Мощный электромагнитный излучатель своими руками. Электромагнитное излучение — воздействие на человека, защита. Создание элементарного электромагнитного излучателя

Электромагнитный импульс (ЭМИ) – это естественное явление, вызванное резким ускорением частиц (в основном, электронов), которое приводит к возникновению интенсивного всплеска электромагнитной энергии. Повседневными примерами ЭМИ могут служить следующие явления: молния, системы зажигания двигателей внутреннего сгорания и солнечные вспышки. Несмотря на то, что электромагнитный импульс способен вывести из строя электронные устройства, данную технологию можно применить для целенаправленного и безопасного отключения электронных устройств или для обеспечения безопасности персональных и конфиденциальных данных.

Шаги

Создание элементарного электромагнитного излучателя

    Соберите необходимые материалы. Для создания простейшего электромагнитного излучателя вам понадобится одноразовый фотоаппарат, медная проволока, резиновые перчатки, припой, паяльник и железный прут. Все эти предметы можно приобрести в ближайшем строительном магазине.

    • Чем толще проволоку вы возьмете для эксперимента, тем мощнее получится итоговый излучатель.
    • Если вы не сможете найти железный прут, можете заменить его стержнем из неметаллического материала. Однако обратите внимание, что подобная замена негативно скажется на мощности производимого импульса.
    • В ходе работы с электрическими деталями, способными удерживать заряд, или при пропускании электрического тока через объект, мы настоятельно рекомендуем надевать резиновые перчатки, дабы избежать возможного электрического удара.
  1. Соберите электромагнитную катушку. Электромагнитная катушка – это устройство, которое состоит из двух отдельных, но в то же время взаимосвязанных деталей: проводника и сердечника. В данном случае в качестве сердечника будет выступать железный прут, а в качестве проводника – медная проволока.

    Припаяйте концы электромагнитной катушки к конденсатору. Конденсатор, как правило, имеет вид цилиндра с двумя контактами, а найти его можно на любой монтажной плате. В одноразовом фотоаппарате такой конденсатор отвечает за вспышку. Перед отпаиванием конденсатора обязательно вытащите батарейку из фотоаппарата, иначе вас может ударить током.

    Найдите безопасное место для тестирования своего электромагнитного излучателя. В зависимости от задействованных материалов, эффективный радиус действия вашего ЭМИ будет составлять примерно один метр в любом направлении. Как бы то ни было, любая электроника, попавшая под ЭМИ, будет уничтожена.

    • Не забывайте, что ЭМИ воздействует на все без исключения устройства в радиусе поражения, начиная от аппаратов жизнеобеспечения, вроде кардиостимуляторов, и заканчивая мобильными телефонами. Любой ущерб, причиненный этим устройством посредством ЭМИ, может повлечь за собой юридические последствия.
    • Заземленная площадка, вроде пня или пластмассового стола, является идеальной поверхностью для тестирования электромагнитного излучателя.
  2. Так как электромагнитное поле воздействует лишь на электронику, подумайте о приобретении какого-то недорогого устройства в ближайшем магазине электроники. Эксперимент можно считать успешным, если после активации ЭМИ электронное устройство перестанет работать.

    • Множество магазинов канцелярских товаров торгуют достаточно недорогими электронными калькуляторами, с помощью которых вы можете проверить эффективность созданного излучателя.
  3. Вставьте батарейку обратно в камеру. Для восстановления заряда необходимо пропустить через конденсатор электричество, которое впоследствии обеспечит вашу электромагнитную катушку током и создаст электромагнитный импульс. Поместите объект для испытаний как можно ближе к ЭМ излучателю.

    Дайте конденсатору зарядиться. Позвольте батарейке снова зарядить конденсатор, отсоединив его от электромагнитной катушки, затем уже в резиновых перчатках или пластиковыми щипцами снова их соедините. Работая голыми руками, вы рискуете получить удар током.

    Включите конденсатор. Активация вспышки на камере высвободит накопленное в конденсаторе электричество, которое при прохождении через катушку создаст электромагнитный импульс.

    Создание портативного устройства ЭМ излучения

    1. Соберите все необходимое. Создание портативного устройства ЭМИ пройдет более гладко, если при себе у вас будут все необходимые инструменты и компоненты. Вам понадобятся следующие предметы:

      Вытащите монтажную плату из фотоаппарата. Внутри одноразового фотоаппарата находится монтажная плата, которая и отвечает за его функционал. Для начала вытащите батарейки, а затем уже и саму плату, не забыв при этом отметить положение конденсатора.

      • Работая с фотоаппаратом и конденсатором в резиновых перчатках, вы тем самым обезопасите себя от возможного электрического удара.
      • Конденсаторы, как правило, имеют вид цилиндра с двумя контактами, прикрепленными к плате. Это одна из важнейших деталей будущего устройства ЭМИ.
      • После того как вы вытащите батарейку, щелкните пару раз фотоаппаратом, чтобы израсходовать накопленный заряд в конденсаторе. Из-за накопленного заряда вас в любой момент может ударить током.
    2. Обмотайте медную проволоку вокруг железного сердечника. Возьмите достаточное количество медной проволоки, чтобы равномерно идущие витки могли полностью покрыть железный сердечник. Также убедитесь, чтобы витки плотно прилегали друг к другу, иначе это негативно скажется на мощности ЭМИ.

      • Оставьте небольшое количество провода на краях обмотки. Они нужны, чтобы подсоединить к катушке остальную часть устройства.
    3. Нанесите изоляцию на радиоантенну. Радиоантенна послужит в качестве рукоятки, на которой будут закреплены катушка и плата от фотоаппарата. Оберните основание антенны изолентой, дабы уберечься от удара током.

      Закрепите плату на плотном куске картона. Картон послужит в качестве еще одного слоя изоляции, который убережет вас от неприятного электрического разряда. Возьмите плату и изолентой закрепите ее на картоне, но так, чтобы она не закрывала дорожки электропроводящей цепи.

      • Закрепите плату лицевой стороной вверх, чтобы конденсатор и его проводящие дорожки не контактировали с картоном.
      • На картонной подложке для печатной платы также должно хватить достаточно места для батарейного отсека.
    4. Закрепите электромагнитную катушку на конце радиоантенны. Поскольку для создания ЭМИ электрический ток должен пройти через катушку, неплохо бы добавить второй слой изоляции, поместив небольшой кусочек картона между катушкой и антенной. Возьмите изоленту и закрепите катушку на куске картона.

