Ртутная газоразрядная лампа. Ртутные лампы

Разрядные лампы высокого давления

В эту группу ИС входят ртутные лампы высокого давления (ДРЛ), металлогалогенные лампы (ДРИ), натриевые лампы (ДНаТ), ксеноновые лампы (ДКсТ, ДКсШ).

Электрический разряд в парах ртути сопровождается электромагнитными излучениями в видимой области спектра и в области ближнего ультрафиолета не только при низких давлениях паров (что используется в ЛЛ), но и при достаточно высоких давлениях – около 10 5 Па. Такой разряд используется в дуговых ртутных лампах высокого и сверхвысокого давления, которые часто называют лампами высокой интенсивности.

Ртутные лампы высокого и сверхвысокого давления долгое время являлись самой распространенной и многочисленной группой ИС среди РЛ высокого и сверхвысокого давления. Это связано с тем, что при помощи ртутного разряда удается создавать весьма эффективные источники в ультрафиолетовой, видимой и близкой к видимой инфракрасной областях спектра. Эти ИС имеют широкий диапазон номинальных мощностей, продолжительность горения десятки тысяч часов, достаточно компактны, обладают при необходимости весьма высокими яркостями.

Исходя из конструктивных особенностей ртутные лампы высокого (РЛВД) и сверхвысокого давления (РЛСВД) подразделяются на следующие группы:

– РЛВД (типа ДРТ);

– РЛВД с исправленной цветностью (типа ДРЛ и ДРВЭ);

– трубчатые РЛСВД с естественным охлаждением;

– капиллярные РЛСВД с принудительным (воздушным или водяным) охлаждением;

– шаровые РЛСВД с естественным охлаждением.

Большинство типов РЛВД и РЛСВД имеют специфическое применение, и для целей освещения не используется. Так, РЛВД, являясь эффективными источниками ультрафиолетового излучения, применяются в медицине, сельском хозяйстве, измерительной и светокопировальной технике. Областью применения РЛСВД являются лучевые осциллографы, фотолитография, проекционные системы, люминесцентный анализ, т.е. те случаи, когда требуются источники высокой яркости в видимой и близкой к ней ультрафиолетовой областях спектра.

Характерной особенностью разряда в парах ртути под высоким давлением является практически полное отсутствие излучений в красноволновой области спектра. Разряд имеет линейчатый спектр и содержит всего 4 линии в видимой области. Поэтому возникает задача исправления цветности разряда ртутной лампы. Эта задача может быть решена одним из следующих способов:

– использование люминофоров – такие лампы получили название ДРЛ (дуговая ртутная люминесцентная);

– добавление в разрядную трубку излучающих добавок – галогенидов (металлогалогенные лампы типа ДРИ);

– сочетание люминофора с излучающей добавкой (лампы ДРИЛ);


– объединение ртутной лампы с лампой накаливания (лампа ДРВЭ – дуговая ртутно-вольфрамовая эритемная).

Ртутно-вольфрамовые лампы, в которых наряду с ртутной горелкой имеется вольфрамовая спираль, попутно исполняющая роль активного балласта, применяются в облучательных установках для эритемного (покраснение кожи, которое сменяется пигментацией – загаром) освещения людей (например, в соляриях) и животных.

Дуговые ртутные люминесцентные лампы (ДРЛ)

Лампы ДРЛ (рис. 57) представляют собой трубку (горелку) 7 из прозрачного кварцевого стекла, рассчитанную на рабочую температуру около 800 °С и закреплённую при помощи траверсы 3 внутри внешней эллипсообразной колбы 2 (эта форма обеспечивает равномерное распределение температуры). Внутрь трубки после тщательного удаления посторонних газов вводится строго дозированное количество ртути и аргон при давлении 1,5…3 кПа. Аргон служит для облегчения разряда и защиты электродов от распыления в начальной стадии разгорания лампы, так как при комнатной температуре давление паров ртути очень низкое.

По концам горелки впаяны два ак­ти­вированных (покрытых слоем окислов щёлочно­-земельных металлов) самокалящихся вольфрамовых электрода 4 и рядом с каждым из них по одному дополнительному – зажи­га­ющему электроду 5 длиной 2 мм. Такие лампы называются четырёх­элек­трод­ными, в отличие от прежде выпускавшихся двухэлектродных, не имевших зажигающих электродов. Наличие зажигающих электродов обеспечивает зажигание не разогретых ламп при напряжении не ниже 90 % номинального, так как первоначальный разряд возникает между соседними рабочим и зажигающим электродами. Напряжение на электроды подаётся через резьбовой цоколь 1. После возникновения разряда в лампе зажигающие электроды на её работу влияния не оказывают, потому что в их цепь включено токоограничивающее сопротивление 6.

Внешняя колба покрыта изнутри люминофором и заполняется смесью аргона и азота для предотвращения окисления и отвода тепла от горелки. Люминофор преобразует ультрафиолетовое излучение ртутного разряда высокого давления, составляющее 40 % всего потока излучения, в недостающее излучение в красной части спектра. Качество исправления цветопередачи ламп типа ДРЛ определяется её «красным отношением», т.е. долей светового потока в красной области спектра (600…780 нм) в общем световом потоке лампы. В целом лампы ДРЛ даже с самым большим значением «красного отношения» существенно уступают ЛЛ по цветопередаче. Индекс цветопередачи этих ламп один из самых низких – 40…45.

Лампы ДРЛ включаются в сеть последовательно с балластным дросселем (рис. 58), потери мощности в котором составляют примерно 10 % мощности лампы. Только при низких температурах окружающей среды (ниже –30 °С) необходимо применять импульсное зажигающее устройство (ИЗУ), которое обеспечивает её зажигание при температурах до – 45 °С.

