Охранные системы с функцией распознавания лиц: принцип работы, установка и сферы применения

Видеть - значит понимать увиденное. Мы слепы, если в нашем мозгу не работают зрительные зоны неокортекса - своеобразного биокомпьютера, ответственного за распознавание образов. Сейчас подобные анализаторы, способные узнавать лица и понимать их выражение, появляются у искусственных систем.

Итак, вещи обретают зрение, а у зрения есть собственный разум. Сначала мне кажется, что он туповат: только что включенная система распознавания лиц LUNA не торопится войти в штатный режим и запомнить меня. Но вот наконец она рапортует, что запомнила, и просит ввести имя. Пол и возраст LUNA может определить сама. С полом легко: у меня борода, а вот возраст система завысила на пять лет - видимо, из-за той же бороды.

Теперь камера узнает меня, даже если я снимаю очки или поворачиваю голову. Приходится попробовать средство посерьезней - мы направляемся к шкафу с париками и накладными усами. Я выбираю густые кудри, скрывающие к тому же пол-лица, - LUNA все равно узнает меня.

Наигравшись с париками, мы открываем ICQ и начинаем развлекаться с масками для видеозвонков: на мое цифровое лицо в реальном времени накладываются маски - можно неузнанным общаться в видеочате.

Следующий номер нашей программы - Face.DJ. Это приложение строит 3D-модель лица по селфи, а потом "надевает" это лицо на виртуальную голову, чтобы вы могли примерять прически и аксессуары. Другое назначение приложения - анимировать пользователя, создать его мультяшную копию для игр и прочих онлайн-занятий.

Мы готовим такое же приложение для сервиса знакомств: люди при первом контакте часто не хотят раскрываться, - рассказывает Юля, пиарщик компании VisionLabs, разработавшей LUNA. - Некоторые надевают маски, чтобы добавить в романтическое общение элемент игры.

У кросс-платформенной системы LUNA тоже много масок. Есть приложение в мессенджере Telegram, которое распознает пол и возраст по лицу, есть LUNA в облаке и LUNA для браузера. Но главное - эту программу можно внедрять в самые разные технологические продукты, чтобы использовать для распознавания лиц.

Например, одному из наших клиентов нужно выбирать фотографии - так называемый bestshot из видеопотока. Так вот, наша программа справляется с этим сама. Другому клиенту нужно, чтобы система распознавала лицо не только при входе в интернет-банк, но и на протяжении всего сеанса, потому что вы можете отойти, а вашим доступом воспользуется злоумышленник. С этой задачей мы тоже справились.

Главные клиенты VisionLabs - банки. Например, в "Почта Банке" системой LUNA оборудованы 50 тысяч рабочих мест - это самое большое внедрение биометрии в мире. Важно распознавать и лица клиентов, чтобы сравнивать фотографии в паспортах с фото в базе данных. Ведь самое распространенное мошенничество в этой сфере - вклейка своего фото в чужой паспорт для получения кредита.

Как видят машины

К нам подходит Александр Ханин, директор VisionLabs.

Расскажите о компьютерном зрении?

Александр Ханин: Компьютерное зрение - это область прикладной математики, которая по сложности эквивалентна задаче создания искусственного интеллекта в целом. Визуальный канал основной для получения информации об окружающем мире. И доверяем мы увиденному своими глазами больше, чем другим источникам.

Наша задача - научить программу по фотографии или видео делать выводы и понимать картинку так же, как человек. Или даже лучше. Вот когда машина сравняется с человеком в этом умении, можно будет считать, что задача решена. Пока же она решена лишь для некоторых узких прикладных областей. Например, для распознавания дефектов оборудования или распознавания лиц.

Задача распознавания лиц решена?

Александр Ханин: Да, уже сейчас достоверно показано, что машина различает лица лучше нас. И точнее, и быстрее. Человек не очень хорошо определяет возраст, национальность. Тот, кто живет в Европе, хуже различает лица людей с азиатской внешностью, и наоборот. Еще мы забывчивы. В довершение всего машина делает это в десятки миллионов раз быстрее.

Зато человек анализирует не отдельные параметры, а лицо и даже ситуацию в целом. Мы понимаем контекст, в котором лицо собеседника принимает то или иное выражение. Как машина со всем этим справляется?

Александр Ханин: Сочетая лучшие методики компьютерного зрения и машинного обучения. Взять, например, метод глубокого обучения - его особенность в том, что человек не задает параметры лица для распознавания.

Нейросеть программирует сама себя?

Александр Ханин: Нейросети появились еще в 1970-х, а революция в этой области началась примерно в 2013-2014-м. Потому что только к этому времени удалось накопить достаточно большие объемы данных , чтобы учить нейросети, а вычислительные мощности стали относительно дешевыми. Продолжать разрабатывать детерминированные методы распознавания - указывать, какие части лица как сравнивать, - стало бессмысленно.

Прорыв произошел, когда отказались от заданных параметров, например от ключевых точек на лице. Вместо этого машине поставили задачу: "Смотри, вот десять тысяч пар фотографий, каждая пара - один человек. Проанализируй их, чтобы суметь определить на фото, которые ты пока не видишь, где один человек, а где разные". Машина сама находит параметры, которые важны для решения этой задачи.

Вы именно так обучали свою систему?

Александр Ханин: Ну да, это типичная задача идентификации - сравнить фотографию, сделанную сейчас, с фото в паспорте и подтвердить, что это один и тот же человек. Мы давали машине на вход большие данные - миллионы пар фотографий, а на выходе требовали правильного ответа для любых фотопортретов. И система училась - сама настраивала параметры так, чтобы минимизировать ошибки. То есть для глубокого обучения сначала надо найти обучающую выборку - много примеров правильных решений. Потом программа работает уже сама.

Где же вы взяли эти миллионы пар фотографий?

Александр Ханин: Есть доступные обучающие выборки для исследователей - сначала мы использовали их, а дальше уже работали с партнерами и клиентами, которые разрешили продолжить обучение на их данных.

Как преуспеть на рынке

Задача распознавания людей по лицу решена. А как обстоит дело с определением эмоций?

Александр Ханин: Как, например, в африканских странах люди миновали стадию телеграфа и сразу перешли на мобильную сеть, так и мы, не решая задачу распознавания эмоций, сразу перешли на более высокий уровень - к выводам о важных для наших клиентов характеристиках человека. Бизнес показывает: от того, что машина распознает, улыбается человек или нахмурен, пользы никакой. Нужны более серьезные умения.