      Припаяйте источник питания. Найдите на плате разъемы для батарейки и соедините их с соответствующими контактами батарейного отсека. После этого можете закрепить все это дело изолентой на свободном участке картонки.

      Подсоедините катушку к конденсатору. Необходимо припаять края медной проволоки к электродам вашего конденсатора. Между конденсатором и электромагнитной катушкой также следует установить переключатель, который бы управлял потоком электроэнергии между этими двумя компонентами.

      • Во время данного этапа сборки устройства ЭМИ вы должны оставаться в резиновых перчатках. Из-за оставшегося заряда в конденсаторе вас может ударить током.
    5. Прикрепите картонную подложку к антенне. Возьмите изоленту и прочно прикрепите картонную подложку вместе со всеми деталями к радиоантенне. Закрепите ее над основанием антенны, которое вы уже должны были обмотать изолентой.

      Найдите подходящий объект для испытаний. Простой и недорогой калькулятор идеально подойдет для тестирования портативного устройства ЭМИ. В зависимости от материалов и оборудования, использованных при конструировании вашего устройства, ЭМ поле будет работать либо в непосредственной близости от катушки, либо покрывать расстояние до одного метра вокруг нее.

      • Любое электронное устройство, попавшее в радиус действия ЭМ поля, будет выведено из строя. Убедитесь, что рядом с выбранной тестовой площадкой нет электронных приборов, которым бы вы не хотели навредить. Вся ответственность за поврежденное имущество будет лежать на вас.
    6. Протестируйте свое портативное устройство ЭМИ. Проверьте, чтобы переключатель устройства находился в положении «ВЫКЛ», после чего вставьте батарейки в батарейный отсек на картонной подложке. Держите устройство за изолированное основание антенны (словно протоновый ускоритель из «Охотников за привидениями»), направьте катушку в сторону объекта для испытаний и переключите выключатель в положение «ВКЛ».

В последнее время развелось много злых бродячих собак, да и других опасных животных. Как защитить себя от них? Кто-то советует электрошокер, - будем ждать пока собака подбежит на расстояние вытянутой руки? Кто-то ультразвуковой отпугиватель, - но если она глухая? А за ствол, можно вообще сесть. Выход один - ФОТОННЫЙ ИМПУЛЬСНЫЙ ИЗЛУЧАТЕЛЬ.

Все мы иногда фотографируемся и знаем, как неприятно смотреть на срабатывающую вспышку. Причём надо ещё и глаза держать открытыми. А ведь свет бьёт не только в глаза, а рассеивается равномерно по помещению. Теперь представьте что будет, если эта сотня джоуль импульсного излучателя сфокусируется оптической линзой в узкий луч наподобии того, как это делается в DVD-лазере, и в виде мощнейшего импульса шарахнет по глазам объекта нападения!

Принцип действия импульсного излучателя , заключается в фокусировки фотовспышки, линзой диаметром около 50мм с 10-кратным увеличением до тонкого луча . Саму вспышку, с питанием от батареек, можно собрать по любой известной схеме, например такой:

Описание работы схемы импульсного излучателя : Интегральная схема типа LM386 представляет собой усилитель звуковой частоты. ИС включена по схеме мультивибратора, генерирующего импульсы частотой около 30 кГц, определяемой номиналами R3 и С1. На выходе (вывод 5) при этом формируются импульсы прямоугольной формы, которые через конденсатор С2 поступают на трансформатор ТТ.

Трансформатор Т1- сетевой понижающий трансформатор на 6-12В. Его низковольтная обмотка используется в схеме в качестве первичной. Размах выходного напряжения на вторичной обмотке при этом равен приблизительно 400 В, что после выпрямления выпрямителем D1, СЗ, С4 обеспечивает на его выходе постоянное напряжение 300 В. После выключения схемы, прежде чем браться руками за конденсаторы СЗ, С4, С5, их предварительно следует разрядить. Постоянное напряжение, поджигающее импульсную лампу ИФК-120, подается через резистор R4 на конденсатор С5.

Высокое напряжение поджига, необходимое для импульсной лампы, формируется катушкой Т2, подключенной к аноду. При подключении энергия, накопленная заряженными до 300 В конденсаторами СЗ и С4, обеспечивает яркую вспышку импульсной лампы FT.

Цепь управления поджигом состоит из элементов С4, С5, D2 R5, SW1 и Т2. При открывании тиристора D2 управляющее напряжение поступает на катушку Т2. Непосредственное подключение конденсатора С5 к катушке с помощью механического ключа привело бы к быстрому прогоранию

Детали: IC1 - усилитель LM386; D1-1N4004; D2-тиристор С106В1 или любой другой; T1- малогабаритный трансформатор 220В/10В; T2-пусковой дроссель (стандартный, от любой советской вспыхи - фил, луч, и т. д.); FT -лампа-вспышка ИФК-120, Е2-486 (или аналогичные); С1-0,003 мкФ; С2-300 мкФ. 15 В; СЗ, С4-470 мкФ, 400 В; С5 - 0,47 мкФ, 400 В; R1 1 кОм; R2-10kOm; R3- 22 кОм; R4 220 кОм; R5-47 кОм.

Как вариант, можно взять и такие схемы импульсного излучателя с батареечным питанием:

Лампу для импульсного излучателя берём дешёвую советскую ИФК-120 с небольшой доработкой. Поверх колбы наматываем провод для лучшего срабатывания.

Настраивать фокусное расстояние линзы можно с помощью простого стробоскопа:

Саму линзу берём от увеличительной десятикратной лупы. Подключаем ИФК-120 к схеме стробоскопа и приближая - удаляя линзу добиваемся фокусировки вспыха светового пятна на стене. Далее закрепляем всё в корпусе от какой-нибудь нерабочей вспышки и импульсный излучатель готов.