Для зажигания ламп ДРЛ характерно наличие периода разгорания, достигающего пяти-семи минут (рис. 59). В течение этого периода основные характеристики лампы претерпевают изменение вследствие изменения давления паров ртути в горелке – у ламп мощностью 80 Вт давление повышается до 10 6 Па, у ламп 1000 Вт – до 2,5·10 5 Па. В частности, пусковой ток лампы в два раза превышает номинальный.

По той причине, что после от­клю­че­ния лампы ДРЛ давление паров остаётся высоким, зажечь её повторно можно только после остывания через 5…10 минут. Поэтому в сетях аварийного освещения лампы ДРЛ не используются.

Если питающее напряжение исчезнет на полпериода или снизится ниже 90 % от номинального на два периода, лампа погаснет и зажжется вновь, когда остынет.

Пульсация светового потока этих ламп весьма значительна (коэффициент пульсации составляет 63…74 %).

Оптимальным положением лампы является вертикальное. При горизонтальном положении световой поток уменьшается на 2…5 %.

Лампы ДРЛ выпускаются мощностью от 50 до 2000 Вт. Их световая отдача составляет от 40 до 60 лм/Вт.

Средняя продолжительность горения – до 20 000 часов. К концу срока службы световой проток снижается до 60 % от номинального (через 100 часов горения). При изменениях подводимого напряжения в пределах от 90 до 110 % продолжительность горения меняется от 140 до 70 %, а световой поток – от 65 до 130 %.

Важно подчеркнуть, что в последнее время лампы ДРЛ вытесняются другими РЛ, так как уступают им по важнейшим характеристикам.

В условном обозначении ламп типа ДРЛ указывается их мощность, красное отношение (в скобках) и номер разработки, например, ДРЛ400(6)-4, где 6 – доля лучей в красноволновой области спектра.

Дуговые ртутные лампы с излучающими добавками (мгл)

Металлогалогенные лампы (МГЛ) появились в 60-е годы ХХ в. и благодаря своей высокой световой отдаче, приемлемому спектру излучения и достаточно большой мощности являются одним из самых перспективных источников света.

Исправление цветности излучения МГЛ основано на том, что внутрь разрядной трубки вводятся химические соединения, которые позволяют исправить спектральный состав излучения собственно ртутного разряда без использования люминофора. Этому способствует то, что галогениды многих металлов испаряются легче чем сами металлы и не разрушают кварцевое стекло. Поэтому внутрь разрядных колб МГЛ кроме ртути и аргона, как в РЛВД, дополнительно вводятся в виде галоидных соединений (соединений с йодом, бромом, хлором) щелочные (натрий, литий, цезий) и другие агрессивные металлы (кадмий, цинк), которые в чистом виде вызывают весьма быстрое разрушение кварцевого стекла. После зажигания разряда, когда достигается рабочая температура колбы, галогениды частично переходят в парообразное состояние. Попадая в центральную зону разряда с температурой несколько тысяч градусов Кельвина, молекулы галогенидов диссоциируют на галоген и металл. Атомы металла возбуждаются и излучают характерные для них спектры. Диффундируя за пределы разрядного канала и попадая в зону с более низкой температурой вблизи стенок колбы, они воссоединяются в галогениды, которые вновь испаряются. Применение галогенидов резко увеличило число химических элементов вводимых в разрядную трубку и, как итог, позволило создать МГЛ с разнообразными спектрами.

Большинство МГЛ выпускается только с двумя рабочими электродами и не имеет (или имеют один) поджигающих электродов. По этой причине они включаются в сеть через импульсное зажигающее устройство (ИЗУ) и зажигаются импульсом повышенного напряжения, близкого к 2 кВ (рис. 60).

В зависимости от применения различают:

1) МГЛ общего назначения (типа ДРИ);

2) трубчатые и шаровые (типа ДРИШ) МГЛ с улучшенным качеством цветопередачи, применяемые для цветных теле- и киносъёмок;

3) МГЛ для многочисленных специальных применений, в основном технологических, например, для облучения растений.

Металлогалогенные лампы для общего освещения типа ДРИ

Лампы типа ДРИ по конструкции подобны лампам типа ДРЛ с горелками. Внешняя колба в отличие от ламп ДРЛ у большинства типов ламп ДРИ не покрыта люминофором, но иногда применяют стандартные колбы ламп ДРЛ с люминофорным покрытием (типа ДРИЛ).

Положение горения значительно влияет на параметры ламп ДРИ, поэтому некоторые типы МГЛ выпускают в различных модификациях, рассчитанных на разное положение горения (вертикальное и горизонтальное).

Пульсация светового потока ламп ДРИ существенно ниже чем у ламп типа ДРЛ и составляет около 30 %.

Температура окружающей среды оказывает незначительное влияние на процесс зажигания и на работу ламп ДРИ.

При изменении питающего напряжения характеристики ламп ДРИ меняются более заметно, чем у ламп типа ДРЛ: изменение напряжения на каждый процент приводит к изменению светового потока примерно на 2,5 %.

Лампы ДРИ выпускаются мощностью от 125 до 3500 Вт и, учитывая их малый объем, имеют высокую удельную мощность. Световая отдача ламп ДРИ сопоставима со световой отдачей лучших ЛЛ – более 100 лм/Вт и в перспективе должна достичь 120 лм/Вт. Средняя продолжительность горения – 10000…12000 ч. Индекс цветопередачи невысокий, но превышающий аналогичный у ламп ДРЛ – от 45 до 65. В лампах с галогенидами олова и йодидами диспрозия индекс цветопередачи – от 80 до 90.

Часть ламп ДРИ (типа ДРИЗ) выпускается в зеркальных отражающих колбах.

По стоимости лампы ДРИ существенно уступают другим РЛ большой мощности. Цена (2006 г.) ДРИ250 составляет 900 руб., против 115 руб. у ДРЛ250 и 325 руб. у ДНаТ250.

Cтраница 1


Спектр излучения ртутной лампы имеет максимум при длине волны 365 нм.  