Распознавать ложь, например?

Александр Ханин: Да. Или определять, соответствует кандидат вашим требованиям или нет. Удовлетворен клиент обслуживанием или нет - улыбка ведь может выражать не только радость, но и насмешку и скрытое недовольство. Поэтому само по себе распознавание эмоций - это подзадача. Мы изучаем лицо в динамике, последовательность реакций на вопросы, обслуживание, обстановку.

Есть ли в мире инновационные продукты, на которые вы ориентируетесь?

Александр Ханин: Мы сами на переднем фланге. Медицинский факт, что наш продукт - первая в мире комплексная система распознавания лиц для банков и ретейла, которая работает и в мобильном телефоне, и на сайте, и в отделениях, и в банкоматах, и в терминалах самообслуживания - везде. Мы не только первые, но пока, насколько я знаю, единственные.

В каких-то терминалах самообслуживания уже установлена система распознавания лиц?

Александр Ханин: Да, например, в банке "Открытие" - в терминалах электронной очереди. И это не пилотные проекты, а такие, которые работают и удовлетворяют заказчиков в реальных условиях.

Чувствуете, как конкуренты дышат в спину?

Александр Ханин: Пилотных проектов в близких к нам областях много. Компаний, которые занимаются распознаванием лиц, только в России десятки, в Китае - около сотни, в мире - больше тысячи. Поэтому я и говорю, что сама по себе задача распознавания лиц решена, - во всяком случае для большинства сегментов и практических задач.

Для успеха на рынке важны не технологии. Большинству клиентов плевать, какая у нас технология и как именно мы решаем задачу, допустим, по ускорению обслуживания в банке или магазине, - с помощью распознавания лиц, прогноза погоды или черной магии. Им важно, чтобы был результат.

Распознать всех!

Какие задачи еще не решены, но будут - в обозримой перспективе? Над чем работают специалисты?

Александр Ханин: Одна из важнейших нерешенных задач - распознавание лиц в полностью неконтролируемой обстановке, например в толпе. Многие говорят, что умеют это делать, но по факту ничего такого пока не внедрили. Видимо, напрасно говорят.

Разве узнавать случайных людей по лицам не запрещено законом? Это ведь использование персональных данных.

Александр Ханин: Бизнесу запрещено, конечно. Это нарушение прав человека и вмешательство в частную жизнь. Вообще, технологии сейчас позволяют сделать гораздо больше, чем разрешает законодательство. Но мы работаем только в белой зоне - в полном соответствии с законом. Для нас важно не нарушать права людей. Мы не имеем права использовать без согласия человека его данные из соцсетей и поэтому не станем делать, например, для магазина систему, которая ищет информацию о клиенте по его фотографии. Но мы можем разработать программу, которая будет приблизительно оценивать пол и возраст покупателей по фото.

Наша компания работает только с бизнесом, а вот у служб национальной безопасности есть системы, которые ищут людей по фотографии.

То есть ФСБ можно, а обычным людям нельзя?

Александр Ханин: Да. Если спецслужба хочет найти террориста в толпе, ей нужно сканировать и распознать всех. А если человек зашел в магазин и программа по фотографии нашла его аккаунт в соцсети, узнала телефон и начала рассылать спам, это очень серьезное нарушение. На Западе за это предусмотрена уголовная ответственность.

В аэропортах уже есть системы распознавания лиц?

Александр Ханин: Да, в основном на паспортном контроле - они проверяют, ваш ли это паспорт, не поддельный ли и не числитесь ли вы в списке заблокированных или в федеральном розыске. За рубежом степень автоматизации значительно выше. В аэропортах Сингапура, Лондона, Парижа паспортный контроль можно проходить автоматически, без участия сотрудников. Вы сканируете свой паспорт, вас фотографируют, происходит сверка - и все, можно идти дальше.

Угадай, что на картинке

Как будет развиваться компьютерное зрение?

Александр Ханин: Есть большая группа задач, именуемых visual question answering: вы показываете компьютеру картинку, и он должен понять, что там изображено. Это очень сложно: если просто учить распознавать объекты по отдельности, ничего не получится - надо понимать контекст и взаимосвязь объектов.

Другая похожая задача - распознавание действий человека, они ведь тоже определяются во многом по контексту. Например, если человек поднял руку, что это значит? Он указывает дорогу или собирается кого-то ударить? Вот сидим, думаем.

То есть вы хотите научить машины распознавать образы, смысл которых зависит от контекста?

Александр Ханин: Научить интерпретировать контекст и таким образом распознавать картинки, действия, сцены.

Когда роботы прозреют

Александр Ханин: Хотелось бы, чтоб разработку компьютерного зрения довели до конца. Тогда у роботов появятся настоящие глаза, а значит, возможность понимать происходящее и адекватно реагировать. Иначе они не станут частью общества, а так и будут игрушками с пультами управления.

Как системы, распознающие лица, изменят нашу жизнь в ближайшие годы?

Александр Ханин: Вы совершенно точно заметите работу таких систем при авторизации - например, когда будете разблокировать телефон. Многие уже привыкли к Touch ID, но скоро самым распространенным способом станет вхождение в систему по лицу. Приходя домой, вы не будете искать ключи, на работе вам не понадобится пропуск. Ускорится обслуживание и самообслуживание в банках, магазинах, во всей сфере услуг: расчеты будут происходить без карточек.

На улицах станет безопаснее, потому что появится видеонаблюдение с функциями отслеживания. Города и страны получат дополнительную защиту, а возмездие за преступление станет неизбежным. Система будет фиксировать все: кто и где это сделал, куда потом пошел. На смену понятию "безопасный город" придет "умный город": одна и та же инфраструктура будет обеспечивать безопасность и, например, управление потоками людей и машин, а также много чего другого.

Одна и та же система установленных повсюду камер и компьютерного зрения?

Александр Ханин: Да, алгоритму без разницы, кого распознавать: вип-клиента или воришку. Лица у всех устроены одинаково: глаза, рот и нос. Но дело не только в лицах. Эта же система может заняться, скажем, регулированием освещения. Если в помещении нет людей, зачем жечь электричество? Машина вызовет коммунальные службы, если зафиксирует неполадки, и так далее.

Жить в мире, где все на виду, страшновато. Технически все проще становится построить антиутопию, где за всеми ведется тотальная слежка…

Александр Ханин: Я думаю, в итоге мир станет лучше и намного безопаснее. Но обманывать будет труднее. Например, мы с партнерами недавно разработали продукт, который не только дает доступ в рабочее помещение, но и учитывает проведенное там время: пришли во столько-то, ушли во столько. Прогуляли, опоздали, не вернулись с обеда - все будет зафиксировано.

