Рентгеновская трубка. Рентгеновское излучение и его свойства. Рентгеновская трубка и принцип ее работы

Тема: Физико-технические основы рентгенологии. Методы исследования. Принцип искусственного контрастирования.

Введение.

Современные технологии лучевой диагностики в настоящее время представлены следующими методами:

  1. Рентгенологический метод.
  2. Рентгеновская компьютерная томография (РКТ).
  3. Магнитно-резонансная томография (МРТ).
  4. Ультразвуковое исследование (УЗИ).
  5. Радионуклидное исследование (РНИ).

При рентгенологическом методе и рентгеновской компьютерной томографии используется ионизирующее (рентгеновское) излучение, при радиоизотопном методе ионизирующее (гамма-излучение), соответственно при проведении вышеперечисленных методов, пациент получает лучевую нагрузку, что делает нежелательным использование их в детском возрасте; они абсолютно противопоказаны во время беременности.

При ультразвуковом исследовании и магнитно-резонансной томографии применяется неионизирующие излучения (пациент не получает лучевую нагрузку), следовательно, данные методы могут широко использоваться в педиатрии и во время беременности (I триместр беременности является относительным противопоказанием к проведению МРТ).

Открытие В.К.Рентгеном нового вида излучения.

В истории медицины нет более ярких примеров определяющего влияния на его развитие вновь открытых явлений из других областей познания мира, подобных открытию рентгеновских лучей. Это выдающееся открытие, совершившее переворот не только в медицине, но и во многих отраслях науки и техники, состоялось 8 ноября 1895 года. Сделал его профессор физики Вюрцбургского университета в Германии Вильгельм Конрад Рентген.

Изучая волновую природу катодных лучей, Рентген обнаружил неизвестное до этого явление – флюоресценцию кристаллов солей бария на расстоянии 2 метров от катодной трубки. В. К. Рентген сделал вывод об излучении катодной трубкой неизвестных науке лучей, обладающих высокой проникающей способностью и вызывающих свечение кристаллов сернокислого бария. Эти лучи Рентген назвал Х-лучами, а весь мир после его сообщения о сделанном открытии стал называть новый вид излучения рентгеновскими лучами.

В.К. Рентген сделал свое сообщение об открытии Х-лучей 23.01.1896г. на заседании Вюрцбургского физико-медицинского общества, где продемонстрировал первые рентгеновские снимки.

В.К. Рентген не извлек никаких материальных выгод из своего открытия. Он отказался от патента на свое изобретение, заявив: «В соответствии со славными традициями немецких университетских профессоров я считаю, что мое открытие принадлежит человечеству и ему не должны ни в коей мере мешать патенты, лицензии, контракты или контроль какой-либо группы людей».


Благодарное человечество навсегда увековечило память о В.К.Рентгене в названии науки, медицинской специальности и диагностических исследований.

Физические основы рентгенологического метода и принципы работы аппаратуры.

Рентгеновское излучение занимает область электромагнитного спектра между гамма- и ультрафиолетовым излучением, представляет собой поток квантов (фотонов), двигающихся со скоростью света – 300.000 км/с. Электрического заряда кванты не имеют, масса их пренебрежительно мала.

Свойства рентгеновских лучей:

1) Проникающая способность - проходят через объекты, не пропускающие видимый свет, т.е. с их помощью можно увидеть внутреннюю структуру объекта;

2) Флюоресцирующее - вызывают свечение некоторых химических соединений; на этом основана методика рентгеновского просвечивания (рентгеноскопия);

3) Фотохимическое действие - разлагают некоторые химические соединения, в частности, галоидные соединения серебра, применяемые в фотоэмульсиях (на этом основана рентгенография).

4) Ионизирующее действие - рентгеновское излучение способно вызывать распад нейтральных атомов на положительные и отрицательные ионы.

5) Биологическое действие – изменения, вызываемые в жизнедеятельности и структуре живых организмов при воздействии ионизирующего излучения. В 1986 г. русский физиолог И.Р. Тарханов показал, что рентгеновское излучение, проходя через живые организмы, нарушает их жизнедеятельность. Поэтому проводимые рентгеновские обследования строго учитываются, суммарная доза полученного облучения не должна превышать определенных границ. Многочисленные исследования показывают, что клетки наиболее радиочувствительны в период деления и дифференцировки. Это делает облучение наиболее опасным для детей и беременных женщин. На этом же основана и радиотерапия опухолей – растущая ткань опухоли погибает при облучении в дозах, которые меньше повреждают окружающие нормальные ткани.

Устройство рентгеновской трубки.

Рентгеновская трубка (излучатель) представляет собой стеклянную колбу, в концы которой впаяны электроды – анод и катод. Катод представляет собой спираль, анод – диск со скошенной поверхностью в месте контакта с попадающими на него электронами. Катод нагревается сильным током низкого напряжения и начинает испускать свободные электроны, которые формируют вокруг него так называемое электронное облако. При подаче на электроды высокого напряжения (десятки и сотни киловольт) электроны от поверхности катода отрываются (это явление называется электронной эмиссией), устремляются к аноду и ударяются о его поверхность. Анод вращается с огромной скоростью, на его скошенную поверхность попадает поток электронов, при этом их высокая кинетическая энергия преобразуется в энергию электромагнитных волн с различной частотой, большая часть которой рассеивается в виде теплового излучения. И только около 1% от всей энергии, образованной вследствие торможения электронов об анод, покидает рентгеновскую трубку в виде рентгеновского излучения. Скошенная поверхность анода, на которую направлен поток электроном, определяет направление рентгеновского излучения перпендикулярно к оси их движения в рентгеновской трубке. Благодаря вращению анода поток электронов в разные моменты времени ударяется о разные участки его поверхности, что предохраняет анод от перегревания (рис. 1).

Рисунок 1. Схема строения рентгеновской трубки: 1 – катод, 2 – анод, 3 – поток электронов, 4 – рентгеновское излучение.

Таким образом, по своим физическим характеристикам рентгеновское излучение является тормозным электромагнитным излучением. Источника постоянного излучения (радиоактивного вещества) рентгеновская трубка не содержит, следовательно, пребывание рядом с неработающей рентгеновской трубкой безопасно, человек не подвергается облучению.

Выделяют два основных метода рентгенологического исследования: рентгенография и рентгеноскопия (просвечивание). Каждый из этих методов имеет свои преимущества и недостатки, часто они используются вместе.

Преимущества рентгеноскопии:

§ Метод прост и экономичен (так как часто не затрачивается серебросодержащая рентгеновская пленка);

§ Позволяет исследовать пациента при постепенных поворотах (многоосевое исследование);

§ Возможность полипозиционного исследования;

§ Позволяет наблюдать внутренние органы в их динамике (сердечные сокращения, сосудистая пульсация, перистальтика ЖКТ);

§ Возможность рентгенопальпации.

Преимущества рентгенографии:

§ Главное преимущество заключается в том, что на рентгенограмме выявляется большее количество деталей рентгеновского изображения;

§ Рентгеновский снимок – это объективный документ, пригодный для демонстрации, для прослеживания процесса в динамике и т.д.;

§ Рентгенография – объективный метод исследования, в то время как, рентгеноскопия – субъективный, проводить описание снимков, выполненных в ходе рентгеноскопии имеет право только тот врач, который проводил исследование;

§ Меньше лучевая нагрузка на пациента (так как меньше время воздействия рентгеновского излучения: при рентгенографии – секунды или доли секунд, при рентгеноскопии – минуты).

В большинстве случаев рентгенография на заключительном этапе включает в себя получение традиционного рентгеновского снимка на пленке. После выполнения снимка пленку подвергают специальной обработке: проявке, фиксации, промывке, сушке. Это может выполняться как вручную, так и автоматически в проявочных машинах.

Почернение рентгеновской пленки происходит при восстановлении металлического серебра в ее экспонированном эмульсионном слое. То есть чем больше рентгеновского излучения попадет на данный участок пленки, тем в большей степени она почернеет. И наоборот, если расположенный перед пленкой объект плохо пропускает рентгеновские лучи, то участок пленки, «экранированный» этим объектом, останется светлым.

Существует еще очень важная особенность получения рентгеновс­кого изображения, которая заключается в его суммационном характере. Что это такое? Проходя через исследуемый объект (тело человека), рентгеновский луч пересекает не одну, а огромное множество точек, каждая из которых обладает собственными свойствами по взаимодействию с рентгеновским лучом. Соответственно на любой точке рентгенограммы получится суммарное изображение всего множества проецирующихся друг на друга точек реального объекта, расположен­ных по ходу каждого рентгеновского луча.

Следовательно, на рентгенограмме определяется проекция объекта на плоскость. Судить о глубине расположения того или иного фрагмента исследуемого объекта по одной рентгенограмме нельзя.

Чтобы точно определить, где расположен интересующий объект, надо выполнять рентгенограммы в нескольких проекциях (прямой и боковой).

Основные рентгенологические симптомы:

§ Затемнение – участок более высокой плотности по сравнению с окружающими тканями, на рентгенограммах выглядит как более светлый участок (костные структуры, тела металлической плотности, обызвествления, конкременты).

§ Просветление – область повышенной прозрачности, которая выглядит на рентгенограммах как более темный участок (легочная ткань, воздушные полости, газ в кишке, мягкие ткани).

§ Дефект наполнения – образуется, когда какая-либо ткань препятствует заполнению просвета полого органа контрастным веществом, например, при заполнении мочевого пузыря контрастным веществом камень имеет вид дефекта наполнения (опухоли, конкременты, инородные тела).

