Интегрирование иррациональных выражений методом замены переменной. Интегрирование — MT1205: Математический анализ для экономистов — Бизнес-информатика

Продолжаем рассматривать интегралы от дробей и корней. Не все они суперсложные, просто по тем или иным причинам примеры были немного «не в тему» в других статьях.

Пример 9

Найти неопределенный интеграл

В знаменателе под корнем находится квадратный трехчлен плюс за пределами корня «довесок» в виде «икса». Интеграл такого вида решается с помощью стандартной замены.

.

Замена тут простая:

Смотрим на жизнь после замены:

(1) После подстановки приводим к общему знаменателю слагаемые под корнем.

(2) Выносим из-под корня.

(3) Числитель и знаменатель сокращаем на . Заодно под корнем мы переставили слагаемые в удобном порядке. При определенном опыте шаги (1), (2) можно пропускать, выполняя прокомментированные действия устно.

(4) Полученный интеграл, как вы помните, решается методом выделения полного квадрата . Выделяем полный квадрат.

(5) Интегрированием получаем заурядный «длинный» логарифм.

(6) Проводим обратную замену. Если изначально , то обратно: .

(7) Заключительное действие направлено на прическу результата: под корнем снова приводим слагаемые к общему знаменателю и выносим из-под корня .

Пример 10

Найти неопределенный интеграл

.

Это пример для самостоятельного решения. Здесь к одинокому «иксу» добавлена константа, и замена почти такая же:

.

Единственное, что нужно, - это дополнительно выразить «икс» из проводимой замены:

.

Полное решение и ответ в конце урока.

Иногда в таком интеграле под корнем может находиться квадратный двучлен, это не меняет способ решения, оно будет даже еще проще. Почувствуйте разницу:

Пример 11

Найти неопределенный интеграл

Пример 12

Найти неопределенный интеграл

Краткие решения и ответы в конце урока. Следует отметить, что Пример 11 является в точности биномиальным интегралом , решение которого рассматривалось на уроке Интегралы от иррациональных функций .

Интеграл от неразложимого в знаменателе многочлена 2-ой степени в степени



Более редкий, но, тем не менее, встречающий в практических примерах вид интеграла.

Пример 13

Найти неопределенный интеграл

В знаменателе подынтегральной функции находится неразложимый на множители квадратный двучлен. Подчеркиваем, что неразложимость на множители является существенной особенностью. Если многочлен раскладывается на множители, то всё намного понятнее, например:

Вернёмся к примеру со счастливым номером 13. Этот интеграл тоже из разряда тех, с которыми можно изрядно промучиться, если не знаешь, как решать.

Решение начинается с искусственного преобразования:

Как почленно разделить числитель на знаменатель, думаю, уже все понимают.

Полученный интеграл берётся по частям:

Для интеграла вида

где (k ≥ 2) – натуральное число, выведена рекуррентная формула понижения степени:

; – это интеграл степенью ниже на 1.

Что делать, если дополнительно в числителе есть многочлен? В этом случае используется метод неопределенных коэффициентов, и подынтегральная функция раскладывается в сумму дробей. Если такой интеграл встретится, смотрите учебник – там всё просто.

Рассмотрим интегралы с корнем от дробно-линейной функции:
(1) ,
где R - рациональная функция своих аргументов. То есть функция, составленная из входящих в нее аргументов и произвольных постоянных с помощью конечного числа операций сложения (вычитания), умножения и деления (возведения в целочисленную степень).

Примеры рассматриваемых интегралов с дробно-линейной иррациональностью

Приведем примеры интегралов с корнями вида (1) .

Пример 1

Хотя здесь под знаком интеграла входят корни различных степеней, но подынтегральное выражение можно преобразовать следующим образом:
;
;
.