И никак нельзя будет от этого спрятаться? Наверняка появятся маски с чужим лицом.

Александр Ханин: Безусловно, есть масса способов обмануть систему, и в этой области "гонка вооружений" только начинается. Был такой видеоролик, где учили делать макияж, препятствующий распознаванию. Но то было года три назад - нынешние алгоритмы так просто не проведешь.

А если вместо лица показывать фотографию?

Александр Ханин: Чтобы вычислить мошенников, в системах распознавания лиц программируют специальный "детектор живости" (lifeness detector), который определяет, человек перед ним или фотография. Показателей живости несколько. Самый простой, который считается мировым стандартом, - это моргание. Еще система может попросить человека улыбнуться, повернуть голову, приблизиться к камере, чтобы убедиться, что он реальный. Но если камера оснащена сенсором глубины, это не требуется: машина сразу понимает, что в кадре объемный объект, а не фото.

Кто еще в лидерах

Распознавание лиц - это не только наука и технология, но и большой бизнес, который в развитых странах растет огромными темпами. Исследовательская компания Allied Market Research прогнозирует, что к 2022 году его оборот составит почти десять миллиардов долларов. Среди ведущих игроков есть и российские. Из десятков стартапов и исследовательских проектов мы выделили три самых успешных.

NTechLab. Выпускник МГУ Артем Кухаренко начинал с приложения, определявшего породу собак по фотографии. Но уже в 2015 году созданный им с партнерами по проекту NTechLab алгоритм FaceN одержал победу в двух из четырех номинаций главного мирового конкурса по распознаванию лиц MegaFace, обойдя команду Google. Однако настоящая слава пришла к компании после разработки популярнейшего приложения FindFace, предназначенного для поиска по фото людей в соцсети "ВКонтакте". Сегодня число заявок на интеграцию технологии FindFace приближается к тысяче.

Vocord. Компанию "Вокорд" можно смело считать чемпионом мира по распознаванию лиц: на сайте конкурса MegaFace она занимает первое место, лидируя с солидным отрывом. Команда "Вокорд" - ветераны на рынке систем компьютерного зрения: программу дистанционного биометрического распознавания лиц Vocord FaceControl они выпустили еще в 2008 году, сегодня их продуктами пользуются больше двух тысяч коммерческих и государственных организаций. Специализация компании - идентификация лиц, то есть поиск человека в толпе.

VisionLabs. Их продукты входят в тройку лучших мировых коммерческих систем распознавания лиц. Подробнее об этой компании читайте в основном тексте.

Основные виды биометрии

Международная классификация способов идентификации человека

Лицо. Программа по фото или видеоизображению лица анализирует размер и форму глаз, носа, скул, их взаиморасположение и на основе этих данных создает уникальную комбинацию, которую затем сравнивает с имеющимися на предмет совпадения.

Отпечатки пальцев. Дактилоскопический метод основан на неповторимости папиллярного рисунка кожи, широко применяется в криминалистике.

Речь. Способ распознавания, основанный на преобразовании звучащей речи в цифровую информацию.

Глаза. Распознавание происходит в результате сравнения цифрового изображения радужной оболочки глаза с имеющимися в базе.

Вены. Способ идентификации на основе венозного рисунка руки или пальцев.

Вы поднимаетесь по лестнице и заходите в лифт. Он знает, на какой этаж вам нужно. Двери в квартиру сами открываются перед вами. Компьютер и телефон «узнают» вас и не требуют ввода пароля.

На первый взгляд может показаться, что любая организация, которая может себе такое позволить, следит за каждым вашим шагом, собирает на вас досье. Но вы даже не представляете, как широко технологии распознавания лиц распространились по миру и какие мощные перспективы обещают. Помимо выше приведенных примеров, системы распознавания лиц позволяют делать и такие простые и сложные вещи:

  • подтверждение личности студента во время онлайн-экзаменов;
  • определение людей из «черного списка» на входе на стадионы и ночные клубы;
  • оплата товаров;
  • сохранение вашего места в очереди при посещении парка аттракционов;
  • разблокировка телефона или компьютера.

Что говорить, если в одной только Москве уже работает сеть из более 150 000 камер наружного видеонаблюдения. От них никуда не скрыться, и это заставляет людей задумываться, но масштабы «слежки» не настолько велики. Сеть использует мощную систему распознавания лиц, но для ее работы необходимо много энергии, поэтому в режиме реального времени работают всего 2-4 тысячи камер. Массовым слежением за населением пока только пугают, поэтому стоит сосредоточиться на реальных плюсах работы данной технологии. Но обо всем по порядку.

Как работает система распознавания лиц?

Никогда не задумывались о том, как вы сами узнаете лицо, распознаете его? А как это делает компьютер? Конечно, у человеческих лиц есть определенные свойства, которые легко описать. Расстояние между глазами, положение и ширина носа, форма надбровных дуг и подбородка - все эти детали вы подмечаете бессознательно, когда смотрите на другого человека. Компьютер же делает все это с определенной эффективностью и точностью, потому что, совмещая все эти метрики, получает математическую формулу человеческого лица.

Итак, насколько хорошо работает система распознавания лиц в настоящее время? Вполне неплохо, но иногда ошибается. Если вы когда-нибудь сталкивались с ПО, распознающим лица на Facebook или на другой платформе, вы наверняка замечали, что забавных результатов бывает столько же, сколько и точных. И все же, хотя технология работает не со 100-процентной точностью, она достаточно хороша, чтобы найти широкое применение. И даже заставить понервничать.

Пол Хоуи из NEC говорит, что их система распознавания лиц сканирует лица на предмет индивидуальных идентификаторов:

«К примеру, многие считают расстояние между глазами уникальной характеристикой. Или же это может быть расстояние от подбородка до лба и другие компоненты. Мы, в частности, учитываем 15-20 факторов, которые считаются важными, а также другие факторы, уже не настолько значимые. Создается трехмерное изображение головы человека, поэтому даже если она частично будет закрыта, мы все равно сможем получить точное соответствие. Затем система берет сигнатуру лица и пропускает ее через базу данных».

Стоит ли переживать о программах, распознающих лица?

Прежде всего, распознавание лиц - это данные. Данные можно собирать и хранить, зачастую без разрешения. Как только информация собрана и сохранена, она открыта и для взлома. Платформы с ПО, распознающим лица, пока не подвергались серьезным взломам, но по мере распространения технологий ваши биометрические данные оказываются в руках все большего числа людей.