Рентгеновское излучение создается путем преобразования энергии электронов в фотоны, которое происходит в рентгеновской трубке. Количество (экспозицию) и качество (спектр) излучения можно регулировать путем изменения тока, напряжения и времени работы прибора.

Принцип работы

Рентгеновские трубки (фото приведено в статье) являются преобразователями энергии. Они получают ее из сети и превращают в другие формы - проникающее излучение и тепло, при этом последнее является нежелательным побочным продуктом. трубки таково, что она максимизирует производство фотонов и рассеивает тепло так быстро, насколько это возможно.

Трубка представляет собой относительно простой прибор, как правило, содержащий два принципиальных элемента - катод и анод. Когда ток течет от катода к аноду, электроны теряют энергию, что приводит к генерации рентгеновского излучения.

Анод

Анод является компонентом, в котором производится испускание высокоэнергетических фотонов. Это сравнительно массивный элемент из металла, который соединяется с положительным полюсом электрической цепи. Выполняет две основные функции:

  • преобразует энергию электронов в рентгеновское излучение,
  • рассеивает тепло.

Материал для анода выбирается так, чтобы усилить эти функции.

В идеале большинство электронов должно образовывать высокоэнергетические фотоны, а не тепло. Доля их полной энергии, которая превращается в рентгеновское излучение, (КПД) зависит от двух факторов:

  • атомного номера (Z) анодного материала,
  • энергии электронов.

В большинстве рентгеновских трубок в качестве материала анода используется вольфрам, атомный номер которого равен 74. В дополнение к большому Z, этот металл обладает некоторыми другими характеристиками, которые делают его подходящими для этой цели. Вольфрам уникален по своей способности сохранять прочность при нагревании, имеет высокую температуру плавления и низкую скорость испарения.

В течение многих лет анод делали из чистого вольфрама. В последние годы начали использовать сплав этого металла с рением, но лишь на поверхности. Сам анод под вольфрам-рениевым покрытием изготовляется ​​из легкого материала, хорошо аккумулирующего тепло. Двумя такими веществами являются молибден и графит.

Рентгеновские трубки, используемые для маммографии, изготавливают с анодом, покрытым молибденом. Этот материал имеет промежуточный атомный номер (Z=42), который генерирует характеристические фотоны с энергиями, удобными для съемки груди. Некоторые приборы для маммографии также имеют второй анод, выполненный из родия (Z=45). Это позволяет повысить энергию и добиться большего проникновения для плотной груди.

Сплава улучшает долгосрочный выход излучения - со временем эффективность устройств с анодом из чистого вольфрама уменьшается вследствие термического повреждения поверхности.

Большинство анодов имеет ​​форму скошенных дисков и крепится к валу электродвигателя, который вращает их на относительно высоких скоростях во время испускания рентгеновских лучей. Цель вращения - отвод тепла.

Фокальное пятно

В генерации рентгеновского излучения участвует не весь анод. Оно возникает на небольшом участке его поверхности - фокальном пятне. Размеры последнего определяются размерами электронного пучка, поступающего из катода. В большинстве устройств оно имеет прямоугольную форму и варьируется в пределах 0,1-2 мм.

Рентгеновские трубки проектируют с определенным размером фокального пятна. Чем оно меньше, тем меньше размытость и выше четкость изображения, и чем оно больше, тем лучше отводится тепло.

Размер фокусного пятна является одним из факторов, который необходимо учитывать, когда выбирают рентгеновские трубки. Производители выпускают приборы с малыми фокальными пятнами, когда необходимо достичь высокой разрешающей способности и достаточно небольшой радиации. Например, это требуется при исследовании малых и тонких частей тела, как в маммографии.

Рентгеновские трубки в основном производят с фокусными пятнами двух размеров - большим и малым, которые могут быть выбраны оператором в соответствии с процедурой формирования изображения.

Катод

Основная функция катода - генерировать электроны и собирать их в луч, направленный на анод. Как правило, он состоит из небольшой проволочной спирали (нити), погруженной в чашеобразное углубление.

Электроны, проходящие по цепи, обычно не могут покинуть проводник и уйти в свободное пространство. Однако они могут это сделать, если получат достаточное количество энергии. В процессе, известном как термоэмиссия, для изгнания электронов из катода используется тепло. Это становится возможным, когда давление в откачанной рентгеновской трубке достигает 10 -6 -10 -7 мм рт. ст. Нить нагревается таким же образом, как спираль лампы накаливания при пропускании через нее тока. Работа рентгеновской трубки сопровождается нагревом катода до температуры свечения с вытеснением тепловой энергией из него части электронов.

Баллон

Анод и катод содержатся в герметичном корпусе - баллоне. Баллон и его содержимое часто называют вставкой, которая имеет ограниченный срок службы и может заменяться. Рентгеновские трубки в основном имеют стеклянные колбы, хотя для некоторых применений используются металлические и керамические баллоны.

Основной функцией баллона является обеспечение поддержки и изоляция и поддержание вакуума. Давление в откачанной рентгеновской трубке при 15°C составляет 1,2·10 -3 Па. Наличие газов в баллоне позволило бы электричеству течь через прибор свободно, а не только в виде электронного пучка.

Корпус

Устройство рентгеновской трубки таково, что, в дополнение к ограждению и поддержке других компонентов, ее корпус служит щитом и поглощает излучение, за исключением проходящего через окно полезного пучка. Его относительно большая внешняя поверхность рассеивает большую часть тепла, образуемого внутри устройства. Пространство между корпусом и вставкой заполнено маслом, обеспечивающим изоляцию и ее охлаждение.

Цепь

Электрическая цепь соединяет трубку с источником энергии, который называется генератором. Источник получает питание от сети и преобразует переменный ток в постоянный. Генератор также позволяет регулировать некоторые параметры цепи:

  • KV - напряжение или электрический потенциал;
  • MA - ток, который течет через трубку;
  • S - длительность или время экспозиции, в долях секунды.

Цепь обеспечивает движение электронов. Они заряжаются энергией, проходя через генератор, и отдают ее аноду. По мере их движения происходит два преобразования:

  • потенциальная электрическая энергия превращается в кинетическую;
  • кинетическая, в свою очередь, преобразуется в рентгеновское излучение и тепло.

Потенциал

Когда электроны поступают в колбу, они обладают потенциальной электрической энергией, количество которой определяется напряжением KV между анодом и катодом. Рентгеновская трубка работает под напряжением, для создания 1 KV которого каждая частица должна обладать 1 кэВ. Регулируя KV, оператор наделяет каждый электрон определенным количеством энергии.

Кинетика

Низкое давление в откачанной рентгеновской трубке (при 15°C оно составляет 10 -6 -10 -7 мм рт. ст.) позволяет частицам под действием термоэлектронной эмиссии и электрической силы вылетать из катода к аноду. Эта сила ускоряет их, что приводит к увеличению скорости и кинетической энергии и убыванию потенциальной. Когда частица попадает на анод, ее потенциал теряется, и вся ее энергия переходит в кинетическую. 100-кэВ электрон достигает скорости, превышающей половины Ударяясь о поверхность, частицы очень быстро замедляются и теряют свою кинетическую энергию. Она превращается в рентгеновское излучение или тепло.

Электроны вступают в контакт с отдельными атомами материала анода. Излучение генерируется при их взаимодействии с орбиталями (рентгеновские фотоны) и с ядром (тормозное излучение).

Энергия связи

Каждый электрон внутри атома обладает определенной энергией связи, которая зависит от размера последнего и уровня, на котором находится частица. Энергия связи играет важную роль в генерации характеристического рентгеновского излучения и необходима для удаления электрона из атома.

Тормозное излучение

Тормозное излучение производит наибольшее количество фотонов. Электроны, проникающие в материал анода и проходящие вблизи ядра, отклоняются и замедляются силой притяжения атома. Их энергия, теряемая во время этой встречи, появляется в виде рентгеновского фотона.

Спектр

Лишь немногие фотоны обладают энергией, близкой к энергии электронов. У большинства из них она ниже. Предположим, что существует пространство, или поле, окружающее ядро, в котором электроны испытывают силу «торможения». Это поле может быть разделено на зоны. Это дает полю ядра вид мишени с атомом в центре. Электрон, попадающий в любую точку мишени, испытывает торможение и генерирует рентгеновский фотон. Частицы, попадающие ближе всего к центру, подвергаются наибольшему воздействию и, следовательно, теряют больше всего энергии, производя самые высокоэнергичные фотоны. Электроны, попадающие во внешние зоны, испытывают более и генерируют кванты с более низкой энергией. Хотя зоны имеют одинаковую ширину, что они имеют разную площадь, зависящую от расстояния до ядра. Так как число частиц, попадающих на данную зону, зависит от ее общей площади, то очевидно, что внешние зоны захватывают больше электронов и создают больше фотонов. По этой модели можно предсказать энергетический спектр рентгеновского излучения.

E max фотонов основного спектра тормозного излучения соответствует E max электронов. Ниже этой точки, с уменьшением энергии квантов их число растет.

Значительное число фотонов с малыми энергиями поглощается или фильтруется, поскольку они пытаются пройти через поверхность анода, окно трубки или фильтр. Фильтрация, как правило, зависит от состава и толщины материала, через который проходит луч, что и определяет конечный вид низкоэнергетической кривой спектра.

Влияние KV

Высокоэнергетическую часть спектра определяет напряжение в рентгеновских трубках kV (киловольт). Это происходит потому, что оно обусловливает энергию электронов, достигающих анода, а фотоны не могут обладать потенциалом, большим чем этот. Под каким напряжением работает рентгеновская трубка? Максимальная энергия фотона соответствует максимальному приложенному потенциалу. Это напряжение может изменяться во время экспозиции из-за переменного тока сети. В этом случае E max фотона определяется пиковым напряжением периода колебаний KV p .