С малых дистанций. Естественно я сразу же захотел сделать подобную самоделку, поскольку она довольно эффектная и на практике показывает работу электромагнитных импульсов. В первых моделях ЭМИ излучателя стояли несколько высоко ёмкостных конденсаторов из одноразовых фотоаппаратов, но данная конструкция работает не очень хорошо, из-за долгой "перезарядки". Поэтому я решил взять китайский высоковольтный модуль (который обычно используется в электрошокерах) и добавить к нему "пробойник". Данная конструкция меня устраивала. Но к сожалению у меня сгорел высоковольтный модуль и поэтому я не смог отснять статью по данной самоделке, но у меня было отснято подробное видео по сборке, поэтому я решил взять некоторые моменты из видео, надеюсь Админ будет не против, поскольку самоделка реально очень интересная.

Хотелось бы сказать что всё это было сделано в качестве эксперимента!

И так для ЭМИ излучателя нам понадобится:
-высоковольтный модуль
-две батарейки на 1,5 вольта
-бокс для батареек
-корпус, я использую пластиковую бутылку на 0,5
-медная проволока диаметром 0,5-1,5 мм
-кнопка без фиксатора
-провода

Из инструментов нам понадобится:
-паяльник
-термо клей

И так первым делом нужно намотать на верхнюю часть бутылки толстую проволоку примерно 10-15 витков, виток к витку (катушка очень сильно влияет на дальность электромагнитного импульса, лучше всего показала себя спиральная катушка диаметром 4,5 см) затем отрезаем дно бутылки




Берём наш высоковольтный модуль и припаиваем обязательно к входным проводам питание через кнопку, предварительно вынув батарейки из бокса




Берём трубочку от ручки и отрезаем от неё кусочек длиной 2 см:




Один из выходных проводов высоковольтника вставляем в отрезок трубочки и приклеиваем так как показано на фото:


С помощью паяльника проделываем отверстие с боку бутылки, чуть больше диаметра толстой проволоки:


Самый длинный провод вставляем через отверстие внутрь бутылки:


Припаиваем к нему оставшийся провод высоковольтника:


Располагаем высоковольтный модуль внутри бутылки:


Проделываем ещё одно отверстие с боку бутылки, диаметром чуть больше диаметра трубочки от ручки:


Вытаскиваем отрезок трубочки с проводом через отверстие и крепко приклеиваем и изолируем термо клеем:




Затем берём второй провод от катушки и вставляем его внутрь куска трубочки, между ними должен остаться воздушный зазор, 1,5-2 см, подбирать нужно экспериментальным путём




укладываем всю электронику внутрь бутылки, так чтобы ни чего не замыкало, не болталось и было хорошо заизолировано, затем приклеиваем:




Делаем ещё одно отверстие по диаметру кнопки и вытаскиваем её изнутри, затем приклеиваем:




Берём отрезанное дно, и обрезаем его по краю, так чтобы оно смогло налезть на бутылку, надеваем и приклеиваем:






Ну вот и всё! Наш ЭМИ излучатель готов, осталось только его протестировать! Для этого берём старый калькулятор, убираем ценную электронику и желательно одеваем резиновые перчатки, затем нажимаем на кнопку и подносим калькулятор, в трубочке начнёт происходить пробои электрического тока, катушка начнёт испускать электромагнитный импульс и наш калькулятор сначала сам включится, а потом начнёт рандомно сам писать числа!

До этой самоделки я делал ЭМИ на базе перчатки, но к сожалению отснял только видео испытаний, кстати с этой перчаткой я ездил на выставку и занял второе место из-за того что плохо показал презентацию. Максимальная дальность ЭМИ перчатки составляла 20 см. Надеюсь эта статья была вам интересна, и будьте осторожны с высоким напряжением!

ГЕНЕРАТОРЫ СУПЕРМОЩНЫХ ЭЛЕКТРОМАГНИТНЫХ ИМПУЛЬСОВ
В ИНФОРМАЦИОННЫХ ВОЙНАХ
В.Слюсар

В продолжение темы электромагнитного оружия предлагаем вашему вниманию обзор состояния разработок и тенденций развития технических средств создания супермощного электромагнитного импульса, предназначенных для дистанционного поражения электронных компонентов информационно-управляющих систем различного назначения, инициирования подрыва взрывчатых веществ, а также негативного воздействия на биосферу. Потенциальные свойства этих средств позволяют считать их чрезвычайно перспективным оружием поражения как по способам, так и по масштабам применения.

Н ачало эпохи информационных войн, пришедшееся на рубеж тысячелетий, ознаменовалось появлением новых видов оружия - электромагнитного импульса (ЭМИ) и радиочастотного. По принципу поражающего действия оружие ЭМИ имеет много общего с электромагнитным импульсом ядерного взрыва и отличается от него, среди прочего, более короткой длительностью. Разработанные и испытанные в ряде стран неядерные средства генерации мощного ЭМИ способны создавать кратковременные (в несколько наносекунд) потоки электромагнитного излучения, плотность которых достигает предельных значений относительно электрической прочности атмосферы. При этом чем короче ЭМИ, тем выше порог допустимой мощности генератора.

По мнению аналитиков , наряду с традиционными средствами радиоэлектронной борьбы использование ЭМИ- и радиочастотного оружия для нанесения электронных и комбинированных электронно - огневых ударов с целью вывода из строя радиоэлектронных средств (РЭС) на расстояниях от сотен метров до десятков километров может стать одной из основных форм боевых действий в ближайшем будущем. Кроме временного нарушения функционирования (функционального подавления) РЭС, допускающего последующее восстановление их работоспособности, ЭМИ-оружие может осуществлять физическое разрушение (функциональное поражение) полупроводниковых элементов РХ, в том числе находящихся в выключенном состоянии.

Следует отметить также возможность поражающего действия мощного излучения ЭМИ-оружия на электротехнические и электроэнергетические системы вооружения и военной техники (ВВТ), электронные системы зажигания двигателей внутреннего сгорания (рис.1).