Существуют также вопросы владения. Большинство людей не знают, что когда они регистрируются в социальных медиаплатформах вроде Facebook, их данные с этого момента принадлежат этой самой Facebook. Поскольку число компаний, использующих распознавание лиц, постоянно растет, очень скоро даже не придется загружать собственные фотографии в Интернет, чтобы оказаться скомпрометированным. Они уже там хранятся, и хранятся давно.

Говоря о программном обеспечении, все они работают по-разному, но в основе своей используют похожие методы и нейросети. У каждого лица есть множество отличительных признаков (в мире невозможно найти два идентичных лица, а ведь сколько их было за всю историю человечества!). К примеру, программное обеспечение FaceIt определяет эти признаки как узловые точки. Каждое лицо содержит примерно 80 узловых точек, схожих с теми, что мы упоминали прежде: расстояние между глазами, ширина носа, глубина глазных впадин, форма подбородка, длина челюсти. Эти точки измеряются и создают числовой код - «отпечаток лица» - который затем попадает в базу данных.

В прошлом распознавание лиц опиралось на двумерные снимки для сравнения или идентификации других двумерных снимков из базы данных. Для пущей эффективности и точности изображение должно было быть лицом, прямо смотрящим в камеру, с небольшой дисперсией света и без особого выражения лица. Конечно, работало это чертовски плохо.

В большинстве случаев снимки не создавались в подходящей среде. Даже небольшая игра света могла снизить эффективность системы, что приводило к высоким показателям отказа.

На смену 2D пришло 3D-распознавание. Эта недавно появившаяся тенденция в программном обеспечении использует 3D-модель, обеспечивающую высокую точность распознавания лица. Запечатлевая трехмерное изображение поверхности лица человека в реальном времени, ПО выделяет отличительные черты - где больше всего выдаются жесткие ткани и кость, например, кривые глазного гнезда, носа и подбородка - для идентификации субъекта. Эти области уникальны и не меняются со временем.

Используя глубину и ось измерения, на которые не влияет освещение, система трехмерного распознавания лиц может даже использоваться в темноте и распознавать объекты под разными углами (даже в профиль). Подобное программное обеспечение проходит через несколько этапов, идентифицируя человека:

  • Обнаружение: получение снимка при помощи цифрового сканирования существующей фотографии (2D) или видео для получения живой картинки субъекта (3D).
  • Центровка: определив лицо, система отмечает положение головы, размер и позу.
  • Измерение: система измеряет кривые на лице с точностью до миллиметра и создает шаблон.
  • Репрезентация: система переводит шаблон в уникальный код. Этот код задает каждому шаблону набор чисел, представляющих особенности и черты лица.
  • Сопоставление: если снимок в 3D и база данных содержит трехмерные изображения, сопоставление пройдет без изменений снимка. Но если же база данных состоит из двумерных снимков, трехмерное изображение раскладывается на разные составляющие (словно сделанные под разными углами двумерные снимки одних и тех же черт лица), и они конвертируются в 2D-изображения. И затем находится соответствие в базе данных.
  • Верификация или идентификация: в процессе верификации снимок сравнивается только с одним снимков в базе данных (1:1). Если целью же стоит идентификация, снимок сравнивается со всеми снимками в базе данных, что приводит к ряду возможных совпадений (1:N). Применяется тот или иной другой метод по необходимости.

Где используются системы распознавания лиц?

В прошлом системы распознавания лиц находили применение в основном в сфере правоохранения, поскольку органы использовали их для поиска случайных лиц в толпе. Некоторые правительственные учреждения также использовали подобные системы для безопасности и для устранения мошенничества на выборах.

Однако есть много других ситуаций, в которых такое программное обеспечение становится популярным. Системы становятся дешевле, их распространение растет. Теперь они совместимы с камерами и компьютерами, которые используются банками и аэропортами. Туристические агентства работают над программой «бывалого путешественника»: с ее помощью они проводят быстрый скрининг безопасности для пассажиров, которые добровольно предоставляют информацию. Очереди в аэропортах будут продвигаться быстрее, если люди будут проходить через систему распознавания лиц, сопоставляющую лица с внутренней базой данных.

Другие потенциальные применения включают банкоматы и терминалы выдачи наличных денег. Программное обеспечение может быстро проверить лицо клиента. После разрешения клиента банкомат или терминал делает снимок лица. Программное обеспечение создает отпечаток лица, защищающий клиента от кражи личных данных и мошеннических транзакций, - банкомат просто не выдаст деньги человеку с другим лицом. Даже ПИН-код не потребуется.

Волшебство? Технологии!

Особенно важным и интересным может быть развитие технологии распознавания лиц в сфере банковских переводов. На днях российский банк «Открытие» представил собственное уникальное решение, разработанное под технологическим брендом Open Garage: перевод денег по фотографии в мобильном приложении «Открытие.Переводы». Вместо того чтобы вбивать номер карты или телефона, достаточно просто сфотографировать человека, которому нужно сделать перевод. Система распознавания лиц сравнит фото с эталонным (делается, когда банк выдает карту) и подскажет имя и фамилию. Останется только выбрать карту и ввести сумму. Что особенно важно, клиенты сторонних банков также могут использовать эту функцию для переводов клиентам «Открытия» - отправитель переводов может пользоваться картой любого российского банка.

«Использование фотографии клиента вместо номера банковской карты - это принципиально новый подход к онлайн-переводам, основанный на использовании нейросетевой системы распознавания лиц, которая позволяет с высокой степенью точности идентифицировать клиента по его биометрическим данным, - говорит начальник Управления развития партнерских систем банка «Открытие» Алексей Матвеев. - Сервис открывает для пользователей совершенно новые жизненные сценарии для выполнения денежных переводов. В настоящее время ни один из участников финансового рынка в мире не предлагает подобного сервиса своим клиентам».

Современных интегрированных систем безопасности способны решать задачи любой сложности на всевозможных объектах промышленного, социального и бытового назначения. Очень важными инструментами охранных комплексов являются системы видеонаблюдения, и требования, предъявляемые к функциональным возможностям сегмента, неуклонно растут.