Кроме потенциала квантов, KV p определяет количество радиации, создаваемой данным числом электронов, попадающих на анод. Так как общая эффективность тормозного излучения увеличивается за счет роста энергии бомбардирующих электронов, которая определяется KV p , то отсюда следует, что KV p влияет на КПД прибора.

Изменение KV p , как правило, изменяет спектр. Общая площадь под кривой энергий представляет собой число фотонов. Без фильтра спектр представляет собой треугольник, а количество радиации пропорционально квадрату KV. При наличии фильтра увеличение KV также увеличивает проникновение фотонов, что снижает процент фильтруемого излучения. Это ведет к увеличению радиационного выхода.

Характеристическое излучение

Тип взаимодействия, который производит характеристическое излучение, включает столкновение высокоскоростных электронов с орбитальными. Взаимодействие может происходить только тогда, когда входящая частица обладает Е к большей, чем энергия связи в атоме. Когда это условие соблюдено, и происходит столкновение, электрон выбивается. При этом остается вакансия, заполняемая частицей более высокого энергетического уровня. По мере движения электрон отдает энергию, излучаемую в виде рентгеновского кванта. Это называется характеристическим излучением, так как E фотона является характеристикой химического элемента, из которого сделан анод. Например, когда выбивается электрон К-уровня вольфрама с Е связи =69,5 кэВ, вакансия заполняется электроном из L-уровня с E связи =10,2 кэВ. Характеристический рентгеновский фотон обладает энергией, равной разности между этими двумя уровнями, или 59,3 кэВ.

На самом деле, данный материал анода приводит к появлению ряда характеристических энергий рентгеновского излучения. Это происходит потому, что электроны на различных энергетических уровнях (K, L и т.д.) могут быть выбиты бомбардирующими частицами, а вакансии могут быть заполнены из различных энергетических уровней. Несмотря на то что заполнение вакансий L-уровня генерирует фотоны, их энергии слишком малы для использования в диагностической визуализации. Каждой характеристической энергии дается обозначение, которое указывает на орбиталь, в которой образовалась вакансия, с индексом, который показывает источник заполнения электрона. Индекс альфа (α) обозначает заполнение электрона из L-уровня, а бета (β) указывает на заполнение из уровня М или N.

  • Спектр вольфрама. Характеристическое излучение этого металла производит состоящий из нескольких дискретных энергий, а тормозное создает непрерывное распределение. Число фотонов, созданных каждой характеристической энергией, отличается тем, что вероятность заполнения вакансии K-уровня зависит от орбитали.
  • Спектр молибдена. Аноды из данного металла, используемые для маммографии, производят две достаточно интенсивные характеристические энергии рентгеновского излучения: K-альфа при 17,9 кэВ, и K-бета при 19,5 кэВ. Оптимальный спектр рентгеновских трубок, позволяющий достичь наилучший баланс между контрастностью и для груди среднего размера, достигается при Е ф =20 кэВ. Однако тормозное излучение производится большими энергиями. В оборудовании для маммографии для удаления нежелательной части спектра используется молибденовый фильтр. Фильтр работает по принципу «K-края». Он поглощает излучение, превышающее энергию связи электронов на К-уровне атома молибдена.
  • Спектр родия. Родий имеет атомный номер 45, а молибден - 42. Поэтому характеристическое рентгеновское излучение родиевого анода будет иметь немного большую энергию, чем у молибдена, и более проникающую. Это используется для получения изображений плотной груди.

Аноды с двойными участками поверхности, молибден-родиевыми, дают возможность оператору выбрать распределение, оптимизированное под молочные железы разного размера и плотности.

Влияние KV на спектр

Значение KV сильно влияет на характеристическое излучение, т. к. оно не будет производиться, если KV меньше энергии электронов K-уровня. Когда KV превышает это пороговое значение, количество излучения, как правило, пропорционально разности KV трубки и порогового KV.

Спектр энергий фотонов рентгеновского луча, выходящего из прибора, определяется несколькими факторами. Как правило, он состоит из квантов тормозного и характеристического взаимодействия.

Относительный состав спектра зависит от материала анода, KV и фильтра. В трубке с вольфрамовым анодом характеристическое излучение не образуется при KV< 69,5 кэВ. При более высоких значениях КВ, используемых в диагностических исследованиях, характеристическое излучение увеличивает суммарную радиацию до 25%. В молибденовых устройствах оно может составить большую часть общего объема генерации.

КПД

Лишь небольшая часть энергии, доставляемая электронами, преобразуется в радиацию. Основная доля поглощается и превращается в тепло. КПД излучения определяется как доля полной излучаемой энергии от общей электрической, сообщаемой аноду. Факторами, которые определяют КПД рентгеновской трубки, являются приложенное напряжение KV и атомный номер Z. Примерное отношение следующее:

  • КПД = KV х Z х 10 -6 .

Взаимосвязь между эффективностью и KV оказывает специфическое влияние на практическое использование рентгеновского оборудования. Из-за выделения тепла трубки имеют определенный предел по количеству электрической энергии, которую они могут рассеивать. Это накладывает ограничение на мощность прибора. С увеличением KV, однако, количество радиации, произведенное на единицу тепла, значительно увеличивается.

Зависимость генерации рентгеновского излучения от состава анода представляет лишь академический интерес, поскольку в большинстве устройств используется вольфрам. Исключением является молибден и родий, используемые в маммографии. КПД этих приборов значительно ниже вольфрамовых из-за их более низкого атомного номера.

Эффективность

Эффективность рентгеновской трубки определяется как количество облучения в миллирентгенах, доставленного в точку в центре полезного пучка на расстоянии 1 м от фокусного пятна на каждый 1 мАс электронов, проходящих через прибор. Ее значение выражает способность прибора преобразовывать энергию заряженных частиц в рентгеновское излучение. Позволяет определить экспозицию пациента и снимка. Как и КПД, эффективность устройства зависит от ряда факторов, в том числе KV, формы волны напряжения, материала анода и степени повреждения его поверхности, фильтра и времени использования прибора.

KV-управление

Напряжение KV эффективно управляет выходным излучением рентгеновской трубки. Как правило, предполагается, что выход пропорционален квадрату KV. Удвоение KV увеличивает экспозицию в 4 раза.

Форма волны

Форма волны описывает способ, с помощью которого KV изменяется со временем в процессе генерации радиации из-за циклической природы электропитания. Используется несколько различных форм волн. Общий принцип таков: чем меньше изменяется форма KV, тем эффективнее производится рентгеновское излучение. В современном оборудовании используют генераторы с относительно постоянным KV.

Рентгеновские трубки: производители

Компания Oxford Instruments выпускает различные устройства, включая стеклянные мощностью до 250 Вт, потенциалом 4-80 кВ, фокальным пятном до 10 микрон и широким диапазоном материалов анода, в т. ч. Ag, Au, Co, Cr, Cu, Fe, Mo, Pd, Rh, Ti, W.

Varian предлагает более 400 различных типов медицинских и промышленных рентгеновских трубок. Другими известными производителями являются Dunlee, GE, Philips, Shimadzu, Siemens, Toshiba, IAE, Hangzhou Wandong, Kailong и др.

В России выпускаются рентгеновские трубки «Светлана-Рентген». Помимо традиционных приборов с вращающимся и стационарным анодом, предприятие изготавливает устройства с холодным катодом, управляемым световым потоком. Преимущества прибора следующие:

  • работа в непрерывном и импульсном режимах;
  • безынерционность;
  • регулирование интенсивности током светодиода;
  • чистота спектра;
  • возможность получения рентгеновского излучения различной интенсивности.

Для получения рентгеновских лучей. Простейшая рентгеновская трубка состоит из стеклянного баллона с впаянными металлическими электродами – катодом и анодом . В баллоне создаётся глубокий вакуум. К электродам приложено напряжение от 1 до 500 кВ (в зависимости от требуемых характеристик рентгеновского излучения). Электроны, испускаемые катодом, ускоряются сильным электрическим полем в пространстве между электродами и бомбардируют . При ударе электронов об анод их кинетическая частично преобразуется в энергию рентгеновского излучения и большей частью в тепловую энергию.

Рентгеновские трубки бывают диагностические, терапевтические, для дефектоскопии, рентгеновского анализа. По способу получения свободных электронов различают ионные и электронные рентгеновские трубки. Исторически первыми появились ионные рентгеновские трубки с холодным катодом. Позднее они были вытеснены более совершенными высоковакуумными рентгеновскими трубками с накаленным катодом.

Одно из важнейших свойств рентгеновских лучей – их способность вызывать почернение светочувствительного слоя фотоплёнки или фотобумаги. Рентгеновские лучи имеют высокую проникающую способность. Однако, проходя через вещество, их энергия уменьшается тем сильнее, чем плотнее встречающийся на их пути материал. На этих свойствах основаны многие способы практического использования рентгеновских лучей, напр. рентгенодиагностика – распознавание болезней в медицине, непрозрачных материалов и др.

Энциклопедия «Техника». - М.: Росмэн . 2006 .