Спектр излучения ртутных ламп имеет линейчатую структуру, и при экспозиции светочувствительных слоев, содержащих диазосоединеняя, активно действует свет с длинами волн 3650, 4050 и 4358 А. В промежутках между этими линиями излучение лампы (фон непрерывного излучения) незначительно и только у источников высокого и сверхвысокого давления величина фона достигает 0 1 - 0 25 интенсивности излучения главных линий. Из сказанного следует, что даже при небольшом смещении области поглощения диазотипного материала относительно положения главных линий спектра ртути возможно понижение чувствительности материала. Тэрнер 77 ] наблюдал, в частности, значительные расхождения между найденной экспериментально и вычисленной величинами энергии выхода при облучении диазосоединения монохроматическим светом с длиной волны 3650 А и нашел, что относительная чувствительность при 3130 А составляет только 25 % от чувствительности при 3650 А.  

Спектр излучения ртутных ламп среднего давления имеет много линий высокой интенсивности, но интенсивность линии 253 7 нм резко уменьшается.  

В спектрах излучения ртутных ламп наряду с линиями при повышении давления все более интенсивным становится сплошной спектр, так называемый фон. При очень высоком давлении (несколько десятков атмосфер) спектры становятся сплошными с отдельными максимумами в тех местах, в которых при низких давлениях находились линии.  

Результаты этих опытов и других наблюдений позволяют, с некоторым приближением к истине, заключить, что гексахлоран гасит ту часть спектра излучения ртутной лампы, которая способствует образованию - у-изомера.  


Спектр излучения ртутных ламп имеет линейчатую структуру, и при экспозиции светочувствительных слоев содержащих диазосоединения, активно действует свет с длинами волн 3650, 4050 и 4358 А. В промежутках между этими линиями излучение лампы (фон непрерывного излучения) незначительно и только у источников высокого и сверхвысокого давления величина фона достигает 0 1 - 0 25 интенсивности излучения главных линий. Из сказанного следует, что даже при небольшом смещении области поглощения диазотипного материала относительно положения главных линий спектра ртути возможно понижение чувствительности материала. Тэрнер наблюдал, в частности, значительные расхождения между найденной экспериментально и вычисленной величинами энергии выхода при облучении диазосоединения монохроматическим светом с длиной волны 3650 А и нашел, что относительная чувствительность при 3130 А составляет только 25 % от чувствительности при 3650 А.  

Часто в приборах барабан длин волн, связанный с механизмом поворота призмы или решетки, отградуирован в относительных единицах. В качестве стандартного спектра в видимой и ультрафиолетовой области используют спектр излучения ртутной лампы, который состоит из небольшого числа интенсивных линий. Подобную калибровку по стандартному веществу следует периодически повторять, поскольку в процессе работы установленное соответствие нарушается.  

С этой целью вместо солнечного света образец освещают лампами, интенсивность свечения которых можно сравнивать с прямым солнечным светом. Обычно светильниками служат угольная дуга или ксеноновые лампы высокого давления; иногда используют ртутные лампы. В спектре излучения ртутных ламп преобладают ультрафиолетовые лучи, являющиеся наиболее активно действующим компонентом дневного света в процессе выцветания; поэтому применение этих ламп способствует добавочному ускорению испытаний. Экстраполяция результатов корреляции для неизвестных материалов может привести к ошибкам.  

Перед началом измерений установку градуируют по длинам волн. Для этого входную часть спектрографа - ЙСП-51 освещают источником света, обладающим линейчатым спектром с широко расставленными линиями, длины волн которых хорошо известны. Далее осуществляют запись и расшифровку спектра излучения ртутной лампы и устанавливают зависимость между длинами волн ее отдельных линий (пиков на бланке самописца) и делениями барабана, связанного с моторчиком, вращающим призменную часть спектрографа. По этим данным строят дисперсионную кривую установки.  

Газоразрядные лампы высокого давления

Лампы высокого давления, по сравнению с люминесцентными, имеют значительно меньшие габариты и большую единичную мощность. У ртутных ламп высокого давления при равной мощности с люминесцентными (например, 40, 80 Вт) длина почти в 10 раз меньше. Малые габариты и высокое давление в них обусловили температуру разрядной трубки - 700...750°С. Поэтому разрядную трубку ламп выполняют из кварцевого стекла или специальной керамики, имеющей высокую прозрачность в видимой области спектра. .

Одна из первых была разработана лампа высокого давления типа ДРТ. Обозначение лампы: Д - дуговая, Р - ртутная, Т - трубчатая; следующее затем число соответствует мощности лампы. Прежнее название лампы - ПРК (прямая ртутно-кварцевая). Лампа ДРТ предназначена для ультрафиолетового облучения молодняка животных, цыплят, яиц перед инкубацией, семян зерновых культур и т.д. Она применяется в комплекте облучательных установок различных типов.

Лампа ДРТ представляет собой прямую трубку из кварцевого стекла, по концам которой впаяны вольфрамовые электроды. В трубку введено небольшое

Рис.1.26. Схемы включения: а) - лампы ДРТ; б) - лампы ДРЛ; EL - лампа; L - дрос­сель, SB - кнопочный включатель; CI, C2, СЗ - конденсаторы; R - резистор

количество ртути и инертного газа - аргона. Для удобства крепления к арматуре лампа по краям снабжена хомутиками с держателями, которые соединены между собой металлической полоской, используемой для облегчения зажигания лампы. В электрическую сеть лампу ДРТ включают последовательно с дросселем L по резонансной схеме (рис.1.26a). В результате резонанса, образуемого при кратко временном включении конденсатора С2, напряжение на дросселе L и конденсаторе С2 возрастает примерно в 2 раза по сравнению с напряжением питания. Это обеспечивает в лампе дуговой разряд. Металлическая полоска, подключенная через конденсатор малой емкости С3, облегчает пробой лампы. Конденсатор C1 повышает коэффициент мощности схемы до 0,92...0,95.