Токи, возбуждаемые электромагнитным полем в цепях электро- или радиовзрывателей, установленных на боеприпасах, могут достигать уровней, достаточных для их срабатывания . Потоки высокой энергии в состоянии инициировать детонацию взрывчатых веществ (ВВ) боеголовок ракет, бомб и артиллерийских снарядов, а также неконтактный подрыв мин в радиусе 50–60 м от точки подрыва ЭМИ-боеприпаса средних калибров (100–120 мм).
В отношении поражающего действия ЭМИ-оружия на личный состав, как правило, речь идет об эффектах временного нарушения адекватной сенсомоторики человека, возникновения ошибочных действий в его поведении и даже потери трудоспособности. Существенно, что негативные проявления воздействия мощных сверхкоротких СВЧ-импульсов не обязательно связаны с тепловым разрушением живых клеток биологических объектов. Поражающим фактором зачастую является высокая напряженность наведенного на мембранах клеток электрического поля, сравнимая с естественной квазистатической напряженностью собственного электрического поля внутриклеточных зарядов . В опытах на животных установлено, что уже при плотности импульсно-модулированного СВЧ-облучения на поверхности биологических тканей в 1,5 мВт/см2 имеет место достоверное изменение электрических потенциалов мозга. Активность нервных клеток изменяется под действием одиночного СВЧ-импульса продолжительностью от 0,1 до 100 мс, если плотность энергии в нем достигает 100 мДж/см2 . Последствия подобного влияния на человека пока мало изучены, однако известно , что облучение импульсами СВЧ иногда порождает звуковые галлюцинации, а при усилении мощности возможна даже потеря сознания.

Сегодня в различных странах изучается влияние нетеплового медико-биологического действия электромагнитного излучения различных частот и интенсивности на людей и другие биологические объекты. В июне 2003 года в штате Техас состоится уже Третий международный симпозиум по этой проблеме при спонсорстве научно-исследовательского управления ВВС США (AFOSR) www.electromed2003.com

РЕАЛИЗАЦИЯ ЭМИ-ОРУЖИЯ
ЭМИ-оружие может быть создано как в виде стационарных и мобильных электронных комплексов направленного излучения, так и в виде электромагнитных боеприпасов (ЭМБ), доставляемых к цели с помощью артиллерийских снарядов, мин, управляемых ракет (рис.2), авиабомб и т. п.

Возможна разработка и компактных образцов ЭМИ-оружия для диверсионных и террористических целей. О том, насколько серьезно воспринимают такую угрозу американские аналитики, свидетельствует сценарий "цифровой какофонии", которая могла бы возникнуть в США в случае применения террористами ЭМИ- или радиочастотного оружия против зданий, впоследствии разрушенных 11 сентября 2001 года . (Авторы еще в 1996 году предусмотрели подобные события, описав разрушительное влияние разгрома финансовых баз данных на состояние мировой экономики.)

В основу ЭМБ положены методы преобразования химической энергии взрыва, горения и электрической энергии постоянного тока в энергию электромагнитного поля высокой мощности. Решение проблемы создания ЭМИ-боеприпасов связано, прежде всего, с наличием компактных источников излучения, которые могли бы
располагаться в отсеках боевой части управляемых ракет, а также в артиллерийских снарядах.

Наиболее компактными на сегодня источниками энергии для ЭМБ считаются спиральные взрывомагнитные генераторы (ВМГ), или генераторы с взрывным сжатием магнитного поля , имеющие наилучшие показатели удельной плотности энергии по массе (100 кДж/кг) и объему (10 кДж/см3), а также взрывные магнитодинамические генераторы (ВМДГ) . В ВМГ с помощью взрывчатого вещества происходит преобразование энергии взрыва в энергию магнитного поля с эффективностью до 10%, а при оптимальном выборе параметров ВМГ – даже до 20%. Такой тип устройств способен генерировать импульсы энергией в десятки мега-джоулей и длительностью до 100 мкс. Пиковая мощность излучения может достигать 10 ТВт . ВМГ могут применяться автономно или как один из каскадов для накачки генераторов СВЧ-диапазона. Ограниченная спектральная полоса излучения ВМГ (до нескольких мегагерц) делает их влияние на РЭС довольно избирательным. Вследствие этого возникает проблема создания компактных антен_
ных систем, согласованных с параметрами генерируемого ЭМИ .

В ВМДГ взрывчатка или ракетное топливо применяются для образования плазменного потока, быстрое перемещение которого в магнитном поле приводит к возникновению сверхмощных токов с сопутствующим электромагнитным излучением. Основное преимущество ВМДГ – многоразовость применения, поскольку картриджи со взрывчаткой или ракетным топливом могут закладываться в генератор многократно. Однако его удельные массогабаритные характеристики в 50 раз ниже, чем у ВМГ , и вдобавок технология ВМДГ еще не достаточно отработана, чтобы в ближайшей перспективе делать ставку на эти источники энергии.

К разряду более мощных ЭМИ-систем радиочастотного диапазона относится виркаторный генератор . При соответствующем подборе параметров конструкции и режима генерации виркатор может создавать импульс с пиковой мощностью до 40 ГВт в дециметровом и сантиметровом диапазонах волн. Благодаря высокой скорости нарастания тока в тандемах виркатор–ВМГ возможна генерация сверхкоротких радиоимпульсов, длительность которых ограничена временем плавления анода. Представление о радиусе действия такого боеприпаса дает методика, приведенная в работе
. Однако в качестве примера следует указать, что для виркаторного генератора с несущей 5 ГГц и мощностью 10 ГВт конус поражающего действия электромагнитного излучения имеет диаметр до 500 метров в основании на расстоянии нескольких сотен метров от точки подрыва(напряженность поля, наведенного на кабели и антенны в этом основании, достигает 1–3 кВ/м) .

Таким образом, электромагнитные боеприпасы потенциально обладают значительно большим радиусом поражения РЭС, чем традиционные, однако для достижения их максимальной эффективности необходимо выводить боеприпас по возможности как можно ближе к объектам поражения с помощью высокоточных систем наведения.

В Уральском отделении Института электрофизики РАН (Екатеринбург) разработана серия многоразовых мобильных SOS-генераторов ЭМИ, проникающая способность излучения которых намного выше, чем у ВМГ. Принцип действия SOS-генераторов основан на эффекте наносекундной коммутации сверхплотных токов в полупроводниковых приборах (SOS – Semiconductor Opening Switch) . SOS-эффект представляет собой качественно новый вариант коммутации тока – развитие процесса стремительного падения тока происходит не в низколегированной базе полупроводниковой структуры, как в других приборах, а в ее узких высоколегированных областях. База и p-n-переход остаются при этом заполненными плотной избыточной плазмой, концентрация которой приблизительно на два порядка превышает исходный уровень легирования. Эти два обстоятельства и приводят к сочетанию высокой плотности коммутируемого тока с наносекундной длительностью его отключения.