Смотреть что такое "рентгеновская трубка" в других словарях:

    Электровакуумный прибор, служащий источником рентгеновского излучения, к рое возникает при вз ствии испускаемых катодом эл нов с в вом анода (антикатода). В Р. т. энергия эл нов, ускоренных электрич. полем, частично переходит в энергию рентг.… … Физическая энциклопедия

    рентгеновская трубка - трубка Рентгеновский прибор для получения рентгеновского излучения бомбардировкой мишени потоком электронов, ускоренных разностью потенциалов между анодом и катодом [ГОСТ 20337 74] рентгеновская трубка Вакуумная трубка, обычно содержащая нить… … Справочник технического переводчика

    Большой Энциклопедический словарь

    РЕНТГЕНОВСКАЯ ТРУБКА, вакуумная трубка, служащая источником РЕНТГЕНОВСКИХ ЛУЧЕЙ, используемых в медицинских и иных целях. Состоит из электронной трубки, испускающей пучок ЭЛЕКТРОНОВ, ударяющий в АНОД, рабочая часть которого сделана из тяжелого… … Научно-технический энциклопедический словарь

    РЕНТГЕНОВСКАЯ ТРУБКА - электровакуумный прибор для получения рентгеновских (см.); представляет собой стеклянный сосуд с впаянными в него электродами (катодом и анодом), к которым подводится высокое напряжение. Электроны, испускаемые катодом, ускоряются сильным… … Большая политехническая энциклопедия

    Электровакуумный прибор для получения рентгеновских лучей. Простейшая рентгеновская трубка состоит из стеклянного баллона с впаянными электродами катодом и анодом (антикатодом). Электроны, испускаемые катодом, ускоряются сильным электрическим… … Энциклопедический словарь

    Рентгеновская трубка электровакуумный прибор, предназначенный для генерации рентгеновского излучения. Принцип действия и устройство Излучающий элемент представляет собой вакуумный сосуд с тремя электродами: катодом, накал катода и анодом … Википедия

    рентгеновская трубка - электровакуумный прибор источник рентгеновкого излучения, например, в камерах для РСА (Смотри также Рентгеноструктурный анализ); Смотри также: Трубка центровая трубка острофокусная рентгеновская трубка стоп … Энциклопедический словарь по металлургии

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ГБОУ ВПО «Воронежский государственный медицинский университет имени Н.Н. Бурденко» Минздрава России

Кафедра онкологии, лучевой терапии и лучевой диагностики

Зав. кафедрой: проф., д.м.н. Редькин Александр Николаевич

Преподаватель: к.м.н. Черкасова Ирина Ивановна

Реферат на тему:

Устройство рентгеновской трубки и рентгендиагностических аппаратов

Выполнила: Васильева Ирина Александровна

Устройство рентгеновской трубки. Принципы получения рентгеновских лучей .

Классификация рентгеновских трубок

1. По назначению

1. Диагностические

2. Терапевтические

3. Для структурного анализа

4. Для просвечивания

2. По конструкции

1. По фокусности

§ Однофокусные (на катоде одна спираль, а на аноде одно фокусное пятно)

§ Двухфокусные (на катоде две спирали разного размера, а на аноде два фокусных пятна)

2. По типу анода

§ Стационарный (неподвижный)

§ Вращающийся

§ Открытый или закрытый анод

§ Выносимый анод

3. По мощности: от 0,2 до 100 кВт;

4. По способу охлаждения:

· с водяным охлаждением

· калориферным

· непроточным масляным

· с комбинированными видами охлаждения (лучеиспускание и масляное, проточное водяное и масляное).

Генератором рентгеновых лучей является рентгеновская трубка. Современная электронная трубка конструируется по единому принципу и имеет следующее устройство.

Основой является стеклянная колба в виде шара или цилиндра, в концевые отделы которой впаяны электроды: анод и катод. В трубке создается вакуум, что способствует вылету электронов из катода и быстрейшему их перемещению. Катод представляет собой спираль из вольфрамовой (тугоплавкой) нити, которая укрепляется на молибденовых стержнях и помещается в металлический колпак, направляющий поток электронов в виде узкого пучка в сторону анода. Анод делается из меди (быстрее отдает тепло и сравнительно легко охлаждается), имеет массивные размеры. Конец, обращенный к катоду, косо срезается под углом 45--70°. В центральной части скошенного анода имеется вольфрамовая пластинка, на которой находится фокус анода -- участок 10--15 мм2, где в основном и образуются рентгеновы лучи.

Процесс образования рентгеновых лучей . Нить накала рентгеновской трубки -- вольфрамовая спираль катода при подведении к ней тока низкого напряжения (4--15 В, 3--5А) накаливается, образуя свободные электроны вокруг нити. Включение тока высокого напряжения создает на полюсах рентгеновской трубки разность потенциалов, в результате чего свободные электроны с большой скоростью устремляются к аноду в виде потока электронов -- катодных лучей, которые, попав на фокус анода, резко тормозятся, вследствие чего часть кинетической энергии электронов превращается в энергию электромагнитных колебаний с очень малой длиной волны. Это и будет рентгеновское излучение (лучи торможения). По желанию врача и техника можно регулировать как количество рентгеновых лучей (интенсивность), так и качество их (жесткость). Повышая степень накала вольфрамовой нити катода можно добиться увеличения количества электронов, что обусловливает интенсивность рентгеновых лучей. Повышение напряжения, подаваемого к полюсам трубки, ведет к увеличению скорости полета электронов, что является основой проникающего качества лучей. Выше уже было отмечено, что фокус рентгеновской трубки -- это тот участок на аноде, куда попадают электроны и где генерируются рентгеновы лучи. Величина фокуса влияет на качество рентгеновского изображения: чем меньше фокус, тем резче и структурней рисунок и наоборот, чем он больше, тем более расплывчатым становится изображение исследуемого объекта. Практикой доказано, чем острее фокус, тем быстрее трубка приходит в негодность -- происходит расплавление вольфрамовой пластинки анода. Поэтому в современных аппаратах трубки конструируются с несколькими фокусами: малым и большим, или линейным в виде узкой полосы с коррекцией угла скошенности анода в 71°, что позволяет получать оптимальную резкость изображения при наибольшей электрической нагрузке на анод. Удачной конструкцией рентгеновской трубки является генератор с вращающимся анодом, что позволяет делать фокус незначительных размеров и удлинить тем самым срок эксплуатации аппарата. Из потока катодных лучей только около 1% энергии превращается в рентгеновы лучи, остальная энергия переходит в тепло, что приводит к перегреванию анода.

Для целей охлаждения анода используются различные способы: водяное охлаждение, калориферно-воздушное, масляное охлаждение под давлением и комбинированные способы.

Рентгеновская трубка помещается в специальный просвинцованный футляр или кожух с отверстием для выхода рентгеновского излучения из анода трубки.

На пути выхода рентгеновского излучения из трубки устанавливаются фильтры из различных металлов (алюминиевые, медные, железные, комбинированные) , которые отсеивают мягкие лучи и делают более однородным излучение рентгеновского аппарата. Во многих конструкциях рентгеновских аппаратов в футляр наливается трансформаторное масло, которое со всех сторон обтекает рентгеновскую трубку.

Все это: металлический футляр, масло, фильтры экранируют персонал кабинета и больных от воздействия рентгеновского облучения.

Устройство рентгеновских аппаратов

1. Устройство для генерирования рентгеновского излучения: питающее устройство, излучатели и рентгеновские трубки. Бывают стационарные, передвижные и переносные питающие устройства.

2. Устройство для формирования качества излучения (отсеивающие растворы и фильтры);

Устройство для формирования геометрии излучения (диаграммы, тубусы, устройство для рентгенографии);

Устройство формирования излучения (реле экспозиции, фотоэкспонометры, средства стабилизации яркости).

3. Рентгенодиагностические штативные устройства:

Штативные устройства общего назначения (столы штативные поворотные, столы для снимков, стойки для снимков и штативы для просвечивания);

Специальные установочные устройства (для томографии, урографии, рентгенографии, для маммографии).

4. Средства визуализации рентгеновского изображения:

1) устройство для приема и приобретения рентгеновского излучения:

а) детекторы цифровой рентгенографии;

б) усилитель рентгеновских изображений;

в) детекторы компонентов томографии.

2) Материалы и носители рентгеновских изображений:

а) рентгеновская пленка;

б) рентгеновские усиливающие краны;

в) цифровые детекторы;

г) люминофоры - это вещества органических и неорганических соединений, которые преобразуют энергию электрического поля в световую.

3) Устройство для регистрации рентгеновских изображений:

а) кассеты рентгенографические;

б) серийные кассеты;

в) флюорографические камеры;

г) кинокамеры.

4) Устройство для передачи записи и воспроизводства рентгеновских изображений:

а) камеры цифровые;

б) камеры флюорографические;

в) телевизионные системы;

г) дисплей;

д) принтер.

5. Вспомогательные приборы, устройства, инструменты и материалы:

1) условия для формирования условий исследования биологического объекта:

б) фиксаторы;

в) держатели;

г) компрессионные устройства.

2) Средства и условия для контрастирования:

а) средства пастеризации;

б) инъекторы автоматические;

в) устройство для приготовления контрольных взвесей.

3) Средства биоуправления:

а) биофазасинхронизатор (технические средства для оценки с.с.с.);

б) фаза рентгенокардиографа;

в) электрокимографы (медицинские приборы для графической яркости рентгеновских экранов).

4) Расходные устройства материалы рентгенологии:

а) проводники;

б) котеторы;

в) Эмбализаторы - технические средства для введения жидкости контрастных взвесей в матку;

г) фильтры;

д) графиты - технические средства для нарезки участков кожи с волосами;

ж) стенты - технические средства представляемые собой металлический каркас в виде трубки для расширения вен и артерий.

6. Средства обработки рентгеновского изображения:

1) Устройство для обработки носителя информации:

а) оборудование фотолаборатории;

б) проявочные материалы;

в) автоматические проявочные машины;

г) средства для заявки кассет.

2) устройство для преобразования рентгеновского изображения:

а) устройство для ввода рентгеновских изображений в компьютер;

б) АРМ рентгенолога;

в) АРМ рентгенно-лаборанта.