Электрическая энергия, подводимая к лампе ДРТ, преобразуется в ней следующим образом: ультрафиолетовое излучение составляет 18%, инфракрасное излучение – 15%, видимый свет – 15%, потери равны 52%. Однако лампа ДРТ используется прежде всего как источник ультрафиолетового излучения. В таблице 1.9 приведены характеристики ламп ДРТ.

Таблица 1.9 - Дуговые ртутные лампы высокого давления ДРТ

Поток излучения ламп ДРТ зависит от температуры окружающего воздуха. При высокой температуре ухудшается прозрачность кварцевого стекла, что определяет снижение в особенности ультрафиолетового излучения и сроков годности лампы.

Дуговая ртутная лампа ДРЛ предназначена для наружного освещения, закрытых помещений и объектов, где не требуется высокого качества цветопередачи. Она может быть рекомендована для освещения животноводческих и других сельскохозяйственных помещений; со специальными облучателями она используется для облучения рассады в теплицах, так как имеет фотосинтезно активное излучение с длиной волны = 580...700 нм (оранжево-красная часть спектра излучения).

Баланс энергии у лампы ДРЛ: ультрафиолетовое излучение практически отсутствует, видимое излучение составляет 17%, инфракрасное излучение - 14%, тепловые потери – 69%. Цвет суммарного излучения близок к белому. Доля красного излучения составляет 6...15%. Процент содержания красного излучения указывается при маркировке ламп в скобках. Яркость ламп ДРЛ почти в 10 раз превышает яркость люминесцентных ламп низкого давления.

Конструкция лампы ДРЛ представлена на рис. 1.27. Кварцевая трубка (горелка) 3 размещена в колбе 1, внутренняя поверхность которой покрыта тонким слоем люминофора 2. Слой люминофора преобразует ультрафиолетовое излучение трубки в свет, пригодный для освещения. В кварцевую трубку впаяны два основных вольфрамовых электрода 4, покрытых активированным слоем и подсоединенных к цоколю 7, и два дополнительных (поджигающих) 5. В трубке находится небольшое количество ртути (40...60 мг). После откачки воздуха из внешней колбы 1 она заполняется аргоном под давлением 2,5...4,5 кПа.

Такая конструкция позволяет зажигать четырехэлектродную лампу от питающей сети 220 В без специального поджигающего устройства (рис.1.26б). Наличие дросселя и конденсатора в схеме позволяет уменьшить колебания светового потока и увеличить коэффициент мощности. При этом ПРА потребляет около 10% номинальной мощности лампы. При включении лампы в сеть последовательно с дросселем разряд первоначально возникает между смежными основным и дополнительным электродами. Вызванная этим ионизация разрядного промежутка приводит к возникновению разряда между основными электродами, после чего дополнительные электроды прекращают работать.

Наличие во внешней колбе 1 аргона под давлением позволяет на долгий срок сохранить люминофорное покрытие в рабочем состоянии. Нагрев внешней колбы при работе лампы - 220... 280°С. Оптимальная температура внешней среды для работы ламп - 25...40°С. Период разгорания лампы ДРЛ длится 5...10 мин. Характеристики ламп ДРЛ приведены в табл. 1.10.

Осветительные металлогалогенные лампы общего назначения типа ДРИ (дуговые ртутные с излучающими добавками) имеют в зависимости от состава добавок различный спектр излучения, обеспечивающий высокое качество цветопередачи и более высокий, чем у ламп ДРЛ, световой КПД. Конструктивно лампы отличаются от ламп ДРЛ формой внешней колбы, не имеющей люминофорного покрытия, и отсутствием в разрядной трубке дополнительных поджигающих электродов.


Поэтому в сеть их включают по схеме, содержащей специальные импульсные зажигающие устройства - ИЗУ, генерирующие высоковольтные импульсы напряжением 2...6 кВ.

Чтобы улучшить спектральный состав видимого излучения, в трубку ламп добавляют соединения галогенной группы: иодиды натрия, скандий, бромиды редкоземельных металлов. Характеристики ламп ДРИ даны в табл. 1.11.

В табл. 1.11 приведены также характеристики ламп ДРИЗ для освещения сухих, пыльных и влажных помещений и ламп ДРИШ для освещения объектов при цветных телевизионных съемках и передачах (Ш – обозначение широкого спектра).



Ртутно-кварцевые лампы высокого давления ДРЛФ созданы для облучения растений на основе ламп ДРЛ. Особенностью этих ламп является специальный состав люминофора, который обеспечивает спектр излучения, в наибольшей степени способствующий прохождению физиологических процессов в растениях. Это излучение находится в диапазоне длин волн от 350 до 750 нм с преобладанием оранжево-красных и сине-фиолетовых лучей.

По своей конструкции и по электрическим параметрам лампы ДРЛФ аналогичны лампам ДРЛ, однако они имеют колбу из стекла, выдерживающего в нагретом состоянии брызги холодной воды. В электрическую сеть лампы включаются аналогично лампам ДРЛ.

Обозначения ламп: Д - дуговая, Р - ртутная, Л - люминесцентная, Ф - с повышенной фитоотдачей. Наибольшее распространение получили лампы ДРЛФ-400 и ДРЛФ-1000 мощностью 400 и 1000 Вт с фитопотоком соответственно 12800 и 90000 мфт.