Другое важное свойство SOS-эффекта – в том, что стадия срыва тока характеризуется автоматическим равномерным распределением напряжения по последовательно соединенным полупроводниковым структурам. Это позволяет создавать прерыватели тока с напряжением мегавольтного уровня путем простого последовательного соединения SOS-структур.

SOS-эффект обнаружен в 1991 году в обычных высоковольтных выпрямительных полупроводниковых диодах подбором определенного сочетания плотности тока и времени накачки. В дальнейшем была разработана специальная полупроводниковая структура со сверхжестким режимом восстановления, на основе которой удалось создать высоковольтные полупроводниковые прерыватели тока нового класса – SOS-диоды, имеющие рабочее напряжение в сотни киловольт, ток коммутации в десятки килоампер, время коммутации – единицы наносекунд и частоту следования импульсов – килогерцы.

Типовая конструкция SOS-диода (рис.3) – это последовательная сборка элементарных диодов, взаимно стянутых диэлектрическими шпильками между двумя пластинами-электродами.

На рис.4 приведена типичная форма обратного тока через SOS-диод с площадью структуры 1 см2. Значение коммутируемого тока – 5,5 кА, время его срыва (падения с 0,9 до 0,1 амплитуды) – 4,5 нс. Скорость коммутации – 1200 кА/мкс, что приблизительно на три порядка превышает токовый градиент в обычных быстродействующих тиристорах. Самый мощный из разработанных на сегодня SOS-диодов при площади структуры 4 см2 имеет рабочее напряжение 200 кВ и коммутирует ток 32 кА, что соответствует коммутируемой мощности 6 ГВт .

На основе SOS-диодов разработана серия мощных наносекундных генераторов с рекордными для полупроводниковых коммутаторов параметрами. Принцип работы ЭМИ-генератора на SOS-эффекте (рис.5) сводится к следующему .

Тиристорное зарядное устройство (ТЗУ) осуществляет дозированный отбор энергии от источника питания, которая
затем за время 10–100 мкс при напряжении 1–2 кВ поступает на магнитный компрессор (МК). Последний сжимает энергию во времени до 300–600 нс и повышает напряжение до сотен киловольт. SOS-диод выступает в роли оконечного усилителя мощности, переводя энергию в диапазон времени 10–100 нс и повышая напряжение в 2–3 раза.

Введение в состав ЭМИ-генератора звена магнитной компрессии (рис.6) продиктовано необходимостью согласования параметров выходного импульса ТЗУ с параметрами импульса накачки SOS-диода. По мере сжатия энергии в МК происходит удвоение напряжения в каждой ячейке. В общем случае выходное напряжение МК, без учета активных потерь энергии, в 2n раз выше входного (где n– число конденсаторных ячеек). Примечательно, что МК не требует дополнительных цепей для перемагничивания сердечников магнитных ключей, поскольку в данной схеме этот процесс происходит автоматически благодаря разным направлениям протекания зарядного и разрядного токов через любой из ключей. Еще одна отличительная особенность схемы МК состоит в двойном сжатии энергии во времени на каждой конденсаторной ячейке за счет перезаряда нижних конденсаторов. Поэтому двух конденсаторных ячеек уже достаточно для временного уплотнения энергии на два порядка.

Важная задача, возникающая при передаче энергии от МК к полупроводниковому коммутатору, – схемная реализация двухконтурной накачки прерывателя в режиме усиления обратного тока. Пример соответствующей схемы согласования приведен на рис.7 . Между выходом МК и SOS-диодом подключают конденсатор обратной накачки СН и магнитный ключ обратной накачки MS_ (или импульсный трансформатор). После насыщения ключа прямой накачки MS+, являющегося выходным коммутатором МК, энергия из последней ячейки компрессора переводится в конденсатор СН. При этом ток заряда I+ конденсатора СН одновременно является током прямой накачки SOS-элемента. Нарастающим напряжением на СН ключ MSˉ перемагничивается. После его включения в SOS-диод вводится обратный ток I–, который превышает I+ в несколько раз, и энергия конденсатора СН переводится в индуктивность контура обратной накачки (индуктивность обмотки насыщенного ключа MS– или добавочная катушка индуктивности). После срыва тока SOS-диодом энергия передается в нагрузку в виде короткого наносекундного импульса.

Отсутствие в SOS-генераторах газоразрядных коммутаторов снимает принципиальные ограничения на частоту повторения импульсов. В продолжительном режиме работы эта частота ограничена тепловыми нагрузками на элементы генератора, в первую очередь на сердечники магнитных ключей, а при кратковременном включении генератора в режиме пакета импульсов – частотными возможностями ТЗУ, то есть временем восстановления тиристоров и временем заряда первичного накопителя. Режим пакета импульсов, когда генератор работает от десятков секунд до нескольких минут с частотой и выходной мощностью, в несколько раз превышающими номинальные, важен именно для перспектив боевого применения. Поэтому для более полного использования частотных возможностей ТЗУ проектируется, исходя из требования минимального времени накопления энергии, а элементы генератора выбираются с учетом результатов расчета их адиабатического разогрева в пакетном режиме функционирования. Разработанные SOS-генераторы
позволяют от 5 до 10 раз увеличивать номинальную частоту следования импульсов и выходную мощность в режиме пакета продолжительностью от 30 до 60 с.

Параметры некоторых российских SOS-генераторов приведены в таблице . Наиболее мощный среди генераторов наносекундного класса – S-5N (рис.8), система охлаждения элементов которого проточной водой потребляет до 15 л/мин. Этот генератор использовался в экспериментах по зажиганию коронных разрядов большого объема, которые могут найти применение в новых технологиях очистки воздуха от вредных и токсичных примесей. Среди субнаносекундных генераторов наилучшие показатели достигнуты в модели SM_3NS (рис.9), в которой применен новый тип SOS-диодов – субнаносекундный.