Таким образом, подынтегральное выражение составлено из переменной интегрирования x и корня от линейной функции с помощью конечного числа операций вычитания, деления и умножения. Поэтому оно является рациональной функцией от x и и принадлежит рассматриваемому типу (1) со значениями постоянных n = 6 , α = β = δ = 1 , γ = 0 :
.

Пример 2

Здесь мы выполняем преобразование:
.
Отсюда видно, что подынтегральное выражение является рациональной функцией от x и . Поэтому принадлежит рассматриваемому типу.

Общий пример дробно-линейной иррациональности

В более общем случае, в подынтегральное выражение может входить любое конечное число корней от одной и той же дробно-линейной функции:
(2) ,
где R - рациональная функция своих аргументов,
- рациональные числа,
m 1 , n 1 , ..., m s , n s - целые числа.
Действительно, пусть n - общий знаменатель чисел r 1 , ..., r s . Тогда их можно представить в виде:
,
где k 1 , k 2 , ..., k s - целые числа. Тогда все входящие в (2) корни являются степенями от :
,
,
. . . . .
.

То есть все подынтегральное выражение (2) составлено из x и корня с помощью конечного числа операций сложения, умножения и деления. Поэтому оно является рациональной функцией от x и :
.

Метод интегрирования корней

Интеграл с дробно-линейной иррациональностью
(1)
сводится к интегралу от рациональной функции подстановкой
(3) .

Доказательство

Извлекаем корень степени n из обеих частей (3) :
.

Преобразуем (3) :
;
;
.

Находим производную:

;
;
.
Дифференциал:
.

Подставляем в (1) :
.

Отсюда видно, что подынтегральная функция составлена из постоянных и переменной интегрирования t с помощью конечного числа операций сложения (вычитания), умножения (возведения в целочисленную степень) и деления. Поэтому подынтегральное выражение является рациональной функцией от переменной интегрирования. Таким образом, вычисление интеграла свелось к интегрированию рациональной функции. Что и требовалось доказать.

Пример интегрирования линейной иррациональности

Найти интеграл:

Решение

Поскольку в интеграл входят корни от одной и той же (дробно) линейной функции x + 1 , и подынтегральное выражение образовано с помощью операций вычитания и деления, то данный интеграл принадлежит рассматриваемому типу.

Преобразуем подынтегральное выражение, чтобы в него входили корни одной степени:
;
;
.

Делаем подстановку
x + 1 = t 6 .
Берем дифференциал:
d(x + 1) = dx = ( t 6 )′ dt = 6 t 5 dt .
Подставляем:
x = t 6 - 1 ;
;
;
.
Выделяем целую часть дроби, замечая что
t 6 - 1 = (t - 1)(t 5 + t 4 + t 3 + t 2 + t + 1) .
Тогда

.

Ответ

,
где .

Пример интегрирования дробно-линейной иррациональности

Найти интеграл

Решение

Выделим корень из дробно-линейной функции:
.
Тогда
.
Делаем подстановку
.
Берем дифференциал
.
Находим производную
.
Тогда
.
Далее замечаем, что
.
Подставляем в подынтегральное выражение


.

Ответ

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Иррациональная функция от переменной - это функция, которая образована из переменной и произвольных постоянных с помощью конечного числа операций сложения, вычитания, умножения (возведения в целочисленную степень), деления и извлечения корней. Иррациональная функция отличается от рациональной тем, что иррациональная функция содержит операции извлечения корней.

Существует три основных типа иррациональных функций, неопределенные интегралы от которых приводятся к интегралам от рациональных функций. Это интегралы, содержащие корни произвольных целочисленных степеней из дробно-линейной функции (корни могут быть различных степеней, но от одной и той же, дробно-линейной функции); интегралы от дифференциального бинома и интегралы с квадратным корнем из квадратного трехчлена.

Важное замечание. Корни многозначны!