3) Технические устройства для ввода рентгеновских изображений:

а) компьютеры;

б) неготоскопы;

в) флюороскопы;

г) проекционная аппаратура.

7. Информационно-архивное оборудование:

1) Технические средства электронного архива:

Оборудование для хранения и поиска информации.

2) Архивы рентгеновской пленки:

Системы для долговременной информации.

3) Копировальные устройства:

а) сканеры для подцифровки пленочных изображений;

б) мульти-форматические видео аппараты

Принципиальная схема р ентгендиагностический установки

1 -- питающее устройство .

В электрической сети идет ток в 220-360 В.

Для накала спирали катода имеется понижающий трансформатор, который подает ток от 4 до 14 В.

Понижающие трансформаторы - это электрические приборы специализированного назначения, позволяющие питать электроприборы или оборудование напряжением различных нагрузок, требующихся в каждом конкретном случае. Понижающий трансформатор представляет собой электромагнитное устройство, которое преобразует переменный электрический ток исходного напряжения, в переменный электрический ток другого требующегося напряжения. В классическом исполнении, понижающие трансформаторы состоят из замкнутого ферромагнитного сердечника, и двух проволочных (как правило, медных) обмоток (первичной и вторичной). Работа понижающих трансформаторов основана на явлении взаимной индукции, действующей через магнитное поле, и используемое для передачи энергии из оного контура трансформатора в другой.

Для питания рентгеновской трубки нужен ток очень высокого напряжения в пределах от 40000 до 250000 В, для преобразования такого тока из сетевого служит повышающий трансформатор. Повышающий трансформатор вырабатывает на выходе (во вторичной обмотке) более высокое напряжение, чем приложено на входе (к первичной обмотке). Для этого число витков вторичной обмотки делается больше числа витков первичной обмотки.

Кенотроны . Современные рентгеновские аппараты работают на режиме постоянного тока. Для выпрямления переменного тока служат кенотроны-выпрямители.

Кенотрон (от греч. kenos -- пустой и электрон), электровакуумный диод,
предназначенный для выпрямления переменного тока главным образом промышленной частоты.

Его применяют в выпрямителях радиоприёмной, усилительной и измерительной аппаратуры, рентгеновских установок и т. д. Низковольтные кенотроны (допустимое обратное напряжение на аноде до 2 кв, допустимая сила прямого тока до нескольких ампер) имеют оксидные прямонакальные или подогревные катоды, черненные или матированные ребристые аноды (чаще два). Высоковольтные кенотроны (напряжение до 100 кв, сила тока до 500 ма) имеют оксидный или карбидированный катод и также чернёный ребристый анод (один). С развитием полупроводниковой техники низковольтные кенотроны постепенно вытесняются полупроводниковыми диодами.

2 -- излучатель (рентгеновская трубка);

3 -- устройство для коллимации пучка излучения

Оно предназначено для ограничения пучка рентгеновского излучения, выходящего из рентгеновского излучателя, и формирования узкого веерного пучка излучения в рентгенодиагностических аппаратах сканирующего типа, например цифровом флюорографе. Техническим результатом является обеспечение возможности световой имитации пучка излучения в рентгенодиагностических аппаратах сканирующего типа. Рентгеновский щелевой коллиматор содержит две плоскопараллельные пластины из материала с высоким атомным номером, закрепленные взаимно параллельно с небольшим зазором, образующим щелевой канал коллиматора, дополнен оптико-электронной системой, включающей оптически сопряженные лазер, две прямоугольные призмы и зеркальный отражатель. Лазер и первая призма находятся с внешней стороны одной из плоскопараллельных пластин и закрыты свето- и рентгенозащитным кожухом, а вторая призма и зеркальный отражатель, изготовленные из материала, слабо поглощающего рентгеновские лучи, размещены в отверстиях между плоскопараллельными пластинами и перекрывают щелевой канал коллиматора. Зеркальный отражатель, представляющий собой прямоугольный многогранник с отражающими боковыми гранями, соединен своим основанием с осью электродвигателя, проходящей перпендикулярно к щелевому каналу коллиматора, кроме того, на выходе щелевого канала установлена бленда из светонепроницаемого и рентгенопрозрачного материала.

5 -- отсеивающая решетка

Растр - это устройство, позволяющее отфильтровывать рентгеновские лучи длинноволновой части рентгеновского спектра и рентгеновские лучи, направленные не перпендикулярно к рентгеновской кассете.

Следствием его использования является увеличение четкости рентгенограммы и уменьшение вуали на снимке, которая ухудшает ценность рентгеновского изображения.

Применение растров может приводить к корректировке параметров рентгенсъемки - киловольт и милиампер-секунд в сторону увеличения примерно на 10%.

Растр был изобретен в 1913 году доктором Густавом Баки.

Принцип действия растра

Когда рентгеновский аппарат посылает излучения через тело, происходит поглощение и изменение напрвления рентгеновских лучей. Только около 1 процента рентгена проходят через тело по прямой линии и вызывают изменения на средстве визуализации (рентгеновская пленка, CR или DR-детектор. Остальные лучи являются лишними и их фильтрация улучшает качество рентгенограммы.

Строение растра.

Основу растра составляет сетка из свинца, никеля и алюминия. Полоски металла должны быть очень тонкими. Это позволяет расположить большое количество ячеек на 1 мм. При 2-3 ячейках, расположенных на 1 мм растра, возможно увидеть саму решетку на рентгенограмме в виде тонкой сетки. При 6 ячейках и больше, расположенных на 1 мм растра, сетка на растре не видна. Одним из показателей растра яваляется соотношение размера грани ячейки к ее протяженности. Чем это соотношение больше, тем лучше степень фильтрации и тем больше требований к перпендикулярности системы рентгеновский луч/детектор. В компьютерной рентгенографии растр на изображении убирается программой оцифровщика.

6 -- рентгеноэкспонометр

Предназначен для автоматического отключения рентгеновской трубки в рентгенодиагностическнх аппаратах по достижении заданного почернения рентгеновской пленки с целью получения качественного снимка, содержащие измерительную камеру с конденсатором, электрический сигнал с которого подается через усилитель постоянного тока и релейное выходное устройство, обеспечивающее отключение рентгеновской трубки после того, как измерительный конденсатор разряжается через измерительную камеру на определенную величину, соответствующую заданной плотности почернения рентгеновской пленки.

7 -- рентгеновская кас сета

Светонепроницаемый футляр, предназначенный для зарядки рентгеновскими фотоматериалами. Рентгеновская кассета представляет собой плоскую прямоугольную коробку с тонким дном и массивной крышкой, выстлана изнутри слоем сукна или войлока и тонким листовым свинцом, который служит для поглощения вторичного излучения, возникающего в столешнице стола для снимков и снижающего качество рентгеновского изображения. Рентгеновские кассеты комплектуют двумя усиливающими экранами, между которыми закладывают при зарядке кассеты рентгеновскую пленку. Поверхность кассеты, обращенная к рентгеновской трубке, выполнена из однородного материала, слабо поглощающего рентгеновское излучение (алюминий, гетинакс и др.). Крышка кассеты снабжена пружинящим приспособлением, обеспечивающим плотное равномерное прилегание поверхности пленки к плоскости усиливающих экранов.

8 -- рентгеновская пленка в ком бинации с усиливающими экранами

Наиболее часто в практике встречаются рентгеновские пленки, покрытые эмульсией с двух сторон. Основные элементы структуры пленки:

Защитное покрытие -- тонкий слой прозрачного вещества, защищающего эмульсию от царапин.

Эмульсия -- смесь желатины и галогенидов серебра (в основном бромида и йодида). Толщина эмульсии около 5 микрон.

Клеящий слой -- тонкий (в несколько молекул) слой специального вещества адгезивного и к полиэстеру, и к эмульсии.

Основание пленки (подложка) -- это чаще всего тетрафталат полиэтилена (полиэстер). Это инертное, не горючее, оптически прозрачное вещество, стабильное в агрессивных средах, гибкое, но сохраняющее форму. Полиэстер сам по себе бесцветен, но в него добавляют голубой краситель, чтобы изображение на снимке лучше воспринималось глазом при рассматривании снимка на негатоскопе с цветовой температурой ламп 6500 К. Толщина основы 180-250 микрон.

Действие рентгеновских экранов основано на способности рентгеновских лучей вызывать свечение (люминесценцию) некоторых веществ, носящих название светосоставов (люминофоров). В качестве светосоставов применяют вольфрамат кальция и цинк-кадмий-сульфид, активированный серебром, рентгеновские экраны представляют собой пленку, равномерно покрытую порошкообразным светосоставом, наклеенную на бумажную или пластмассовую подложку.

9 -- электронно-оптический усилитель

Это устройство, предназначенное для многократного увеличения яркости изображения на рентгеновском экране путем преобразования светового изображения в электронное и последующего преобразования его в световое. Такое усиление изображения в электронно-оптическом усилителе достигается с помощью электровакуумного прибора, называемого электронно-оптическим преобразователем. Усилитель рентгеновского изображения применяют главным образом при просвечивании, рентгенокинематографии и использовании телевидения в рентгенодиагностике.

Основным преимуществом электронно-оптического усилителя является резкое снижение дозы рентгеновского излучения при диагностических исследованиях, особенно при рентгенокинематографии, а также возможность благодаря резкому увеличению яркости изображения просвечивать в слабо затемненном помещении, пользуясь при этом маломощными рентгеновскими аппаратами.

Увеличение яркости изображения достигается путем промежуточного преобразования рентгеновского изображения в электронное и усиления последнего за счет дополнительно подводимой электрической энергии.