Таблица 1.10 - Ртутные лампы высокого давления ДРЛ

Тип лампы Мощность лампы, Вт Напряжение на лампе, В Световой поток, лм Световая отдача, лм/Вт Срок службы, ч
ДРЛ-50(15) 33,7
ДРЛ-80(15)
ДРЛ-125(6) 41,9
ДРЛ-125(15) 44,8
ДРЛ-250(6)-4
ДРЛ-250(14)-4
ДРЛ-400(10)-3 57,5
ДРЛ-400(12)-4
ДРЛ-700(6)-3
ДРЛ-700(12)-3 58,5
ДРЛ-1000(6)-2
ДРЛ-1000(12)-3 58,5
ДРЛ-2000(12)-2

Дуговая ртутно-вольфрамовая лампа ДРВ-750 предназначена для дополнительного облучения растений в теплицах. Основным ее преимуществом, по сравнению с лампами ДРЛФ, является отсутствие ПРА, в результате чего снижается металлоемкость облучающей установки, уменьшается нагрузка на крышу теплицы, улучшается маневренность подвижных систем облучения. Лампа выполнена в виде колбы, в которой смонтирована ртутная горелка совместно с нитью накаливания. Сама колба изготовлена из термостойкого стекла и рассчитана на попадание брызг холодной воды.

Таблица 1.11 - Дуговые ртутные металлогалогенные лампы для наружного и внутреннего освещения ДРИ

Тип лампы Мощность лампы, Вт Напряжение на лампе, В Световой поток, лм Световая отдача, лм/Вт Срок службы, ч
ДРИ-125
ДРИ-175 68,5
ДРИ-250
ДРИ-1000-5
ДРИ-400-5
ДРИ-700
ДРИЗ-250-2 54,8
ДРИЗ-400-3
ДРИШ-2500-2
ДРИШ-4000-2

Имеет зеркальный или диффузный отражатель. Нить накаливания является балластным сопротивлением и одновременно источником излучения, усиливающим красную часть спектральной характеристики лампы.

В результате лампа ДРВ-750 является источником смешанного излучения с преобладанием оранжево-красных и сине-фиолетовых лучей.

Модернизацией лампы ДРВ является ртутно-вольфрамовая лампа ДРВЛ. В ней также в пространстве между разрядной трубкой и внешней колбой установлена вольфрамовая спираль, включенная последовательно с разрядной трубкой и выполняющая роль балластного сопротивления. В указанном балласте теряется примерно половина мощности лампы. Это снижает в 1,5...2 раза эффективный КПД ртутно-вольфрамовых ламп по сравнению с лампами ДРЛ и ДРТ.

Дуговые ртутно-вольфрамовые эритемные лампы с диффузным отражателем типа ДРВЭД предназначены для комплексного воздействия излучением части спектра с длинами волн от 280 до 5000 нм. Внешняя колба этих ламп выполнена из специального увиолевого стекла, пропускающего ультрафиолетовое излучение. Срок службы ламп типа ДРВЭД определяется в основном сроком службы вольфрамовой спирали - 3000...5000 ч.

Дуговые ртутные люминесцентные лампы ДРФ-1000 и ДРФ-2000 с повышенной фитоотдачей предназначены для комплектования вегетационных осветительных установок, применяющихся для создания светового режима в климатических камерах и шкафах при селекции различных растений. Лампы имеют большой световой поток и высокую светоотдачу. По конструкции и характеристикам аналогичны лампам ДРЛ, но отличаются составом люминофора, имеют колбу из вольфрамового термостойкого стекла, выдерживающего брызги холодной воды. Из недостатков следует отметить большую массу ПРА и устройства компенсации коэффициента мощности.

В группе разрядных ламп высокого давления натриевые лампы типа ДНаТ (дуговые натриевые трубчатые) отличаются большим световым КПД и чуть более вытянутой по сравнению с лампой ДРЛ наружной колбой. Разрядная трубка правильной цилиндрической формы выполнена из полупрозрачной керамики (поликристаллического алюминия) или из прозрачного трубчатого монокристалла (лейкосапфира). Эти материалы устойчивы к длительному воздействию паров натрия при температуре до 1600°С. Общий коэффициент пропускания видимого излучения составляет 90...95%. Однако 70% излучения находится в зоне 560...610 нм желто-оранжевого цвета, что вызывает искажение цветопередачи. Поэтому: лампы ДНаТ в основном используют для наружного освещения. В электрическую сеть лампы ДНаТ включают по схеме, аналогичной схеме ламп ДРИ.

Характеристики натриевых ламп высокого давления ДНаТ приведены в табл. 1.12.

Дуговые ксеноновые трубчатые лампы (ДКсТ) в сельском хозяйстве используются сравнительно мало из-за сложности их эксплуатации. Лампы выполняют в одной кварцевой разрядной колбе (ДКсТ) и в двух колбах с водяным охлаждением (ДКсТВ).

В спектре ламп ДКсТ без водяного охлаждения имеется избыток ультрафиолетового излучения. Этот недостаток скорректирован в лампах типа ДКсТЛ, колбы которых выполнены из кварцевого стекла с легирующими (Л) присадками. В видимой области спектра излучение ксеноновых ламп приближается к солнечному. У ламп типа ДКсТВ доля видимого излучения составляет всего 10...12% их мощности. Указанные типы ламп выпускаются, как правило, большой единичной мощности - от 1000 до 12000 Вт со световой отдачей 24...40 лм/Вт. Срок службы составляет 500...1500 ч, что обусловлено значительной температурой поверхности разрядной трубки (750... 800°С).

Таблица 1.12 - Натриевые лампы высокого давления ДнаТ

Тип лампы Мощность лампы, Bт Напряжение на лампе, В Световой поток, лм Световая отдача, лм/Вт Срок службы
ДНаТ-70
ДНаТ-100
ДНаТ-150
ДНаТ-250-4 97,5
ДНаТ-250-7 97,5
ДНаТ-360
ДНаТ-400-4 102,5 117,5
ДНаТ-400-7 102,5

Особенностью большинства разрядных ламп высокого давления является режим разгорания, протекающий в течение 5...10 мин после зажигания лампы. У ртутных и натриевых ламп он более продолжительный, чем у ксеноновых. В процессе разгорания изменяются все параметры лампы. Например, ток в ртутных лампах превышает номинальное значение в 1,5...2 раза. По мере разогрева давление паров внутри лампы растет, что сопровождается снижением тока и увеличением потока излучения, с ростом давления повышается напряжение зажигания лампы. Поэтому повторное зажигание погасшей лампы возможно лишь после ее остывания, следовательно, после снижения напряжения зажигания. Колебания напряжения сети мало влияют на световую отдачу ламп, однако большие отклонения напряжения сказываются значительно. Лампы должны эксплуатироваться в том положении, которое определено заводом-изготовителем. При эксплуатации установок с разрядными лампами высокого давления следует принимать во внимание значительную пульсацию световых потоков и принимать меры к их снижению.