При вычислении интегралов, содержащих корни, часто встречаются выражения вида , где - некоторая функция от переменной интегрирования . При этом следует иметь в виду, что . То есть, при t > 0 , |t| = t . При t < 0 , |t| = - t . Поэтому, при вычислении подобных интегралов, нужно отдельно рассматривать случаи t > 0 и t < 0 . Это можно сделать, если писать знаки или там, где это необходимо. Подразумевая, что верхний знак относится к случаю t > 0 , а нижний - к случаю t < 0 . При дальнейшем преобразовании, эти знаки, как правило, взаимно сокращаются.

Возможен и второй подход, при котором подынтегральную функцию и результат интегрирования можно рассматривать как комплексные функции от комплексных переменных. Тогда можно не следить за знаками в подкоренных выражениях. Этот подход применим, если подынтегральная функция является аналитической, то есть дифференцируемой функцией от комплексной переменной. В этом случае и подынтегральная функция и интеграл от нее являются многозначными функциями. Поэтому после интегрирования, при подстановке численных значений, нужно выделить однозначную ветвь (риманову поверхность) подынтегральной функции, и для нее выбрать соответствующую ветвь результата интегрирования.

Дробно-линейная иррациональность

Это интегралы с корнями от одной и той же дробно-линейной функции:
,
где R - рациональная функция, - рациональные числа, m 1 , n 1 , ..., m s , n s - целые числа, α, β, γ, δ - действительные числа.
Такие интегралы сводится к интегралу от рациональной функции подстановкой:
, где n - общий знаменатель чисел r 1 , ..., r s .

Корни могут быть не обязательно от дробно-линейной функции, но и от линейной (γ = 0 , δ = 1 ), или от переменной интегрирования x (α = 1 , β = 0 , γ = 0 , δ = 1 ).

Вот примеры таких интегралов:
, .

Интегралы от дифференциальных биномов

Интегралы от дифференциальных биномов имеют вид:
,
где m, n, p - рациональные числа, a, b - действительные числа.
Такие интегралы сводятся к интегралам от рациональных функций в трех случаях.

1) Если p - целое. Подстановка x = t N , где N - общий знаменатель дробей m и n .
2) Если - целое. Подстановка a x n + b = t M , где M - знаменатель числа p .
3) Если - целое. Подстановка a + b x - n = t M , где M - знаменатель числа p .

В остальных случаях, такие интегралы не выражаются через элементарные функции.

Иногда такие интегралы можно упростить с помощью формул приведения:
;
.

Интегралы, содержащие квадратный корень из квадратного трехчлена

Такие интегралы имеют вид:
,
где R - рациональная функция. Для каждого такого интеграла имеется несколько методов решения.
1) С помощью преобразований привести к более простым интегралам.
2) Применить тригонометрические или гиперболические подстановки.
3) Применить подстановки Эйлера.

Рассмотрим эти методы более подробно.

1) Преобразование подынтегральной функции

Применяя формулу , и выполняя алгебраические преобразования, приводим подынтегральную функцию к виду:
,
где φ(x), ω(x) - рациональные функции.

I тип

Интеграл вида:
,
где P n (x) - многочлен степени n .

Такие интегралы находятся методом неопределенных коэффициентов, используя тождество:

.
Дифференцируя это уравнение и приравнивая левую и правую части, находим коэффициенты A i .

II тип

Интеграл вида:
,
где P m (x) - многочлен степени m .

Подстановкой t = (x - α) -1 этот интеграл приводится к предыдущему типу. Если m ≥ n , то у дроби следует выделить целую часть.

III тип

Здесь мы делаем подстановку:
.
После чего интеграл примет вид:
.
Далее, постоянные α, β нужно выбрать такими, чтобы в знаменателе коэффициенты при t обратились в нуль:
B = 0, B 1 = 0 .
Тогда интеграл распадается на сумму интегралов двух видов:
,
,
которые интегрируются подстановками:
u 2 = A 1 t 2 + C 1 ,
v 2 = A 1 + C 1 t -2 .