Основным усилительным элементом такого устройства является вакуумный прибор, называемый электронно-оптическим преобразователем. Наиболее широкое применение получили усилители с рентгеновскими электронно-оптическими преобразователями (РЭОП). Первичным приемником рентгеновского излучения является в этом случае люминесцентный экран из сульфид-цинка - или цинк-кадмий-сульфид активированных серебром - люминофора внутри вакуумной трубки. Экран находится в оптическом контакте с полупрозрачным сурьмяно-цезиевым или мультищелочным фотокатодом. Экрано-катодный узел вместе с конусообразным анодом и подфокусирующим электродом образует трехэлектродную ускоряющую и фокусирующую систему преобразователя. У основания анодного конуса расположен выходной катодолюминесцентный экран. На анод подается высокий положительный потенциал (25 кВ) относительно катода, на фокусирующий электрод -- небольшой потенциал (200--300 В).

Пучок рентгеновых лучей, попадая на выходной экран, вызывает его свечение (рентгенолюминесценцию). Под действием квантов света фотокатод испускает (эмиттирует) электроны, причем распределение плотности электронов в пучке воспроизводит распределение освещенности, создаваемой экраном на поверхности фотокатода. В результате световое изображение преобразуется в электронное. Поток электронов, устремляясь к аноду, бомбардирует выходной люминесцентный экран, вызывая его свечение. Таким образом, осуществляется обратное преобразование электронного изображения в световое. Увеличение яркости достигается путем ускорения электронов в электростатическом поле и электронно-оптического уменьшения изображения, что приводит к увеличению плотности потока электронов. Изображение на выходном экране наблюдают через оптическую систему, увеличивающую его размеры до нормальных. Его можно также фотографировать на широкоформатную пленку, на кинопленку или передавать на телевизионную трубку.

Современные усилители с РЭОП обладают коэффициентом усиления, равным 3000 или более. Это означает, что яркость свечения их выходного экрана превосходит яркость свечения обычного экрана для рентгеноскопии в 3000 или более раз. Это основное преимущество усилителя, дающее возможность увеличить степень восприятия информации, заложенной в изображении, благодаря повышению остроты зрения и контрастной чувствительности глаза; сократить время исследования; уменьшить вероятность ошибок, связанных с утомлением глаз; устранить необходимость в затемнении и дополнительной адаптации; уменьшить облучение пациента при рентгеноскопии; производить рентгенокиносъемку, а также применять телевизионные установки с использованием видиконов в качестве передающих трубок.

Недостатком усилителя с РЭОП является относительно небольшой размер рабочего поля (технически сложно сделать РЭОП с диаметром выходного экрана более 220--230 мм). Для увеличения рабочего поля используют усилители яркости рентгеновского изображения иной конструкции со световым электронно-оптическим преобразователем. В этом усилителе рентгеноскопический экран находится вне ЭОП, а изображение, получаемое на экране, проектируется на фотокатод преобразователя светосильной зеркально-линзовой оптикой. Недостатками такой системы являются громоздкость и значительные потери света при переносе изображения с экрана на фотокатод.

Электронно-оптические усилители рентгеновского изображения применяют при исследовании пищеварительного тракта и сердечно-сосудистой системы, для рентгеноскопического контроля при введении зондов, катетеров и радиоактивных препаратов, для быстрого исследования травматических повреждений и во всех случаях, когда применение обычного метода просвечивания сопряжено с опасностью чрезмерного облучения пациентов и персонала.

Телевизионные установки с усилителем позволяют производить одновременное наблюдение группой врачей и осуществлять рентгенологический контроль при операциях непосредственно у операционного стола.

Рентгенокиносъемка при помощи усилителя сочетает в себе одно из важных преимуществ рентгенографии -- документальность с возможностью функциональных исследований различных органов. Двухканальная выходная оптическая система позволяет визуально контролировать процесс киносъемки.

При использовании новейших усилителей рентгеновского изображения интегральная доза при рентгеноскопии в ряде случаев уменьшается в 10--15 раз.

Стремление свести к минимуму облучение пациентов и персонала и расширить возможности рентгенодиагностики приводит к ограничению сферы применения обычного рентгенологического исследования с заменой его исследованием при помощи электронно-оптического усилителя рентгеновского изображения

10 -- люминесцентная пласти на для цифровой рентгенографии

Цифровая система с использованием люминофорных пластин занимает второе место по частоте использования. В основе метода лежит фиксация изображения анатомических структур запоминающим люминофором. Покрытый таким люминофором экран запоминает информацию в форме скрытого изображения, которое сохраняется длительное время (до нескольких часов).

Скрытое изображение считывается с экрана инфракрасным лазером, который последовательно сканирует его, стимулируя при этом люминофор и освобождая накопленную в нем энергию в виде вспышек видимого света (явление фотостимулированной люминесценции). Свечение пропорционально числу поглощенных люминофором рентгеновских фотонов. Вспышки света преобразуются в серию электрических сигналов, которые затем преобразуются в цифровые сигналы.

Скрытое изображение, оставшееся на экране, стирается способом интенсивной засветки видимым светом и далее экран может вновь использоваться.

Преимущество люминофоров в том, что их можно применять в комплекте с традиционной аналоговой рентгеновской аппаратурой, что значительно повышает качество визуализации.

11 -- дисплей;

12 -- магнитный накопитель изображений.

Штатив. Штатив рентгеновского аппарата это передвижной остов, на котором укрепляются рентгеновская трубка, флюоресцирующий экран, регулятор величины диафрагмы, электронно-оптический преобразователь, приспособление для прицельных снимков и т. д.

Пульт управления . Столик (пульт) управления служит для пуска аппарата в работу и поэтому на панели монтируют различные выключатели и тумблеры измерительных приборов. Там же расположены многие электроприборы, необходимые для регулирования режима работы рентгеновской трубки. устройство рентгеновского аппарата

рентгеновский трубка установка аналоговый

Аналоговая и цифровая рентгенография

Все виды медицинской визуализации включают три этапа формирования изображения:

1. Образование пространственного изображения с наилучшими характеристиками.

2. Фиксация и воспроизведение пространственного изображения. При этом характеристики воспроизводящих устройств приходится оптимальным образом приспосабливать к клиническим требованиям.

3. Запись и архивация изображений. Изображение необходимо записывать в форме удобной для наблюдения, хранения и передачи на расстояния.

Эволюция радиологии в течение двух последних десятилетий огромна, в значительной мере это связано с внедрением компьютерной томографии (КТ) и ультрасонографии (УС) в семидесятых и магнитно-резонансной томографии (МРТ) в восьмидесятых годах. Эти новые методики создают секционные изображения, т.е. двухмерные отображения срезов тканей. Однако большинство обследований, проводимых в радиологических отделениях по-прежнему базируется на традиционных проекционных изображениях. Используемые в проекционной рентгеновской визуализации технологии можно разделить на три основные группы:

1. прямые аналоговые технологии

· рентгенография

· рентгеноскопия

2. непрямые аналоговые технологии

· флюорография

· система УРИ(ЭОП, рентгенотелевидение)

3. цифровые технологии

· субтракционная ангиография

· прицельная рентгенография с экрана ЭОП

· люминисцентная рентгенография

· «прямая» селеновая рентгенография

· «малодозная» сканирующая ренгенография

Стандартные рентгеновские системы осуществляют формирование и отображение информации аналоговым путем.

Прямые аналоговые технологии

При данной технологии окончательное рентгеновское изображение создается непосредственно в среде-детекторе, т.е. без каких-либо усложняющих промежуточных шагов. В качестве среды может использоваться радиографическая пленка или флюоресцирующий экран. Как пленка, так и экран являются аналоговыми детекторами рентгеновских лучей, т.е. их реакция на постоянную и непрерывно увеличивающуюся дозу излучения также постоянна и непрерывна, в противоположность пошаговой, дискретной реакции. Рентгеновская пленка реагирует потемнением, флюоресцентный экран - испусканием видимого света (флюоресценция).

Существует два основных направления прямой аналоговой технологии: а)прямая рентгенография и б) прямая рентгеноскопия.

Прямая рентгенография

Фотографическая эмульсия пленки содержит мельчайшие кристаллы бромида серебра, каждое зерно имеет диаметр порядка 1мкм. Полноразмерная рентгенография обеспечивает получение статических изображений с наивысшим из всех возможных методик пространственным разрешением (среднее линейное разрешение составляет примерно 1мкм=0,001мм).

Комбинации усиливающий экран-пленка соответствует характеристическая кривая , показывающая зависимость потемнения (плотности) , фотографической эмульсии от экспозиции.

При радиографии изучаемые структуры должны находиться в средней, линейной части кривой. Здесь эффект усиления контрастности пленкой достигает максимума. Наклон линейной части кривой называется гаммой , и комбинации экран-пленка с большими значениями гаммы дают высококонтрастные изображения. Такие параметры как чувствительность, пространственное разрешение и шум в значительной мере определяются усиливающими экранами.

Прямая рентгеноскопия

Традиционная рентгеноскопия (или просвечивание ) использовалась для изучения динамических процессов до середины шестидесятых годов. С тех пор традиционную рентгеноскопию сменила непрямая рентгеноскопия, использующая усилители изображения и телевизионную технику.

Непрямые аналоговые технологии

В современной рентгеноскопии первичная проекция изображения создается на флюоресцентном экране, в целом также, как это делается при прямых технологиях. Однако изображение на экране не наблюдается непосредственно. Экран - это часть усилителя рентгеновских изображений (УРИ) , увеличивающего яркость (свечение) первичного изображения примерно в 5 000 раз. В состав УРИ входит рентгеновский электронно-оптический преобразователь (РЭОП) и замкнутая телевизионная система. РЭОП состоит из вакуумной колбы с люминисцентным экраном на каждом из ее концов, фотокатода и электронно-оптической системы.

