высокого напряжения и наоборот.

Эта возможность позволяет уменьшить потери электроэнергии при ее передаче на большие расстояние по проводам, существенно снизив площадь их поперечного сечения.