Интенсивные исследования путей улучшения характеристик SOS-генераторов продолжаются. В частности, в российских научных центрах отрабатывается применение этих генераторов для питания широкополосных СВЧ-излучателей, а также в качестве средств накачки мощных газовых лазеров. Разработанные в России приборы и экспериментальные установки широко эксплуатируются за границей в различных научных организациях: в США – в Ливерморской национальной лаборатории, Исследовательской лаборатории ВМС, Техасском технологическом университете, Исследовательской лаборатории Армии; в Германии – в Исследовательском центре Карлсруэ; в Республике Корея – компанией LG Industrial Systems; в Израиле – ядерным исследовательским центром SOREQ NRC, фирмой Exion Technologies .

На рис.10 показано место, которое занимает SOS-техника среди других основных технологий коммутации и формирования мощных наносекундных импульсов в схемах с индуктивным накоплением и коммутацией тока. Видно, что SOS-технология выступает своеобразным связующим звеном, заполняя в наносекундном диапазоне времени гигантский разрыв в значениях импульсного напряжения и тока между самыми мощными установками на основе плазменных коммутаторов тока, с одной стороны, и полупроводниковыми генераторами – с другой .

ТЕНДЕНЦИИ РАЗРАБОТОК ЭМИ-ОРУЖИЯ
США. Наиболее активно разработки ЭМИ-систем поражения РЭС проводятся в США. Они охватывают широкий спектр оперативно-тактического применения нового оружия. Основные научно-исследовательские организации США, участвующие в разработке компонентов ЭМИ-оружия, – Лос-Аламосская национальная лаборатория, Исследовательская лаборатория Армии (шт. Мериленд), Исследовательская лаборатория ВМС, Лаборатория им. Лоуренса, Техасский технологический университет (г. Лаббок) и целый ряд других университетских и военных лабораторий.

Первый в истории взрывомагнитный генератор был испытан именно в Лос-Аламосской национальной лаборатории еще в конце 50_х годов . Начало работ в ВВС США по созданию мобильного генератора радиочастотного ЭМИ и изучения влияния СВЧ-излучения на РЭС авиационных и космических носителей датируется 1986 годом. В 1987 году на авиабазе Kirtland (шт. Нью_Мексико) было введено в действие имитационное оборудование "Джипси" с импульсной мощностью 1 ГВт в диапазоне частот от 0,8 до 40 ГГц. В 1991 году научно-техническое направление создания ЭМИ-оружия в США выделилось как самостоятельное и было включено в перечень критических военных технологий. В то же время МО США начало работы (Harry Diamond Laboratory, ныне Adelphi Laboratory Center) по созданию мобильных систем радиочастотного оружия (1–40 ГГц) с узкой диаграммой направленности, основанных на синхронизации излучения большого числа источников. ВМС США занимались разработкой средств суперЭМИ для борьбы с самолетами и противокорабельными ракетами на основе синхронизированных гиротронов (диапазон частот 10–85 ГГц, мощность импульса 1 ГВт). Исследовалось также распространение мощного электромагнитного излучения в разных слоях атмосферы.

Логическим результатом этих исследований явилось создание и испытание в 2001 г. опытного образца нового оружия, нагревающего кожу людей микроволновыми лучами, которое получило название VMADS (Vehicle-Mounted Active Denial System) . Ожидаемая сфера его применения – разгон демонстраций и стихийных митингов. Продолжаются испытания на добровольцах с целью усовершенствования системы.

В перспективе ее можно будет применять как невидимое оружие заграждения даже для маловысотных воздушных объектов, в том числе микропланов. VMADS (рис.11)использует антенну, похожую на спутниковую тарелку, размером 3х3 м, систему наведения и тепловизор, позволяющий анализировать степень нагрева цели.

Представители американского Исследовательского центра ВВС (шт. Нью-Мексико) заявляют, что установка
VMADS создает излучение частотой 95 ГГц, которое проникает под кожу на треть миллиметра и быстро (за 2 с) нагревает ее поверхность до болевого порога в 45ОС. Будущие версии VMADS могут устанавливаться также на кораблях и самолетах. В период до 2009 года США планируют приступить к закупке серийных образцов системы на транспортном средстве типа Humvee, или HMMWV (High Mobility Multi-purpose Wheeled Vehicle).

Еще в начале 90_х годов DARPA разработало концепцию применения ЭМИ-оружия средней мощности и создания на ее основе сверхмощных постановщиков активных помех. Результатом явилось, в частности, испытание в ходе боевых действий против Ирака в 1991–1992 годах отдельных образцов электромагнитного оружия. Это – крылатые ракеты "Томахок" (морского базирования), которые были выпущены по позициям ПВО Ирака. Радиоизлучения, возникшие вследствие подрыва боевых частей крылатых ракет, усложнили работу электронных систем вооружений, в особенности компьютерной сети системы ПВО.

Электромагнитные бомбы неоднократно применялись США и в ходе боевых действий в Югославии (1999 год), тем не менее использование боеприпасов этого типа носило пока испытательный, эпизодический характер. К 2010–2015 гг. в США могут быть приняты на вооружение боевые образцы более совершенных электромагнитных боеприпасов и высокоточных крылатых ракет, во всяком случае информация о таких планах периодически появляется в печати.

Значительное внимание в США отводится созданию имитаторов действия ЭМИ-систем, позволяющих в достаточной мере оценивать последствия их применения на РЭС ВВТ и вырабатывать рекомендации по усовершенствованию средств защиты. До 1991 года в США были созданы 24 имитатора ЭМИ, предназначенные для полномасштабных испытаний ракет, самолетов, кораблей, стартовых позиций и других объектов, которые подлежат защите от ЭМИ-оружия .

Россия. Не стоит в стороне от процесса разработки ЭМИ-систем военного назначения и Россия. В соответствии с имеющейся открытой информацией, в 1998 году на шведском полигоне российские специалисты провели показательные испытания "электронного" боеприпаса с демонстрацией его поражающего действия на РЭА самолета, находящегося на летном поле (Российское телевидение, канал НТВ, 28.02.98). В том же году на выставке ВВТ сухопутных войск "Евросатори_98" Россия предложила зарубежным покупателям уникальную лабораторию, разработанную в Федеральном ядерном центре "Арзамас_16", которая предоставляет возможность исследовать действие высокочастотного электромагнитного излучения на информационные и энергетические системы, а также на каналы передачи данных .