Поступающее с преобразователя уменьшенное и усиленное изображение через систему зеркал и линз можно записать малоформатной камерой (формат пленки 70, 100 или 105 мм) или кинокамерой (формат пленки 16 или 35 мм. Запись малоформатной камерой также называют выборочной съемкой , или флюорографией , а выборочный фильм - флюорограммой . При флюорографии получаемая пациентом доза составляет примерно 1/10 дозы при полноразмерной радиографии, однако качество изображения (особенно пространственное разрешение) заметно ниже. Кинофлюорография создает похожие на кино изображения с частотой, например, 50 кадров в секунду. Кинофлюорография с 35-мм пленкой в ангио- и кардиологических исследованиях еще применяется (хотя цифровые технологии постепенно замещают аналоговые).

С помощью указанной оптической системы изображение может быть записано телевизионной камерой и показано на мониторе. Изображение будет иметь лучшее качество в случае непосредственной оптической связи выходного экрана усилителя и телекамеры с помощью волоконной оптики. Конкретный выбор телекамеры (видикон, плюмбикон, кремникон) зависит от ее назначения.

Возникающий в телекамере электрический видеосигнал поступает на экран видеоконтрольного устройства, монитор. Флюоресценция или рентгеноскопия с помощью РЭОПа позволяет наблюдать на экране монитора изображение в реальном масштабе времени, в том числе и двигательные функции организма, при меньшей лучевой нагрузке на пациента. Изображение, регистрируемое телекамерой, может храниться на магнитной пленке видеомагнитофона.

Цифровые технологии

Классификация цифровых систем для рентгенодиагностики

Все методы получения и регистрации цифровых рентгеновских изображений и, реализующие эти методы технологические разработки можно условно разделить на две группы:

1. системы, в которых прием и преобразование информации, содержащейся в потоке рентгеновского излучения, прошедшем через исследуемую область тела пациента, осуществляется с использованием запоминающих устройств, выполняющих роль своеобразного буфера, с формированием цифрового массива данных при последующем считывании информации уже с запоминающего устройства в специально предназначенной для этих целей аппаратуре - системы с формированием цифровых изображений в режиме нереального масшаба времени.

2. Системы с непосредственным приемом и преобразованием информации, содержащейся в прошедшем через тело пациента потоке фотонов рентгеновского излучения,в массив цифровых данных - системы с формированием цифровых изображением в режиме реального и квазиреального масштаба времени.

К первой группе можно отнести рентгендиагностические комплексы с трактом формирования изображения, содержащим люминесцентные запоминающие экраны(пластин), считывание информации с которых осуществляется специальным лазерным устройством. Срок хранения информации на этих экранах может достигать нескольких часов. В качестве буфера с практически неограниченным временем хранения информации может рассматриваться обычная экспонированная и обработанная пленка, изображение с которой преобразуется в цифровой вид с помощью устройств для оцифровки рентгеновских пленок.

Во вторую группу входят:

1. Усилители рентгеновского изображения с аналого-цифровым преобразователем сигналов на выходе входящей в состав УРИ телевизионной системы с ПЗС-матрицей

2. Устройства с трактом преобразования, построенном на базе комбинации: сцинтилляционный экран - светосильная оптика - ПЗС-матрица.

3. Сканирующая система с линейкой газовых либо твердодельных детекторов

4. Аппараты с приемником-преобразователем рентгеновского излучения на базе селенового барабана;а также устройства, использующие в качестве приемника-преобразователя плоские панели различных размеров на оснве аморфного крмния либо аморфного селена.

Приемники-преобразователи, используемые в системах, представляющих вторую группу, в свою очередь, могут быть отнесены к одному из двух типов:

Приемники-преобразователи, в которых на первой стадии не происходит преобразование энергии фотонов рентгеновского излучения в энергию фотонов оптического диапазона длин волн(к этому типу относятся детекторы на базе селеновых барабанов, плоские панели на основе аморфного селена, а также детегторы на основе газовых ионазиционных камер для сканирующих систем).

Приемники - преобразователи с промежуточным преобрзованием энергии фотонов рентгеновского излучения в энергию фотонов оптического диапазона длин волн - только на следующей стадии носителями информации становятся электороны 9 к этому типу относятся детекторы на базе УРИ с аналого-цифровым преобразованием сигналов на выходе входящей в состав УРИ телевизионной системы либо камеры с ПЗС-матрицей, приемники с трактом преобразования, построенном на базе комбинациисцинтиляциооный экран-светосильная оптика-ПЗС-матрица, линейки полупроводниковых детекторов для сканирующих систем, а также плоские панели на основе аморфного кремния).

Системы на базе стимулируемых люминофоров.

Принцип действия данных систем основан на физическом эффекте фотостимулируемой люминесценции. Специальный экран, покрытый тонким слоем люминофора, может помещаться в кассету для рентгеновской пленки соответствующего размера. После экспонирования кассеты с экраном в потоке фотонов рентгеновского излучения, прошедших через исследуемую область тела человека, на экране появляется скрытое изображение, которое может сохраняться до нескольких часов. В течение этого срока изображение может быть считано сканирующей системой, представленной инфракрасным лазером, луч которого в процессе сканирования стимулирует люминофор, в результате чего происходит высвобождение энергии, накопленной электронами, в виде вспышек света различной интенсивности. Параллельно с помощью фотоэлектронного умножителя, производится регистрация вспышек света и преобразование их в электрические сигналы. Сигналы на выходе фотоэлектронного умножителя усиливаются с помощью усилителя, после чего осуществляется их аналого-цифровое преобразование с квантованием на 8-14 разрядов. Сформированный массив данных содержит информацию о плотности различных участков исследуемого объекта. После считывание запоминающие экраны помещают в световое поле высокой интенсивности, чтобы стереть остатки скрытого изображения. Процедуру можно повторять многократно. В настоящее время разрабатываются и производятся системы двух типов: это кассеты с запоминающим экраном, и бескассетные устройства, которые являются узлом рентгендиагностического комплекса и используются в нем в качетсве приемника-преобразователя для рентгеновского излучения. В настоящее время разработана бескассетная система с двумя запоминающими экранами разделенных медным фильтром. На выходе на первом экране формируется изображение, соответствующее практически всему диапазону рентгенологического спектра фотонов, а на второй - только высокоэнергетической части спектра.

Системы на базе устройств для оцифровки рен т геновских пленок.

Данные системы различаются по технологии формирования первичного светового потока, а также по типу детектора светового потока, прошедшего через экспонированную и обработанную рентгеновскую пленку. В настоящее время используют два типа детекторов: детекторы на основе ПЗС-матриц с высоким пространственным разрешением и детекторы на основе высокоэффективных фотоэлектронных умножителей.

В первом типе приемником используются ПЗС-матрицы, содержащие до 11000 элементов строке. В качестве источника света с них используется флоуресцентные рампы с холодным катодом и широкополостные источники, работающие в УФ-диапазоне длин волн,светодиоды,излучающие красный свет и галогенные лампы.

Фотоэлектронные умножители в качестве детектора используются в системах с лазерным источником первичного светового потока.

Системы на базе селенового барабана.

На поверхность металлического (как правило алюминиевого) полого цилиндра наносят слой аморфного селена. Селен является фотопроводником, в результате облучения происходит преобразование энергии и формирование электрического сигнала. По краям барабана располагаются: устройство формирования коронного заряда и устройство считывания информации, содержащее решетку из 36 чувствительных элементов. Для создния электрического поля (зарядки барабана) включают устройство формирования коронного заряда и начинают медленно вращать барабан, после зарядки барабан останавливают и производится экспозиция. Сразу же после окончания экспозиции барабан начинает быстро вращаться и происходит считывание информации.

Системы с использованиесм плоских панелей на базе аморфного селена.

В этом случаем используются плоские панели на основе аморфного селена. На начальном этапе за счет облучения потоком фотонов рентгеновского излучения слоя аморфного селена, который находится в постоянном электрическом поле высокой напряженности, на поверхности слоя формируется потенциальный рельеф. Затем осуществляется считывание информации о распределении зарядов в плоской решетке электродов. В результате формируются электические сигналы, которые в дальнейшем подвергаются усилению и аналого-цифровому преобразованию.

Системы для рентгенографии на базе УРИ.

Два типа УРИ: УРИ на базе РЭОП и усилители на базе ЭОП.

УРИ на базе ЭОП получили меньшее распространение в связи с более низкой эффективностью преобразования энергии фотонов рентгеновского излучения, и как следствие, необходимости увеличения дозовой нагрузки на пациента.

УРИ на базе РЭОП с оборачиванием изображения. Усиление яркости в подобных системах идет за счет увеличения интенсивности светового потока при наличии ускоряющего напряжения. Входное окно выполнено из тонких листов аллюминия или титана, в качестве входного экрана используют люминофор на основе йодистого цезия,активированного натрием. Люминофор наносится на подложку из аллюминия. За счет повышения энергии ренгеновских фотонов во входном экране, образуются фотоны видимого диапазона длин волн. Между люминофором и фотокатодом находится тонкий слой окиси индия,чтобы они не вступали в реакцию между собой. Фотокатодный слой изготовлен из сурьмы и цезия. За счет фотоэффекта, попавший н фотокатод световой катод вызывает эмиссию электронов. Электроны свободно перемещаются в вакууме, и фокусируются на выходном экране, на выходе формируется электрический сигнал,который подвергается аналого-цифровому преобразованию и переносится на ПЗС-матрицу.