2) Тригонометрические и гиперболические подстановки

Для интегралов вида , a > 0 ,
имеем три основные подстановки:
;
;
;

Для интегралов , a > 0 ,
имеем следующие подстановки:
;
;
;

И, наконец, для интегралов , a > 0 ,
подстановки следующие:
;
;
;

3) Подстановки Эйлера

Также интегралы могут быть сведены к интегралам от рациональных функций одной из трех подстановок Эйлера:
, при a > 0 ;
, при c > 0 ;
, где x 1 - корень уравнения a x 2 + b x + c = 0 . Если это уравнение имеет действительные корни.

Эллиптические интегралы

В заключении рассмотрим интегралы вида:
,
где R - рациональная функция, . Такие интегралы называются эллиптическими. В общем виде они не выражаются через элементарные функции. Однако встречаются случаи, когда между коэффициентами A, B, C, D, E существуют соотношения, при которых такие интегралы выражаются через элементарные функции.

Ниже приводится пример, связанный с возвратными многочленами. Вычисление подобных интегралов выполняется с помощью подстановок:
.

Пример

Вычислить интеграл:
.

Решение

Делаем подстановку .

.
Здесь при x > 0 (u > 0 ) берем верхний знак ′+ ′. При x < 0 (u < 0 ) - нижний ′- ′.


.

Ответ

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Универсального способа решения иррациональных уравнений нет, так как их класс отличается количеством. В статье будут выделены характерные виды уравнений с подстановкой при помощи метода интегрирования.

Для использования метода непосредственного интегрирования необходимо вычислять неопределенные интегралы типа ∫ k x + b p d x , где p является рациональной дробью, k и b являются действительными коэффициентами.

Пример 1

Найти и вычислить первообразные функции y = 1 3 x - 1 3 .

Решение

По правилу интегрирования необходимо применить формулу ∫ f (k · x + b) d x = 1 k · F (k · x + b) + C , а таблица первообразных говорит о том, что имеется готовое решение данной функции. Получаем, что

∫ d x 3 x - 1 3 = ∫ (3 x - 1) - 1 3 d x = 1 3 · 1 - 1 3 + 1 · (3 x - 1) - 1 3 + 1 + C = = 1 2 (3 x - 1) 2 3 + C

Ответ: ∫ d x 3 x - 1 3 = 1 2 (3 x - 1) 2 3 + C .

Имеют место быть случаи, когда можно использовать метод подведения под знак дифференциала. Это решается по принципу нахождения неопределенных интегралов вида ∫ f " (x) · (f (x)) p d x , когда значение p считается рациональной дробью.

Пример 2

Найти неопределенный интеграл ∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x .

Решение

Отметим, что d x 3 + 5 x - 7 = x 3 + 5 x - 7 " d x = (3 x 2 + 5) d x . Тогда необходимо произвести подведение под знак дифференциала с использованием таблиц первообразных. Получаем, что

∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x = ∫ (x 3 + 5 x - 7) - 7 6 · (3 x 2 + 5) d x = = ∫ (x 3 + 5 x - 7) - 7 6 d (x 3 + 5 x - 7) = x 3 + 5 x - 7 = z = = ∫ z - 7 6 d z = 1 - 7 6 + 1 z - 7 6 + 1 + C = - 6 z - 1 6 + C = z = x 3 + 5 x - 7 = - 6 (x 3 + 5 x - 7) 6 + C

Ответ: ∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x = - 6 (x 3 + 5 x - 7) 6 + C .