В печати опубликованы сообщения о создании в России опытных образцов ЭМИ-оружия в виде реактивных гранат, предназначенных для электромагнитного подавления системы активной защиты танка. В России уже имеются экспериментальные образцы 100-мм и 130-мм электромагнитных снарядов, 40-мм, 105-мм и 125-мм реактивных электромагнитных гранат, 122-мм электромагнитных боевых частей неуправляемых ракет .

На выставке ЛИМА-2001 в Малайзии (2001 год) Россия продемонстрировала действующий образец боевого ЭМИ-генератора "Ранец-E" (Defence Systems Daily, 26.10.2001). Этот комплекс был создан как средство обороны мобильных РЭС от высокоточного оружия. Новая система состоит из антенны, высокомощного генератора, подсистемы управления, измерительной установки и источника электропитания. "Ранец-E" может быть изготовлен в стационарном и мобильном вариантах. Мощность его излучения в импульсе длительностью 10–20 нс в сантиметровом диапазоне волн превышает 500 МВт. Такие параметры, по утверждению Рособоронэкспорта, позволяют поражать системы наведения и электронное оборудование высокоточных боеприпасов и управляемых ракет на расстоянии до 10 км в 60_градусном секторе.

Великобритания. В 1992 году газета "Санди телеграф" сообщила о вступлении в ряды обладателей ЭМИ-оружия и Великобритании. В публикации говорилось о разработке в Агентстве оборонных исследований Великобритании (г.Фарнборо) "микроволновой бомбы" для поражения электронного оборудования. По замыслу, такая бомба может приводиться в действие в средних слоях атмосферы и полностью выводить из строя компьютерные системы и телефонные линии на площади одного квартала (Агентство ИТАР-ТАСС, 12.10.92).

В 2001 году компания Matra BAE Dynamics с успехом продемонстрировала британскому МО артиллерийский снаряд калибра 155 мм, способный поражать бортовые компьютеры танков или самолетов, прерывать работу радиостанций и радаров . Объектами поражения могут быть также национальные телефонные, телевизионные и радиосети, система электроснабжения всей страны противника. Снаряд содержит лишь несколько граммов взрывчатки, которая срабатывает при приближении к цели и снимает внешнюю оболочку снаряда, после чего раскрываются электропанели – главное средство поражения. На протяжении нескольких наносекунд они излучают заряд электроэнергии мощностью в миллиарды ватт, что создает огромную перегрузку во всех электронных схемах, которые находятся в границах действия снаряда. "Обстреливать" такими боеприпасами можно даже жилые районы, поскольку опасности для жизни людей они не представляют. Считается, что ЭМИ-снаряды особенно эффективны при использовании против боевой техники, скрытой в населенных пунктах. Предполагают, что новый снаряд был создан в ответ на аналогичные устройства российских специалистов.

Есть также многочисленные свидетельства, что большой интерес к созданию ЭМИ-оружия проявляют военные специалисты Китая, Израиля, Швеции, Франции, которые используют различные формы научного и коммерческого сотрудничества для овладения мировым опытом в этой области. В частности, китайский специалист из Института электроники КНР был сопредседателем Первого международного симпозиума по проблеме нетеплового медико-биологического действия электромагнитного поля (Electromed"99), состоявшегося в США в апреле 1999 года, а также
входил в состав программного комитета второго аналогичного форума Electromed2001. Аналитики США полагают, что КНР разработает свое первое сверхмощное ЭМИ-оружие до 2015 года.

Франция в 1994 году была страной проведения международной конференции EUROEM_94, посвященной научным проблемам, связанным с разработкой источников мощного микроволнового излучения, изучением его, идентификацией и метрологическим обеспечением. Аналогичная научная конференция EUROEM-98 состоялась в июне 1998 года в Израиле.

После показательных испытаний в 1998 году российского "электромагнитного" боеприпаса на полигоне в Швеции факт заинтересованности шведских военных в создании собственных ЭМИ-вооружений стал очевидным. Подтверждением тому могут служить публикации шведской военной прессы, довольно компетентно описывающие различные аспекты некоторых из соответствующих концептуальных проектов www.foa.se .

В перспективе ЭМИ-оружие рассматривается, прежде всего, как силовое, наступательное средство радиоэлектронной и информационной борьбы. Основными стратегическими и оперативными задачами, которые можно будет решать с помощью ЭМИ-оружия, являются:
стратегическое сдерживание агрессии;
дезорганизация систем управления войсками и оружием противника;
снижение эффективности его наступательных воздушных, сухопутных и морских действий;
обеспечение господства в воздухе путем поражения средств ПВО и РЭБ противоборствующей стороны.

Электронные боеприпасы могут быть использованы для воздействия на районы возможных позиций мобильных и переносных ЗРК, в системах ближней защиты летательного аппарата. Эффект применения ЭМБ выражается, к примеру, в выводе из строя системы обнаружения цели переносного ЗРК, его головки самонаведения, причем эти эффекты могут быть достигнуты, даже если в момент воздействия переносной ЗРК находится в неактивном состоянии. Защита летательного аппарата может осуществляться с помощью ЭМБ, который выстреливается навстречу атакующей ракете и
поражает ее головку самонаведения с помощью бортового генератора направленного излучения. По аналогичному принципу проектируются и перспективные комплексы защиты танков от противотанковых ракет, комплексы борьбы с различными высокоточнымибоеприпасами.


ЭМИ-генераторы типа российского "Ранца-Е" могут стать панацеей и в борьбе с воздушными микроаппаратами (ВМА), которым, по мнению многих аналитиков, уготована в боевых действиях будущего роль атомного оружия в прошлом столетии. Рой микропланов (рис.12), оснащенных миниатюрными телекамерами, и направленный в боевые порядки противника, обеспечит наблюдение за его действиями в реальном времени. Микропланы могут выступить и в роли носителей микрооружия для высокоточного поражения наиболее важных целей, даже отдельных пехотинцев, а также для транспортирования биологических и химических средств поражения . Небольшой размер и бесшумность микроаппаратов позволят им вести боевые действия незаметно для неприятеля, который может уничтожить отдельные аппараты, но почти не в состоянии уничтожить все ВМА, учитывая их небольшие размеры. Именно ЭМИ-генераторы могут стать единственным заградительным средством на пути применения таких боевых микророботов в будущем.