Комплексные системы безопасности

Единая платформа включает в себя модули охранно-пожарного оборудования, контроля и управления доступом, видеонаблюдения или охранного телевидения (СОТ). Функции последнего до недавнего времени ограничивались видеомониторингом и регистрацией ситуации на объекте и прилегающей территории, архивацией и хранением данных. Классические видеосистемы обладают целым рядом существенных недостатков:

  • Человеческий фактор. Неэффективная работа оператора при трансляции большого объема информации.
  • Невозможность оперативного вмешательства, несвоевременный анализ.
  • Значительные временные затраты для поиска и идентификации события.

Развитие цифровых технологий привели к созданию "умных" автоматизированных систем.

Сила в интеллекте

Базовым принципом интеллектуальной является видеоаналитика - технология, базирующаяся на методах и алгоритмах распознавания образов и автоматизированного сбора данных в результате анализа видеопотока. Такое оборудование без участия человека способно обнаружить и отследить в реальном времени заданные цели (автомобиль, группа людей), потенциально опасные ситуации (задымление, возгорание, несанкционированное вмешательство в работу видеокамер), запрограммированные события и своевременно выдать тревожный сигнал. За счет фильтрации не представляющих интереса видеоданных значительно снижается нагрузка на коммуникационные каналы и архивную базу.

Наиболее востребованное средство видеоаналитики - система распознавания лиц. В зависимости от выполняемых функций и поставленных задач к оборудованию предъявляются определенные требования.

Программно-аппаратные средства

Для эффективной работы системы используют несколько типов IP-видеокамер с различными эксплуатационными характеристиками. Обнаружение объекта на подконтрольной территории фиксируют камеры панорамного обзора с разрешением от 1 Мп и фокусным расстоянием от 1 мм и наводят на него сканирующие устройства. Это более совершенные камеры (от 2Мп, от 2 мм), производящие распознавание по простым методикам (3-4 параметра). Для идентификации объекта используют камеры с хорошим качеством изображения, достаточным для применения сложных алгоритмов (от 5 Мп, 8-12 мм).

Наиболее популярные программные продукты для распознавания лиц "Face Интеллект" (разработчик - компания House Control), Face director (компания "Синезис) и VOCORD FaceControl (VOCORD) демонстрируют:

  • Высокую вероятность идентификации объекта (до 99 %).
  • Поддержку широкого диапазона углов поворота видеокамер.
  • Возможность выделения лиц даже в плотной пешеходной массе.
  • Вариативность составления аналитических отчетов.

Основы распознавания образов

Любые биометрические системы распознавания базируются на выявлении соответствия считываемых физиологических характеристик личности определенному заданному шаблону.

Сканирование происходит в режиме реального времени. IP-камера транслирует видеопоток на терминал, и система распознавания лиц определяет соответствие изображения хранящимся в базе данных фотографиям. Существует два основных метода. Первый основан на статических принципах: по результатам обработки биометрических параметров создается электронный образец в форме уникального числа, соответствующего конкретной личности. Второй метод моделирует "человеческий" подход и характеризуется самообучаемостью и робастностью. Идентификация личности по видеоизображению происходит с учетом возрастных изменений и других факторов (наличие головного убора, бороды или усов, очков). Такая технология позволяет работать даже со старыми фотографиями и, в случае необходимости, с рентгеновскими снимками.

Алгоритм поиска лиц

Самая распространенная методика детектирования лиц - с использованием каскадов Хаара (наборов масок).

Маска представляет собой прямоугольное окно с различной комбинацией белых и черных сегментов.

Механизм работы программы следующий: видеокадр покрывается набором масок, и по результатам свертки (подсчет пикселей, попавших в белые и черные секторы) подсчитывается разность, сравниваемая с некой пороговой величиной.

Для улучшения работы классификатора создаются положительные (кадры, где присутствуют лица людей) и отрицательные (без таковых) обучающие выборки. В первом случае результат свертки выше порогового значения, во втором - ниже. Детектор лиц с допустимой погрешностью определяет сумму сверток всех каскадов и при превышении порога сигнализирует о присутствии лиц в кадре.

Технологии распознавания

После детектирования и локализации на предварительном этапе происходит яркостное и геометрическое выравнивание изображения. Дальнейшие действия - вычисление признаков и идентификация - могут осуществляться различными методами.

При сканировании лица анфас в помещении с отличной освещенностью хорошие результаты демонстрируют алгоритмы, работающие с двухмерными изображениями. Анализируя уникальные точки и расстояния между ними, система распознавания лиц определяет факт идентификации по коэффициентам различия между "живым" снимком и зарегистрированным шаблоном.

Трехмерные технологии устойчивы к изменению светового потока, допустимое отклонение от фронтального ракурса - до 45 градусов. Здесь анализу подвергаются не только точки и линии, но и свойства поверхностей (кривизна, профиль), метрика расстояний между ними. Для работы таких алгоритмов необходимо максимальное качество видеозаписи с частотой до 200 кадров/с. Основу системы составляют стереовидеокамеры с матрицей от 5 мегапикселей, высоким оптическим разрешением и сведенной до минимума погрешностью синхронизации. Дополнительно они соединяются специальным тактирующим кабелем для передачи синхроимпульсов.

Состояние современного рынка систем

Первые ввиду их высокой стоимости, разрабатывались только для государственных военных объектов и лишь в середине 90-х годов стали доступны коммерческим организациям. Стремительное развитие технологий и позволило увеличить точность систем и расширить сферу их применения. На рынке нашей страны ведущие позиции принадлежат американским и западноевропейским производителям охранных систем. Лидером продаж является оборудование корпораций ZN Vision Technologies и Visionics. Наиболее перспективными среди отечественных разработчиков выглядят исследования и продукты компаний "Вокорд", NTechLab, "Солинг", ООО "ВижнЛабс" и группы "ЦРТ", которые, кроме прочего, занимаются еще и адаптацией зарубежных комплексов к российским условиям.

Компьютерный фейсконтроль

Самая обширная область применения бесконтактной идентификации - борьба с терроризмом и криминалом. Изображение лица преступника хранится в базе данных. В местах массового скопления народа (аэропорты, вокзалы, ТРЦ, спортивные учреждения) ведется съемка людского потока в режиме реального времени на предмет выявления лиц, находящихся в розыске.

Следующая сфера - системы контроля управления доступом: образец фотоизображения на электронном пропуске сравнивается с моделью, полученной в результате обработки данных с видеокамер. Процедура происходит мгновенно, не требуя от проходящих каких-либо дополнительных действий (в отличие от сканирования сетчатки глаза или дактилоскопии).

Еще одна стремительно развивающаяся отрасль - маркетинг. Интерактивный рекламный щит, просканировав лицо человека, определяет его пол и возраст, визуализирует только ту рекламу, которая будет потенциально интересна клиенту.