Решение неопределенных интегралов предусматривает формулу вида ∫ d x x 2 + p x + q , где p и q являются действительными коэффициентами. Тогда необходимо выделить полный квадрат из-под корня. Получаем, что

x 2 + p x + q = x 2 + p x + p 2 2 - p 2 2 + q = x + p 2 2 + 4 q - p 2 4

Применив формулу, расположенную в таблице неопределенных интегралов, получаем:

∫ d x x 2 ± α = ln x + x 2 ± α + C

Тогда вычисление интеграла производится:

∫ d x x 2 + p x + q = ∫ d x x + p 2 2 + 4 q - p 2 4 = = ln x + p 2 + x + p 2 2 + 4 q - p 2 4 + C = = ln x + p 2 + x 2 + p x + q + C

Пример 3

Найти неопределенный интеграл вида ∫ d x 2 x 2 + 3 x - 1 .

Решение

Для вычисления необходимо вынести число 2 и расположить его перед радикалом:

∫ d x 2 x 2 + 3 x - 1 = ∫ d x 2 x 2 + 3 2 x - 1 2 = 1 2 ∫ d x x 2 + 3 2 x - 1 2

Произвести выделение полного квадрата в подкоренном выражении. Получим, что

x 2 + 3 2 x - 1 2 = x 2 + 3 2 x + 3 4 2 - 3 4 2 - 1 2 = x + 3 4 2 - 17 16

Тогда получаем неопределенный интеграл вида 1 2 ∫ d x x 2 + 3 2 x - 1 2 = 1 2 ∫ d x x + 3 4 2 - 17 16 = = 1 2 ln x + 3 4 + x 2 + 3 2 x - 1 2 + C

Ответ: d x x 2 + 3 x - 1 = 1 2 ln x + 3 4 + x 2 + 3 2 x - 1 2 + C

Интегрирование иррациональных функций производится аналогичным способом. Применимо для функций вида y = 1 - x 2 + p x + q .

Пример 4

Найти неопределенный интеграл ∫ d x - x 2 + 4 x + 5 .

Решение

Для начала необходимо вывести квадрат знаменателя выражения из-под корня.

∫ d x - x 2 + 4 x + 5 = ∫ d x - x 2 - 4 x - 5 = = ∫ d x - x 2 - 4 x + 4 - 4 - 5 = ∫ d x - x - 2 2 - 9 = ∫ d x - (x - 2) 2 + 9

Табличный интеграл имеет вид ∫ d x a 2 - x 2 = a r c sin x a + C , тогда получаем, что ∫ d x - x 2 + 4 x + 5 = ∫ d x - (x - 2) 2 + 9 = a r c sin x - 2 3 + C

Ответ: ∫ d x - x 2 + 4 x + 5 = a r c sin x - 2 3 + C .

Процесс нахождения первообразных иррациональных функций вида y = M x + N x 2 + p x + q , где имеющиеся M , N , p , q являются действительными коэффициентами, причем имеют схожесть с интегрированием простейших дробей третьего типа. Это преобразование имеет несколько этапов:

подведение дифференциала под корень, выделение полного квадрата выражения под корнем, применение табличных формул.

Пример 5

Найти первообразные функции y = x + 2 x 2 - 3 x + 1 .

Решение

Из условия имеем, что d (x 2 - 3 x + 1) = (2 x - 3) d x и x + 2 = 1 2 (2 x - 3) + 7 2 , тогда (x + 2) d x = 1 2 (2 x - 3) + 7 2 d x = 1 2 d (x 2 - 3 x + 1) + 7 2 d x .

Рассчитаем интеграл: ∫ x + 2 x 2 - 3 x + 1 d x = 1 2 ∫ d (x 2 - 3 x + 1) x 2 - 3 x + 1 + 7 2 ∫ d x x 2 - 3 x + 1 = = 1 2 ∫ (x 2 - 3 x + 1) - 1 2 d (x 2 - 3 x + 1) + 7 2 ∫ d x x - 3 2 2 - 5 4 = = 1 2 · 1 - 1 2 + 1 · x 2 - 3 x + 1 - 1 2 + 1 + 7 2 ln x - 3 2 + x - 3 2 - 5 4 + C = = x 2 - 3 x + 1 + 7 2 ln x - 3 2 + x 2 - 3 x + 1 + C

Ответ: ∫ x + 2 x 2 - 3 x + 1 d x = x 2 - 3 x + 1 + 7 2 ln x - 3 2 + x 2 - 3 x + 1 + C .