Системы на основе комбинации: сцинтилляционный экран-светосильная оптика-ПЗС-матрица.

На первом этапе поток фотонов попадает на сцинтилляционный экран, где преобразуется в поток фотонов видимого света. Затем с помощью светосильное оптики, происходит фокусирова изображения и переноси его на ПЗС- матрицу. Электрические сигналы с ПЗС-матрицы подвергаются усилению и аналого-цифровому преобразованию.

Системы с использованием плоских панелей на базе аморфного кремния.

Верхний рабочий слой панели представлен сцинтиллятором на основе йодированного цезия, в котором осуществляется преобразование потока фотонов рентгеновского излучения, в поток фотонов видимого света. Далее поток попадает на матрицу светочувствительных элементов (фотодиодов) на основе аморфного кремния, на выходах которых формируются электрические заряды,далее эти сигналы считываются, усиливаются и конвергируются с помощью аналого-цифровых преобразователей.

Преимущества цифровой рентгенографии

К достоинствам цифровой рентгенографии можно отнести:

· высокое качество рентгеновского изображения, возможность его цифровой обработки и выявления важных деталей,

· возможность снизить дозу облучения,

· простота и скорость получения изображения, которое становится доступно для анализа сразу после окончания экспозиции,

· хранение информации в оцифрованном виде дает возможность создавать легкодоступные и мобильные рентгеновские архивы, передавать информацию на любые расстояния по компьютерной сети,

· более низкая стоимость цифровой рентгенографии, а так же ее экологическая безопасность по сравнению с традиционной: исключается необходимость в дорогостоящей пленке и реактивах, в оснащении фотолаборатории и «ядовитом» процессе проявки,

· более быстрое получение результатов дает возможность повысить пропускную способность рентген-кабинетов,

· высокое качество снимков с возможностью их резервного копирования исключает необходимость в повторных процедурах с дополнительным облучением пациента.

При всех выше перечисленных преимуществах цифровая рентгенография имеет один существенный недостаток - высокая стоимость оборудования по сравнению с аналоговой рентгеновской аппаратурой.

Классификация рентгендиагностичеких аппаратов

* по назначению: общие и специальные;

* по области применения: для ангиографии, для нейрорентгенодиагностики, урологических исследований, маммографии, дентальные, в том числе панорамные - ортопантомографы и другие;

* по способу и технологии переработки данных: аналоговые и цифровые.

· диагностические и терапевтические

Рентгендиагностические комплексы:

* аппараты на три рабочих места;

* аппараты на два рабочих места;

* телеуправляемые рентгенодиагностические аппараты;

* передвижные рентгенодиагностические кабинеты.

Рентген-установки бывают:

· передвижные;

· стационарные;

· переносные.

Список литературы

1. Медицинская радиология. Линденбратен Л.Д., Королюк И.П.

2. Лучевая диагностика. Труфанов Г.Е.

3. Медицинская рентгенология: Технические аспекты. Клинические материалы. Радиационная безопасность.. Ставицкий Р.В.

Подобные документы

    Ознакомление с историей открытия рентгеновских лучей. Развитие данной диагностики в Германии, Австрии, России. Устройство и принцип работы рентгеновской трубки, свойства лучей. Устройство рентгеновского аппарата, соответственного отделения (кабинета).

    презентация , добавлен 10.02.2015

    Открытие Х-лучей Вильгельмом Рентгеном, история и значение данного процесса в истории. Устройство рентгеновской трубки и взаимосвязь ее главных элементов, принципы работы. Свойства рентгеновского излучения, его биологическое воздействие, роль в медицине.

    презентация , добавлен 21.11.2013

    Основы томографии и рентгенографии, история открытия метода исследования органов и тканей. Устройство рентгеновской установки, компьютерной и цифровой томографии, преимущества и недостатки методов. Области применения цифровых рентгенологических систем.

    курсовая работа , добавлен 16.06.2011

    Развитие слуховых аппаратов. Карманные, заушные, внутриушные, внутриканальные и имплантируемые слуховые аппараты. Моноуральное и бинауральное протезирование. Основные противопоказания и показания к слухопротезированию. Цифровые и компьютерные технологии.

    реферат , добавлен 28.11.2016

    Виды слуховых аппаратов. Типичные неисправности, с устранениями которых может справиться пользователь аппарата. Индивидуальные ушные вкладыши. Особенности слухопротезирования и речевой аудиометрии. Устройство и принципиальная схема слухового аппарата.

    курсовая работа , добавлен 03.04.2014

    Основные пороки желудочно-кишечного тракта, которые вызывают нарушение проходимости пищеварительной трубки. Внутриутробный нормальный поворот "средней" кишки. Нормальный процесс вращения кишечника. Невозвращение кишечной трубки в брюшную полость.

    презентация , добавлен 17.02.2013

    Рентген и история открытия рентгеновских лучей. Средства индивидуальной и коллективной защиты в рентгенодиагностике. Дозовые нагрузки на население и персонал при проведении медицинских рентгенологических исследований и основные пути их оптимизации.

    реферат , добавлен 21.03.2008

    контрольная работа , добавлен 30.10.2009

    Кишечный шов, способ соединения кишечной стенки. Операции на полых органах пищеварительной трубки. Биологические обоснования методик кишечного шва. Варианты ручного шва. Высокая надежность механического шва при помощи различных сшивающих аппаратов.

    реферат , добавлен 19.03.2009

    Информационные технологии в стоматологии. Внутриротовые цифровые фото- и видеокамеры, радиовизиографы. Программы и устройства, анализирующие цветовые показатели тканей зубов, цифровая рентгенодиагностика. Компьютерное моделирование конструкции протеза.

Вскоре после открытия В.-К. Рентгеном нового вида излучения оно стало активно использоваться в медицине с диагностическими целями. Таким образом, родилась новая медицинская специальность, названная рентгенодиагностикой. Само новое излучение, электромагнитное по своей природе, в России и Германии получило название рентгеновского, а в англоязычных странах Х-лучей (Х-гау).

Устройство и принцип работы рентгеновской трубки

Рентгеновское излучение возникает в рентгеновской трубке в момент подачи на нее высокого напряжения. Наиболее распространенная современная модель рентгеновской трубки представляет собой электрический прибор, состоящий из двух электродов: катода, выполненного в виде тонкой спирали, и анода -- в виде пластины или диска, которые запаяны в вакуумной стеклянной колбе. Таким образом, между катодом и анодом имеется безвоздушное пространство. Поскольку процесс получения рентгеновского излучения связан с сильным нагреванием электродов, они конструктивно выполнены из тугоплавкого металла (вольфрама).

Перед подачей на электроды высокого напряжения катод нагревается сильным током низкого напряжения (напряжение 6--14 В, сила тока 2,5-8 А). При этом катод начинает испускать свободные электроны, которые образуют вокруг него так называемое электронное облачко, а процесс отрыва электронов от поверхности катода называется электронной эмиссией.

Схема рентгеновской трубки: 1 - катод, 2 -- поток электронов, 3 - фокусное пятно анода, 4 -- анод, 5 -- двигатель на оси анода

При подаче на электроды высокого напряжения (порядка десятков и сотен киловольт) оторвавшиеся от катода электроны через вакуум начинают устремляться к аноду с огромной скоростью. Встречая на своем пути анод, электроны начинают ударяться о его поверхность. При этом происходит торможение электронов и преобразование их высокой кинетической энергии в энергию электромагнитных волн с различной частотой, большая часть которой рассеивается в виде теплового излучения. Небольшое количество энергии, образованной вследствие торможения электронов об анод (примерно 1/1000), покидает рентгеновскую трубку в виде рентгеновского излучения. Таким образом, рентгеновское излучение -- это волновое тормозное электромагнитное излучение. При этом оно направляется перпендикулярно по отношению к оси движения электронов в вакууме рентгеновской трубке. Это становится возможным благодаря особой форме анода, имеющего скошенную поверхность в месте контакта с падающими на него электронами, называемую фокусным пятном. Кроме того, во время подачи на рентгеновскую трубку высокого напряжения анод, выполненный в виде диска, начинает вращаться с высокой частотой. Поэтому в разные моменты времени пучок электронов ударяется о разные участки его поверхности, что предохраняет анод от избыточного нагревания, равномерно распределяя тепловую нагрузку по его поверхности.

Формирование рентгеновского изображения

Принцип получения рентгеновского изображения исследуемого органа основан на неоднородном ослаблении (поглощении) пучка рентгеновского излучения при прохождении его через ткани различной плотности и попадании неоднородно ослабленного излучения на воспринимающую систему (рентгеновскую пленку или флюоресцирующий экран).

Все диагностические изображения, получаемые методами медицинской визуализации, подразделяют на две основные группы - аналоговые и цифровые. Аналоговые изображения получают на специальной рентгенографической пленке или флюоресцирующих экранах с помощью методов классической рентгенодиагностики (рентгенографии, рентгеноскопии, флюорографии, линейной томографии, методик с применением искусственного контрастирования).

Схема формирования рентгеновского изображения за счет неравномерного ослабления рентгеновского излучения: 1 - источник рентгеновского излучения, 2 - тело пациента, 3 -- рентгеновская пленка, флюоресцирующий экран

Существуют негативные и позитивные изображения одного и того же объекта (органов грудной клетки). Органы и ткани, обладающие высокой рентгеновской плотностью (кости, сердце, купола диафрагмы), на негативных изображениях белого цвета, а на позитивных -- черного. При анализе рентгенограмм необходимо также помнить о наличии суммационного эффекта. Суммационный эффект заключается в наслоении изображений различных органов и тканей, расположенных вдоль прохождения пучка рентгеновского излучения.