Тенденции и перспективы развития

Очень востребованы системы распознавания лиц в банковском секторе.

По итогам прошлого года, руководству "Почта Банка", после установки в своих офисах 50000 интеллектуальных видеокамер, удалось сэкономить миллионы рублей за счет профилактики мошенничества в сегментах кредитования и платежей. Специалисты утверждают, что к 2021 году будет создана необходимая инфраструктурная сеть и любые операции в банкоматах станут возможными только после биометрической идентификации лица клиента.

В ближайшее десятилетие высокие технологии позволят открыть сеть магазинов полного самообслуживания: покупатель проходит перед витринами, выбирает понравившийся товар и уходит. Система распознавания лиц и образов определит личность покупателя, покупки и спишет с его счета необходимую сумму.

Ведутся работы по созданию систем распознаванию психоэмоционального состояния. Анализ человеческих эмоций будет востребован в мультимедийных сферах: анимации, кинематографе, индустрии создания компьютерных игр.

Пожалуй нет ни одной другой технологии сегодня, вокруг которой было бы столько мифов, лжи и некомпетентности. Врут журналисты, рассказывающие о технологии, врут политики которые говорят о успешном внедрении, врут большинство продавцов технологий. Каждый месяц я вижу последствия того как люди пробуют внедрить распознавание лиц в системы которые не смогут с ним работать.

Тема этой статьи давным-давно наболела, но было всё как-то лень её писать. Много текста, который я уже раз двадцать повторял разным людям. Но, прочитав очередную пачку треша всё же решил что пора. Буду давать ссылку на эту статью.

Итак. В статье я отвечу на несколько простых вопросов:

Как вы думаете, откуда создатели алгоритмов взяли эти базы?

Маленькая подсказка. Первый продукт NTech, который они сейчас - Find Face, поиск людей по вконтакту. Думаю пояснения не нужны. Конечно, вконтакт борется с ботами, которые выкачивают все открытые профили. Но, насколько я слышал, народ до сих пор качает. И одноклассников. И инстаграмм.

Вроде как с Facebook - там всё сложнее. Но почти уверен, что что-то тоже придумали.
Так что да, если ваш профиль открыт - то можете гордиться, он использовался для обучения алгоритмов;)

Про решения и про компании

Тут можно гордиться. Из 5 компаний-лидеров в мире сейчас два - Российские. Это N-Tech и VisionLabs. Пол года назад лидерами был NTech и Vocord, первые сильно лучше работали по повёрнутым лицам, вторые по фронтальным.

Сейчас остальные лидеры - 1-2 китайских компании и 1 американская, Vocord что-то сдал в рейтингах.

Еще российские в рейтинге itmo, 3divi, intellivision. Synesis - белорусская компания, хотя часть когда-то была в Москве, года 3 назад у них был блог на Хабре. Ещё про несколько решений знаю, что они принадлежат зарубежным компаниям, но офисы разработки тоже в России. Ещё есть несколько российских компаний которых нет в конкурсе, но у которых вроде неплохие решения. Например есть у ЦРТ. Очевидно, что у Одноклассников и Вконтакте тоже есть свои хорошие, но они для внутреннего пользования.

Короче да, на лицах сдвинуты в основном мы и китайцы.

NTech вообще первым в миру показал хорошие параметры нового уровня. Где-то в конце 2015 года . VisionLabs догнал NTech только только. В 2015 году они были лидерами рынка. Но их решение было прошлого поколения, а пробовать догнать NTech они стали лишь в конце 2016 года.

Если честно, то мне не нравятся обе этих компании. Очень агрессивный маркетинг. Я видел людей которым было впарено явно неподходящее решение, которое не решало их проблем.

С этой стороны Vocord мне нравился сильно больше. Консультировал как-то ребят кому Вокорд очень честно сказал «у вас проект не получится с такими камерами и точками установки». NTech и VisionLabs радостно попробовали продать. Но что-то Вокорд в последнее время пропал.

Выводы

В выводах хочется сказать следующее. Распознавание лиц это очень хороший и сильный инструмент. Он реально позволяет находить преступников сегодня. Но его внедрение требует очень точного анализа всех параметров. Есть где достаточно OpenSource решения. Есть применения (распознавание на стадионах в толпе), где надо ставить только VisionLabs|Ntech, а ещё держать команду обслуживания, анализа и принятия решения. И OpenSource вам тут не поможет.

На сегодняшний день нельзя верить всем сказкам о том, что можно ловить всех преступников, или наблюдать всех в городе. Но важно помнить, что такие вещи могут помогать ловить преступников. Например чтобы в метро останавливать не всех подряд, а только тех кого система считает похожими. Ставить камеры так, чтобы лица лучше распознавались и создавать под это соответствующую инфраструктуру. Хотя, например я - против такого. Ибо цена ошибки если вас распознает как кого-то другого может быть слишком велика.

Добавить метки

Взять кредит, оформить визу, да и просто запустить смартфон последней модели — сделать все это сегодня невозможно без участия алгоритмов распознавания лиц. Они помогают полицейским в расследованиях, музыкантам — на сцене, но понемногу превращаются во всевидящее око, следящее за всеми нашими действиями онлайн и офлайн.

Алгоритмы (технологии)

Определить человека по фото с точки зрения компьютера означает две очень разные задачи: во‑первых, найти лицо на снимке (если оно там есть), во‑вторых, вычленить из изображения те особенности, которые отличают этого человека от других людей из базы данных.

1. Найти

Попытки научить компьютер находить лицо на фотографиях проводились еще с начала 1970-х годов. Было испробовано множество подходов, но важнейший прорыв произошел существенно позднее — с созданием в 2001 году Полом Виолой и Майклом Джонсом метода каскадного бустинга, то есть цепочки слабых классификаторов. Хотя сейчас есть и более хитрые алгоритмы, можно поспорить, что и в вашем сотовом телефоне, и в фотоаппарате работает именно старый добрый Виола — Джонс. Все дело в замечательной быстроте и надежности: даже в далеком 2001 году средний компьютер с помощью этого метода мог обрабатывать по 15 снимков в секунду. Сегодня эффективность алгоритма удовлетворяет всем разумным требованиям. Главное, что нужно знать об этом методе, — он устроен удивительно просто. Вы даже не поверите насколько.