Поиск неопределенных интегралов функции ∫ x m (a + b x n) p d x осуществляется при помощи метода подстановки.

Для решения необходимо ввести новые переменные:

  1. Когда число p является целым, тогда считают, что x = z N , а N является общим знаменателем для m , n .
  2. Когда m + 1 n является целым числом, тогда a + b x n = z N , а N является знаменателем числа p .
  3. Когда m + 1 n + p является целым числом, то необходим ввод переменной a x - n + b = z N , а N является знаменателем числа p .
Пример 6

Найти определенный интеграл ∫ 1 x 2 x - 9 d x .

Решение

Получаем, что ∫ 1 x 2 x - 9 d x = ∫ x - 1 · (- 9 + 2 x 1) - 1 2 d x . Отсюда следует, что m = - 1 , n = 1 , p = - 1 2 , тогда m + 1 n = - 1 + 1 1 = 0 является целым числом. Можно ввести новую переменную вида - 9 + 2 x = z 2 . Необходимо выразить x через z . На выходы получим, что

9 + 2 x = z 2 ⇒ x = z 2 + 9 2 ⇒ d x = z 2 + 9 2 " d z = z d z - 9 + 2 x = z

Необходимо произвести подстановку в заданный интеграл. Имеем, что

∫ d x x 2 x - 9 = ∫ z d z z 2 + 9 2 · z = 2 ∫ d z z 2 + 9 = = 2 3 a r c t g z 3 + C = 2 3 a r c c t g 2 x - 9 3 + C

Ответ: ∫ d x x 2 x - 9 = 2 3 a r c c t g 2 x - 9 3 + C .

Для упрощения решения иррациональных уравнений применяются основные методы интегрирования.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Определение 1

Совокупность всех первообразных заданной функции $y=f(x)$, определенной на некотором отрезке, называется неопределенным интегралом от заданной функции $y=f(x)$. Неопределенный интеграл обозначается символом $\int f(x)dx $.

Замечание

Определение 2 можно записать следующим образом:

\[\int f(x)dx =F(x)+C.\]

Не от всякой иррациональной функции можно выразить интеграл через элементарные функции. Однако большинство таких интегралов с помощью подстановок можно привести к интегралам от рациональных функций, которые можно выразить интеграл через элементарные функции.

    $\int R\left(x,x^{m/n} ,...,x^{r/s} \right)dx $;

    $\int R\left(x,\left(\frac{ax+b}{cx+d} \right)^{m/n} ,...,\left(\frac{ax+b}{cx+d} \right)^{r/s} \right)dx $;

    $\int R\left(x,\sqrt{ax^{2} +bx+c} \right)dx $.

I

При нахождении интеграла вида $\int R\left(x,x^{m/n} ,...,x^{r/s} \right)dx $ необходимо выполнить следующую подстановку:

При данной подстановке каждая дробная степень переменной $x$ выражается через целую степень переменной $t$. В результате чего подынтегральная функция преобразуется в рациональную функцию от переменной $t$.

Пример 1

Выполнить интегрирование:

\[\int \frac{x^{1/2} dx}{x^{3/4} +1} .\]

Решение:

$k=4$ - общий знаменатель дробей $\frac{1}{2} ,\, \, \frac{3}{4} $.