Контрольные вопросы

1. Что называется искусственным источником оптического излучения?

2. Какие основные виды источников оптического излучения вы знаете?

3. Что называется идеальным излучателем?

4. Назовите три класса тел накала.

5. Как происходит преобразование эл. энергии в оптические излучения?

6. Дайте определение закона Кирхгофа.

7. Дайте определение закона Стефана Больцмана.

8. Напишите закон Планка.

9. Дайте определение закону смещения Вина.

10. Назовите основные элементы конструкции лампы накаливания общего назначения?

11. Как устроена линейная галогенная лампа накаливания?

12. Назовите некоторые разновидности ламп накаливания.

13. Каковы основные характеристики ламп накаливания?

14. Как изменяются показатели ламп накаливания от подводимого напряжения?

15. Приведите простейшие схемы включения ламп накаливания.

16. Как классифицируются разрядные лампы?

17. Как происходит преобразование эл. энергии в видимое излучение в разрядных лампах?

18. Назначение балластного устройства?

19. Как происходит стабилизация дугового разряда?

20. Как влияет вид балластного устройства на работу гозоразрядных ламп?

21. Дайте общие сведения о газоразрядных лампах низкого и высокого давления.

22. Устройство и обозначения наиболее распространенных люминисцентных ламп.

23. Как определяется коэффициент пульсации светового потока?

24. Нарисуйте стартерную схему включения люминисцентной лампы.

25. Дайте понятия о бесстартерных схемах включения люминисцентных ламп.

26. Расскажите о назначении газоразрядных ламп высокого давления типа ДРТ, ДРЛ, ДРВ, ДНаТ.

Нарисуйте схему включения лампы ДРТ, ДРЛ, и т.д.

Рассмотренные в предыдущей статье люминесцентные лампы - это лампы низкого давления. Разряд в них происходит при давлении паров ртути не более 0,1 мм ртутного столба или 10 паскалей (Па). Спектр излучения разряда при таких давлениях имеет линейчатый характер, причем, как уже было сказано, до 80 % мощности разряда приходится на две УФ линии: 257 и 185 нм, а на долю пяти линий видимой части спектра лишь около 2 %.

Если давление паров ртути повышается, то вначале все линии «расплываются» и превращаются в полосы, затем происходит пере-распределение энергии: излучение в УФ области ослабевает, а в видимой - увеличивается. При давлении паров ртути около 1000 мм ртутного столба доля видимого излучения возрастает настолько, что световая отдача разряда достигает 20-25 лм/Вт, то есть становится больше, чем у ламп накаливания общего назначения. Но при этом все видимое излучение сосредоточено в сине-зеленой части спектра, а желтый и красный свет отсутствуют полностью. Многим знаком свет медицинских УФ облучателей - довольно неприятного сине-зеленого цвета, сильно искажающим вид освещаемых предметов, в частности, человеческих лиц. В этих облучателях применяются как раз ртутные лампы высокого давления типа ДРТ (дуговая, ртутная, трубчатая).

Несмотря на относительное ослабление доли УФ излучения, оно все же остается в спектре разряда в довольно большом количестве (около 40 % подводимой к разряду мощности). Так же как и в люминесцентных лампах низкого давления, это излучение с помощью люминофора может быть превращено в видимое. Но если в обычных люминесцентных лампах температура стенок колбы лишь немногим выше температуры окружающего воздуха, то в лампах высокого давления размеры колб гораздо меньше, и температура на стенках достигает 500 - 600 оС. Найти люминофоры, эффективно работающие при таких температурах, до сих пор не удалось.

Проблему решили в начале 50-х годов прошлого века. Малогабаритную ртутную лампу высокого давления поместили внутрь другой, значительно большей по размеру колбы, а уже на внутреннюю поверхность этой колбы стали наносить люминофор, имеющий наибольшую эффективность при температуре 200 - 300 оС и излучающий преимущественно в красной области. Сейчас в качестве люминофора чаще всего применяют фосфат-ванадат иттрия, активированный европием. С 1952 года начался массовый выпуск таких ламп ведущими мировыми производителями - General Electric, Philips, Osram. Сегодня по объему выпуска ртутные лампы высокого давления с люминофором занимают третье место после ламп накаливания и люминесцентных ламп.

На рис. 1 показано устройство ртутной лампы.

Рис. 1. с люминофором

Разрядная трубка 1 («горелка») из кварца держателями 2 из достаточно толстой никелевой проволоки закреплена на ножке 3 (у мощных ламп горелка поддерживается еще и пружинящим держателем 4, упирающимся во внешнюю колбу). Ножка 3 герметично впаяна во внешнюю колбу 5, покрытую изнутри слоем люминофора 6. В ртутных лампах высокого давления используются самокалящиеся электроды 7 в виде спирали, навитой на вольфрамовый стержень (керн) и покрытой активирующим веществом. Кроме основных электродов 7, в лампах имеются поджигающие электроды 8, расположенные вблизи основных и электрически соединенные с противоположными электродами через ограничительные сопротивления 9. На внешней колбе с помощью высокотемпературной мастики крепится стандартный резьбовой цоколь 10. Между горелкой и цоколем крепится тепловой экран 11 (обычно из слюды). Внутренний объем горелки заполнен инертным газом аргоном с давлением от 10до 50 мм ртутного столба (в зависимости от мощности лампы) и ртутью.