  1. Шаг1. Убираем цвет и превращаем изображение в матрицу яркости.
  2. Шаг 2. Накладываем на нее одну из квадратных масок — они называются признаками Хаара. Проходимся с ней по всему изображению, меняя положение и размер.
  3. Шаг 3. Складываем цифровые значения яркости из тех ячеек матрицы, которые попали под белую часть маски, и вычитаем из них те значения, что попали под черную часть. Если хотя бы в одном из случаев разность белых и черных областей оказалась выше определенного порога, берем эту область изображения в дальнейшую работу. Если нет — забываем про нее, здесь лица нет.
  4. Шаг 4. Повторяем с шага 2 уже с новой маской — но только в той области изображения, которая прошла первое испытание.

Почему это работает? Посмотрите на признак . Почти на всех фотографиях область глаз всегда немного темнее области непосредственно ниже. Посмотрите на признак : светлая область посередине соответствует переносице, расположенной между темными глазами. На первый взгляд черно-белые маски совсем не похожи на лица, но при всей своей примитивности они имеют высокую обобщающую силу.

Почему так быстро? В описанном алгоритме не отмечен один важный момент. Чтобы вычесть яркость одной части изображения из другой, понадобилось бы складывать яркость каждого пикселя, а их может быть много. Поэтому на самом деле перед наложением маски матрица переводится в интегральное представление: значения в матрице яркости заранее складываются таким образом, чтобы интегральную яркость прямоугольника можно было получить сложением всего четырех чисел.

Как собрать каскад? Хотя каждый этап наложения маски дает очень большую ошибку (реальная точность ненамного превышает 50%), сила алгоритма — в каскадной организации процесса. Это позволяет быстро выкидывать из анализа области, где лица точно нет, и тратить усилия только на те области, которые могут дать результат. Такой принцип сборки слабых классификаторов в последовательности называется бустингом (подробнее о нем можно прочитать в октябрьском номере «ПМ» или ). Общий принцип такой: даже большие ошибки, будучи перемножены друг на друга, станут невелики.

2. Упростить

Найти особенности лица, которые позволили бы идентифицировать его владельца, означает свести реальность к формуле. Речь идет об упрощении, причем весьма радикальном. Например, различных комбинаций пикселей даже на миниатюрном фото 64 x 64 пикселя может быть огромное количество — (2 8) 64 x 64 = 2 32768 штук. При этом для того, чтобы пронумеровать каждого из 7,6 млрд людей на Земле, хватило бы всего 33 бита. Переходя от одной цифры к другой, нужно выкинуть весь посторонний шум, но сохранить важнейшие индивидуальные особенности. Специалисты по статистике, хорошо знакомые с такими задачами, разработали множество инструментов упрощения данных. Например, метод главных компонент, который и заложил основу идентификации лиц. Впрочем, в последнее время сверточные нейросети оставили старые методы далеко позади. Их строение довольно своеобразно, но, по сути, это тоже метод упрощения: его задача — свести конкретное изображение к набору особенностей.


Накладываем на изображение маску фиксированного размера (правильно она называется ядром свертки), перемножаем яркость каждого пикселя изображения на значения яркости в маске. Находим среднее значение для всех пикселей в «окошке» и записываем его в одну ячейку следующего уровня.


Сдвигаем маску на фиксированный шаг, снова перемножаем и снова записываем среднее в карту признаков.


Пройдясь по всему изображению с одной маской, повторяем с другой — получаем новую карту признаков.


Уменьшаем размер наших карт: берем несколько соседних пикселей (например, квадрат 2x2 или 3x3) и переносим на следующий уровень только одно максимальное значение. То же самое проводим для карт, полученных со всеми другими масками.


В целях математической гигиены заменяем все отрицательные значения нулями. Повторяем с шага 2 столько раз, сколько мы хотим получить слоев в нейросети.


Из последней карты признаков собираем не сверточную, а полносвязную нейросеть: превращаем все ячейки последнего уровня в нейроны, которые с определенным весом влияют на нейроны следующего слоя. Последний шаг. В сетях, обученных классифицировать объекты (отличать на фото кошек от собак и пр.), здесь находится выходной слой, то есть список вероятностей обнаружения того или иного ответа. В случае с лицами вместо конкретного ответа мы получаем короткий набор самых важных особенностей лица. Например, в Google FaceNet это 128 абстрактных числовых параметров.

3. Опознать

Самый последний этап, собственно идентификация, — самый простой и даже тривиальный шаг. Он сводится к тому, чтобы оценить похожесть полученного списка признаков на те, что уже есть в базе данных. На математическом жаргоне это означает найти в пространстве признаков расстояние от данного вектора до ближайшей области известных лиц. Точно так же можно решить и другую задачу — найти похожих друг на друга людей.

Почему это работает? Сверточная нейросеть «заточена» на то, чтобы вытаскивать из изображения самые характерные черты, причем делать это автоматически и на разных уровнях абстракции. Если первые уровни обычно реагируют на простые паттерны вроде штриховки, градиента, четких границ и т. д. , то с каждым новым уровнем сложность признаков возрастает. Маски, которые нейросеть примеряет на высоких уровнях, часто действительно напоминают человеческие лица или их фрагменты. Кроме того, в отличие от метода главных компонент, нейросети комбинируют признаки нелинейным (и неожиданным) образом.

Откуда берутся маски? В отличие от тех масок, что используются в алгоритме Виолы — Джонса, нейросети обходятся без помощи человека и находят маски в процессе обучения. Для этого нужно иметь большую обучающую выборку, в которой имелись бы снимки самых разных лиц на самом разном фоне. Что касается того результирующего набора особенностей, которые выдает нейросеть, то он формируется по методу троек. Тройки — это наборы изображений, в которых первые два представляют собой фотографию одного и того же человека, а третье — снимок другого. Нейросеть учится находить такие признаки, которые максимально сближают первые изображения между собой и при этом исключают третье.

Чья нейросеть лучше? Идентификация лиц давно уже вышла из академии в большой бизнес. И здесь, как и в любом бизнесе, производители стремятся доказать, что именно их алгоритмы лучше, хотя не всегда приводят данные открытого тестирования. Например, по информации конкурса MegaFace, в настоящее время лучшую точность показывает российский алгоритм deepVo V3 компании «Вокорд» с результатом в 92%. Гугловский FaceNet v8 в этом же конкурсе показывает всего 70%, а DeepFace от Facebook с заявленной точностью в 97% в конкурсе вовсе не участвовал. Интерпретировать такие цифры нужно с осторожностью, но уже сейчас понятно, что лучшие алгоритмы почти достигли человеческой точности распознавания лиц.