Представленные материалы дают основание предполагать, что уже в ближайшие десятилетия появление высокоэффективных ЭМИ-вооружений будет в состоянии коренным образом влиять на ход развития технологий изготовления и облик перспективных радиоэлектронных систем не только военного, но и гражданского назначения.

ЛИТЕРАТУРА:
1. ЭЛЕКТРОНИКА: НТБ,1999, №6, с.40–44.
2. Carlo Kopp. The E_Bomb – a Weapon of Electrical Mass Destruction. (www.cs.monash.edu.au/~carlo).
3. Справочник по радиолокации /Под ред. М. Сколника. Т. 2._ М.: Сов. радио._ 1976.
4. Девятков Н.Д. и др. Воздействие низкоэнергетического импульсного КВЧ_ и СВЧ-излучения наносекундной длительности с большой пиковой мощностью на биологические структуры (злокачественные образования). – Доклады Академии наук СССР, 1994, т.336, № 6.
5. Хлуновская Е.А., Слепченко Л.Ф. Специфичность влияния сверхвысокочастотного импульсно-модулированного электромагнитного поля на вызванные потенциалы зрительной, слуховой и сенсомоторной коры мозга кошки при стимуляции светом и звуком. – Биофизика, 1995, т. 40, вып.2.
6. Космическое оружие: дилемма безопасности/ Под ред. Велихова Е.П._ М.: Мир, 1986.
7. Воздействие на различные объекты облучения СВЧ большой мощности. – ЭИ "Радиотехника и связь", 1995, № 9.
8. Edward F. Murphy, Gary C. Bender, еtс. Information Operations: Wisdom Warfare For 2025. Alternate Futures for 2025: Security Planning to Avoid Surprise. Chapter 5. Digital Cacophony. April 1996 (www.au.af.mil/au/2025).
9. Демидов В.А., Жариков Е.И., Казаков С.А., Чернышев В.К. Высокоиндуктивные спиральные ВМГ с большим коэффициентом усиления энергии. – ПМТФ, 1981.
10. Ударные и детонационные волны. Методы исследования / В.В. Селиванов, В. С. Соловьев, Н. Н. Сысоев. – М.: Изд_во
МГУ, 1990. – 256 с.
11. Зарубежная радиоэлектроника, 1990, № 5, с. 67.
12. Авдеев В.Б. Достижимые характеристики электромагнитного поражения распределенных на земной поверхности радиоэлектронных целей. – Известия вузов. Сер. Радиоэлектроника, 2001, № 9, с. 4 – 15.
13. www.iep.uran.ru/RUSSIAN/PPL/MainRus.htm.
14. ЭЛЕКТРОНИКА: НТБ, 2001, № 4, с. 8 – 15.
15. Исследования по созданию СВЧ_оружия в США (обзор). -СИ, 1991.
16. Kevin Bonsor. How Military Pain Beams Will Work. (http://howstuffworks.lycos.com/pain_beam.htm).
17. Соловьев В. Блеск и нищета оборонки. – Независимое военное обозрение, 1998, № 23.
18. Прищепенко А.Б., Житников В., Третьяков Д. "Атропус" означает "неотвратимая". – Армейский сборник, 1998, № 2.
19. Великобритания разрабатывает новое оружие для борьбы с террором._ News.Battery.Ru – Аккумулятор Новостей,
01.11.2001. (http://news.battery.ru).
20. Слюсар В.И. Микропланы: от шедевров конструирования – к серийным системам. – Конструктор, 2001, № 2, с.23_25.

Представьте, что у вас есть некое устройство, которое способно вывести из строя любую электронику на расстоянии. Согласитесь, похоже на сценарий какого-то фантастического фильма. Но это не фантастика, а вполне реальность. Такое устройство сможет сделать почти любой желающий своими руками, из деталей, которые свободно можно достать.

Описание устройства

Уничтожитель электроники – электромагнитная пушка, посылающая мощные направленные электромагнитные импульсы высокой амплитуды, способные вывести из строя микропроцессорную технику.

Принцип работы уничтожителя

Принцип работы отдаленно напоминает работу трансформатора Тесла и электрошокера. От элемента питания питается электронный высоковольтный повышающий преобразователь. Нагрузкой высоковольтного преобразователя является последовательная цепь из катушки и разрядника. Как только напряжение достигнет уровня пробивки разрядника, происходит разряд. Этот разряд дает возможность передать всю энергию высоковольтного импульса катушке из проволоки. Эта катушка преобразовывает высоковольтный импульс в электромагнитный импульс высокой амплитуды. Цикл повторяется несколько сот раз в секунду и зависит от частоты работы преобразователя.

Схема прибора

В роли разрядника будет использоваться один переключатель – его не нужно будет нажимать. А другой для коммутации.

Что нужно для сборки?

- Аккумуляторы 3,7 В –
- Корпус –
- Преобразователь высокого напряжения –
- Переключатели две штуки –
- Супер клей.
- Горячий клей.













Сборка

Берем корпус и сверлим отверстия под переключатели. Один с низу, другой с верху. Теперь делаем катушку. Наматываем по периметру корпуса. Витки фиксируем горячим клеем. Каждый виток отделен друг от друга. Катушка состоит из 5 витков. Собираем все по схеме, припаиваем элементы. Вставляем изоляционную прокладку между контактами высоковольтного выключателя, чтобы искра была внутри, а не снаружи. Закрепляем все детали внутри корпуса, закрываем крышку корпуса.








Требования безопасности

Будьте особо осторожны – очень высокое напряжение! Все манипуляции со схемой производите только после отключения источника питания.
Не используйте этот электромагнитный уничтожитель рядом с медицинским оборудование, или другим оборудованием, от которого может зависеть человеческая жизнь.

Результат работы магнитной пушки

Пушка лихо вышибает почти все чипы, конечно есть и исключения. Если у вас имеются ненужные электронные устройства можете проверить работу на них. Уничтожитель электроники имеет очень маленький размер и спокойно умещается в кармане.
Проверка на осциллографе. Держа щупы на расстоянии и не подключая, осциллограф просто зашкаливает.