В отличие от люминесцентных ламп, в которых ртуть всегда находится в жидком состоянии, в лампах высокого давления количество ртути строго дозировано, и при работе ламп ртуть в горелках находится только в газообразном состоянии при давлении паров 1000 - 1500 мм ртутного столба (1,5 - 2 атмосферы). Для получения таких высоких давлений паров ртути температура стенок горелки должна быть не менее 500 оС. Поэтому горелки ламп высокого давления делают только из кварца. Пространство между горелкой и внешней колбой заполняется газом (техническим аргоном).

Схема включения ртутных ламп высокого давления проще, чем люминесцентных ламп (рис. 2).

Рис. 2. Схема включения ртутных ламп высокого давления 

Благодаря наличию поджигающих электродов, расположенных очень близко к основным, между этими электродами разряд возникает при напряжениях ниже сетевого. Этот разряд очень слаб, так как ток его ограничен сопротивлениями 9, но он создает начальную ионизацию газа в горелке, за счет которой разряд переходит на основные электроды. Ток основного разряда ограничивается только дросселем, и величина его в первое время после включения в 2 - 3 раза больше, чем после полного разгорания лампы. Ток разряда разогревает основные электроды до температуры, обеспечивающей достаточную эмиссию электронов из них (1000 - 1200 оС). Из-за большого тока разряда начинают разогреваться стенки горелки, находящаяся на них ртуть постепенно полностью испаряется, и процессы в лампе стабилизируются. Процесс разгорания длится достаточно долго - от 7 до 10 минут.

Как и в схемах с люминесцентными лампами, дроссель создает сдвиг фаз между током и напряжением (cos р~ 0,5). Для компенсации этого сдвига параллельно цепочке из лампы и дросселя включается компенсирующий конденсатор.

Ртутные лампы высокого давления с люминофором выпускаются мощностью 80, 125, 250, 400, 700 и 1000 Вт; изредка встречаются лампы мощностью 50 и 2000 Вт. Лампы мощностью 50, 80 и 125 Вт выпускаются с цоколем Е27, более мощные - с цоколем Е40. Потери мощности в дросселях, как правило, составляют не больше 10%.

Световая отдача современных ламп - от 40 до 60 лм/Вт; срок службы - до 24000 часов. По этим параметрам ртутные лампы высокого давления значительно превосходят лампы накаливания, что и предопределило их очень широкое распространение.

Кроме высокой световой отдачи и большого срока службы, ртутные лампы высокого давления имеют и другие достоинства: относительная компактность; простота включения; широкий диапазон мощностей; очень слабая зависимость параметров от окружающей температуры.

Недостатки таких ламп:

1. Низкое качество цветопередачи (Ra= 45 - 50; у иностранных ламп Delux и Super Delux - не выше 55).
2. Большие пульсации светового потока (65 - 75 %).
3. Большое время разгорания (до 10 минут).
4. Невозможность повторного включения горячей лампы - если лампа случайно погасла, снова включить ее можно только после остывания горелки.
5. Высокая температура на внешней колбе (250 - 300 оС).

Ртутные лампы высокого давления широко применяются там, где не требуется качество цветопередачи, - в уличном освещении, на складах, на промышленных предприятиях (при наличии вращающихся деталей - с обязательным включением соседних светильников в разные фазы) и т.п.

Классификация, маркировка и обозначение ртутных ламп

Ртутные лампы высокого давления классифицируются по мощности.
В России лампы выпускаются под названием ДРЛ (дуговая, ртутная, люминесцентная), далее указывается мощность в ваттах.

За рубежом каждая фирма выпускает лампы под своим названием: Philips - HPL; Osram - HQL; General Electric - MBF; Sylvania - HSL и HSB; Radium - HRL. По международной системе обозначений ILCOS все эти лампы называются QE.

В таблице 1 даны усредненные параметры некоторых типов ртутных ламп высокого давления с люминофорами.

Ртутные лампы различных исполнений сегодня все еще задействуют, так как они заняли свою нишу: применяются при организации системы освещения крупных промышленных объектов, улицы. Общее обозначение наиболее распространенного исполнения высокого давления – ДРЛ, что означает дуговая ртутная люминесцентная лампочка. Данная разновидность представляет газоразрядные источники света и характеризуется 1 классом опасности ввиду того, что в состав, помимо прочего, входит и ртуть.

Особенности устройства

Конструкцией предусматривается несколько основных элементов:

  • цоколь – контактная часть, а осветительные элементы с держателем Е40, Е27 легко установить в любой современный светильник;
  • кварцевая колба – содержит инертный газ и некоторое количество ртути, соединена с электродами;
  • внешняя колба – изготовлена из термостойкого стекла, по форме напоминает аналог накаливания, внутри находится кварцевая колба (горелка).

Газоразрядные источники света изнутри покрываются люминофором. Дуговая лампа содержит углекислый газ, который наполняет внешнюю колбу. Функционирует большинство подобных осветительных элементов посредством пускорегулирующего аппарата (ПРА), но есть и отдельный вид – газоразрядные лампы прямого включения, которые не требуют установки ПРА, а подключаются напрямую в сеть.

Конструкция лампы ДРЛ

Дуговые источники света функционируют на основе явления люминесценции. При этом свечение возникает под воздействием ультрафиолетового излучения. Его же продуцируют ртутные пары, которые входят в состав газообразного наполнения кварцевой колбы. Эти процессы возникают при условии, что через кварцевую горелку будет проходить электрический разряд.

Обзор существующих видов

Газоразрядные источники света высокого давления, в число которых входят и дуговые лампочки ДРЛ, подразделяются на две основные группы: общего и узкоспециального назначения. Первый вариант устанавливается в светильник уличного освещения. Вторая группа источников света высокого давления применяется в медицине, определенных отраслях промышленности, а также сельском хозяйстве.