Живой грим (искусство)

Зимой 2016 года на 58-й ежегодной церемонии вручения наград «Грэмми» Леди Гага исполнила трибьют умершему незадолго до того Дэвиду Боуи. Во время выступления по ее лицу растеклась живая лава, оставив на лбу и щеке узнаваемый всеми поклонниками Боуи знак — оранжевую молнию. Эффект движущегося грима создавала видеопроекция: компьютер отслеживал движения певицы в режиме реального времени и проецировал на лицо картины, учитывая его форму и положение. В Сети легко найти видеоролик, на котором заметно, что проекция еще несовершенна и при резких движениях слегка запаздывает.


Технологию видеомаппинга лиц Omote Нобумичи Асаи развивает с 2014 года и уже с 2015-го активно демонстрирует по всему миру, собрав приличный список наград. Основанная им компания WOW Inc. стала партнером Intel и получила хороший стимул для развития, а сотрудничество с Ишикавой Ватанабе из Токийского университета позволило ускорить проекцию. Впрочем, основное происходит в компьютере, и похожие решения используют многие разработчики приложений, позволяющих накладывать на лицо маски, будь то шлем солдата Империи или грим «под Дэвида Боуи».

Александр Ханин, основатель и генеральный директор VisionLabs

«Подобной системе не нужен мощный компьютер, наложение масок может производиться даже на мобильных устройствах. Система способна работать прямо на смартфоне, без отправки данных в облако или на сервер».

«Эта задача называется трекингом точек на лице. Есть много подобных решений и в открытом доступе, но профессиональные проекты отличаются скоростью и фотореалистичностью, — рассказал нам глава компании VisionLabs Александр Ханин. — Самое сложное при этом состоит в определении положения точек с учетом мимики и индивидуальной формы лица или в экстремальных условиях: при сильных поворотах головы, недостаточной освещенности и большой засветке». Чтобы научить систему находить точки, нейронную сеть обучают — сначала вручную, скрупулезно размечая фотографию за фотографией. «На входе это картинка, а на выходе — размеченный набор точек, — поясняет Александр. — Дальше уже запускается детектор, определяется лицо, строится его трехмерная модель, на которую накладывается маска. Нанесение маркеров осуществляется на каждый кадр потока в режиме реального времени».


Примерно так и работает изобретение Нобумичи Асаи. Предварительно японский инженер сканирует головы своих моделей, получая точные трехмерные прототипы и готовя видеоряд с учетом формы лица. Задачу облегчают и небольшие маркеры-отражатели, которые клеят на исполнителя перед выходом на сцену. Пять инфракрасных камер следят за их движениями, передавая данные трекинга на компьютер. Дальше все происходит так, как нам рассказали в VisionLabs: лицо детектируется, строится трехмерная модель, и в дело вступает проектор Ишикавы Ватанабе.

Устройство DynaFlash было представлено им в 2015 году: это высокоскоростной проектор, способный отслеживать и компенсировать движения плоскости, на которой отображается картинка. Экран можно наклонить, но изображение не исказится и будет транслироваться с частотой до тысячи 8-битных кадров в секунду: запаздывание не превышает незаметных глазу трех миллисекунд. Для Асаи такой проектор оказался находкой, живой грим стал работать действительно в режиме реального времени. На ролике, записанном в 2017 году для популярного в Японии дуэта Inori, отставания уже совсем не видно. Лица танцовщиц превращаются то в живые черепа, то в плачущие маски. Это смотрится свежо и привлекает внимание — но технология уже быстро входит в моду. Скоро бабочка, севшая на щеку ведущей прогноза погоды, или исполнители, каждый раз на сцене меняющие внешность, наверняка станут самым обычным делом.


Фейс-хакинг (активизм)

Механика учит, что каждое действие создает противодействие, и быстрое развитие систем наблюдения и идентификации личности не исключение. Сегодня нейросети позволяют сопоставить случайную смазанную фотографию с улицы со снимками, загруженными в аккаунты социальных сетей и за секунды выяснить личность прохожего. В то же время художники, активисты и специалисты по машинному зрению создают средства, способные вернуть людям приватность, личное пространство, которое сокращается с такой головокружительной скоростью.

Помешать идентификации можно на разных этапах работы алгоритмов. Как правило, атакам подвергаются первые шаги процесса распознавания — обнаружение фигур и лиц на изображении. Как военный камуфляж обманывает наше зрение, скрывая объект, нарушая его геометрические пропорции и силуэт, так и машинное зрение стараются запутать цветными контрастными пятнами, которые искажают важные для него параметры: овал лица, расположение глаз, рта и т. д. По счастью, компьютерное зрение пока не столь совершенно, как наше, что оставляет большую свободу в выборе расцветок и форм такого «камуфляжа».


Розовые и фиолетовые, желтые и синие тона доминируют в линейке одежды HyperFace, первые образцы которой дизайнер Адам Харви и стартап Hyphen Labs представили в январе 2017 года. Пиксельные паттерны предоставляют машинному зрению идеальную — с ее точки зрения — картинку человеческого лица, на которую компьютер ловится, как на ложную цель. Несколько месяцев спустя московский программист Григорий Бакунов и его коллеги даже разработали специальное приложение, которое генерирует варианты макияжа, мешающего работе систем идентификации. И хотя авторы, подумав, решили не выкладывать программу в открытый доступ, тот же Адам Харви предлагает несколько готовых вариантов.


Человек в маске или со странным гримом на лице, может, и будет незаметен для компьютерных систем, но другие люди наверняка обратят на него внимание. Однако появляются способы сделать и наоборот. Ведь с точки зрения нейросети изображение не содержит образов в обычном для нас понимании; для нее картинка — это набор чисел и коэффициентов. Поэтому совершенно различные предметы могут выглядеть для нее чем-то вполне сходным. Зная эти нюансы работы ИИ, можно вести более тонкую атаку и подправлять изображение лишь слегка — так, что человеку перемены будут почти незаметны, зато машинное зрение обманется полностью. В ноябре 2017 года исследователи показали, как небольшие изменения в окраске черепахи или бейсбольного мяча заставляют систему Google InceptionV3 уверенно видеть вместо них ружье или чашку эспрессо. А Махмуд Шариф и его коллеги из Университета Карнеги — Меллон спроектировали пятнистый узор для оправы очков: на восприятие лица окружающими он почти не влияет, а вот компьютерная идентификация средствами Face++ уверенно путает его с лицом человека, «под которого» спроектирован паттерн на оправе.