Кроме этого, газоразрядные лампы подразделяются на виды в соответствии с конструкционными и функциональными отличиями. Диапазон мощностей: от 80 до 1 000 Вт. Чаще используются более мощные исполнения 100 Вт, 250 Вт, 400 Вт и пр. Причем существует разделение по количеству электродов: двухэлектродные (мощность от 80 до 1 000 Вт); четырехэлектродные (250 -1 000 Вт).

Дуговые металлогалогенные источники света (ДРИ)

Особенность таких ламп заключается в излучающих добавках, отсюда происходит и обозначение: ДРИ (дуговые ртутные осветительные элементы с излучающими добавками). По внешним признакам этот источник света сходен с аналогом ДРЛ.

Ртутные лампы ДРИ

Отличие между ними заключается в том, что состав ДРИ включает в себя еще и специализированные компоненты, которые строго дозируются: галогенид натрия, индия и некоторые другие. Это способствует значительному повышению эффективности излучения.

Колба может иметь форму эллипсоида или цилиндра. Ртутные лампы данного вида сегодня все чаще содержат керамическую горелку вместо кварцевого аналога. Также газоразрядные источники света этой группы имеют более совершенную конструкцию, в частности, форма внутренней колбы может быть шарообразной. Ртутные лампы ДРИ требуют включения в цепь дросселя.

Применяются газоразрядные осветительные элементы данного вида при организации наружного освещения: парков, улиц, площадей, их задействуют в качестве подсветки зданий, торговых и выставочных залов, а также крупных площадок (спортивных, футбольных полей).

Металлогалогенные с зеркальным слоем (ДРИЗ)

Ртутные лампы этого вида имеют сходный состав с аналогами ДРИ: основное наполнение + излучающие добавки. Но дополнительно к тому конструкцией предусмотрен зеркальный слой. Благодаря этой особенности лампочки высокого давления ДРИЗ обеспечивают направленный луч света.

Металлогалогенные источники света с зеркальным слоем (ДРИЗ)

Их используют в условиях плохой видимости, так как высокий уровень мощности наряду с конструкционными особенностями способствует организации эффективного освещения участка объекта благодаря направленному свечению.

Ртутно-кварцевые шаровые источники света (ДРШ)

Такие лампочки высокого давления выделяются из ряда аналогов. Этому способствуют следующие факторы: шарообразная форма колбы, излучение повышенной интенсивности. А дополнительно к тому ртутно кварцевая лампа характеризуется сверхвысоким давлением.

Лампочки высокого давления ДРШ

Область применения – узкоспециальные направления, в частности, проекционные системы, лабораторное оборудование.

Ртутно-кварцевые (ПРК, ДРТ)

Этот вид лампочек имеет иную форму колбы, чем выше рассмотренные аналоги. Например, ПРК расшифровывается как прямой ртутно-кварцевый осветительный элемент. Это первоначальное обозначение лампы ДРТ (дуговая ртутная трубчатой формы).

Переход на другую маркировку произошел в 80 гг. прошлого века. Ртутно кварцевая лампа в данном исполнении характеризуется формой колбы в виде цилиндра, электроды же располагаются на торцевых участках колбы.

Цвет излучения

Ртутьсодержащие лампы благодаря присутствию в конструкции люминофора на выходе дают цвет максимально близкий к белому. Нейтральный оттенок получается в результате смешивания излучений газообразных составляющих колбы и люминофора. В частности, пары ртути продуцируют свечение разных цветов: синий, зеленый, фиолетовый, оранжевый. А кроме этого, излучают ультрафиолет (мягкий, жесткий).

Комбинированное свечение люминофора и газообразного наполнения колбы, расположенной внутри лампочки высокого давления ДРИ, позволяет получить разные цвета свечения: зеленый, фиолетовый и др. Это достигается благодаря изменению состава и соотношения излучающих добавок.

Пускорегулирующие аппараты

Лампы люминесцентные ртутные подключаются к сети в большинстве случаев через дроссель (ПРА). По сути, этот узел представляет собой токоограничитель, способствующий плавному вводу источника света высокого давления в эксплуатацию. При отсутствии пускорегулирующего аппарата лампочка ДРЛ сгорит по причине прохождения через электроды тока высоких значений.

Однако существуют и аналоги прямого включения. Для их нормальной работы не требуется дроссель, можно устанавливать лампу высокого давления в светильник. Такие источники света обозначаются ДРВ (дуговые ртутные вольфрамовые). Они сходны по характеристикам с вариантом ДРЛ. Выбор пускорегулирующего аппарата производится на основании данных о мощности лампочки.

Общие технические характеристики

Определение наиболее подходящего вида лампы осуществляется с учетом основных параметров источника света:

  • напряжение питания – обычно указывается для осветительных элементов прямого включения, устанавливаемых без дросселя (ДРВ);
  • мощность – варьируется от 80 до 1 000 Вт;
  • световой поток напрямую зависит от уровня создаваемой нагрузки: изменяется в пределах от 1 900 до 59 000 лм;
  • продолжительность горения: от 1 500 до 20 000 ч, при этом наиболее короткий срок функционирования отмечается у вольфрамовых лампочек прямого включения;
  • тип цоколя: Е27, Е40;
  • габариты изделия – варьируются в зависимости от исполнения лампы.

Особенности и характеристики различных источников света

Для источников света ДРЛ и прочих аналогов, подключаемых с дросселем, может быть указано напряжение на лампе.

Хранение и утилизация

Учитывая, что в состав осветительных элементов типа ДРЛ и прочих им подобных исполнений входит ртуть (класс опасности 1), хранить изделия с поврежденными колбами в неподготовленных для этого помещениях запрещено. Особенно, если речь идет о количестве опасного отхода в промышленных масштабах. Заниматься хранением, транспортировкой и дальнейшей утилизацией должны организации, имеющие соответствующую лицензию (ЮНЭП).