\ \[\begin{array}{l} {\int \frac{x^{1/2} dx}{x^{3/4} +1} =4\int \frac{t^{2} }{t^{3} +1} \cdot t^{3} dt =4\int \frac{t^{5} }{t^{3} +1} dt =4\int \left(t^{2} -\frac{t^{2} }{t^{3} +1} \right)dt =4\int t^{2} dt -4\int \frac{t^{2} }{t^{3} +1} dt =\frac{4}{3} \cdot t^{3} -} \\ {-\frac{4}{3} \cdot \ln |t^{3} +1|+C} \end{array}\]

\[\int \frac{x^{1/2} dx}{x^{3/4} +1} =\frac{4}{3} \cdot \left+C\]

II

При нахождении интеграла вида $\int R\left(x,\left(\frac{ax+b}{cx+d} \right)^{m/n} ,...,\left(\frac{ax+b}{cx+d} \right)^{r/s} \right)dx $ необходимо выполнить следующую подстановку:

где $k$ - общий знаменатель дробей $\frac{m}{n} ,...,\frac{r}{s} $.

В результате данной подстановки подынтегральная функция преобразуется в рациональную функцию от переменной $t$.

Пример 2

Выполнить интегрирование:

\[\int \frac{\sqrt{x+4} }{x} dx .\]

Решение:

Сделаем следующую подстановку:

\ \[\int \frac{\sqrt{x+4} }{x} dx =\int \frac{t^{2} }{t^{2} -4} dt =2\int \left(1+\frac{4}{t^{2} -4} \right)dt =2\int dt +8\int \frac{dt}{t^{2} -4} =2t+2\ln \left|\frac{t-2}{t+2} \right|+C\]

Сделав обратную замену, получим окончательный результат:

\[\int \frac{\sqrt{x+4} }{x} dx =2\sqrt{x+4} +2\ln \left|\frac{\sqrt{x+4} -2}{\sqrt{x+4} +2} \right|+C.\]

III

При нахождении интеграла вида $\int R\left(x,\sqrt{ax^{2} +bx+c} \right)dx $ выполняется так называемая подстановка Эйлера (используется одна из трех возможных подстановок).

Первая подстановка Эйлера

Для случая $a>

Взяв перед $\sqrt{a} $ знак «+», получим

Пример 3

Выполнить интегрирование:

\[\int \frac{dx}{\sqrt{x^{2} +c} } .\]

Решение:

Сделаем следующую подстановку (случай $a=1>0$):

\[\sqrt{x^{2} +c} =-x+t,\, \, x=\frac{t^{2} -c}{2t} ,\, \, dx=\frac{t^{2} +c}{2t^{2} } dt,\, \, \sqrt{x^{2} +c} =-\frac{t^{2} -c}{2t} +t=\frac{t^{2} +c}{2t} .\] \[\int \frac{dx}{\sqrt{x^{2} +c} } =\int \frac{\frac{t^{2} +c}{2t^{2} } dt}{\frac{t^{2} +c}{2t} } =\int \frac{dt}{t} =\ln |t|+C\]

Сделав обратную замену, получим окончательный результат:

\[\int \frac{dx}{\sqrt{x^{2} +c} } =\ln |\sqrt{x^{2} +c} +x|+C.\]

Вторая подстановка Эйлера

Для случая $c>0$ необходимо выполнить следующую подстановку:

Взяв перед $\sqrt{c} $ знак «+», получим

Пример 4

Выполнить интегрирование:

\[\int \frac{(1-\sqrt{1+x+x^{2} })^{2} }{x^{2} \sqrt{1+x+x^{2} } } dx .\]

Решение:

Сделаем следующую подстановку:

\[\sqrt{1+x+x^{2} } =xt+1.\]

\ \[\sqrt{1+x+x^{2} } =xt+1=\frac{t^{2} -t+1}{1-t^{2} } \] \

$\int \frac{(1-\sqrt{1+x+x^{2} })^{2} }{x^{2} \sqrt{1+x+x^{2} } } dx =\int \frac{(-2t^{2} +t)^{2} (1-t)^{2} (1-t^{2})(2t^{2} -2t+2)}{(1-t^{2})^{2} (2t-1)^{2} (t^{2} -t+1)(1-t^{2})^{2} } dt =\int \frac{t^{2} }{1-t^{2} } dt =-2t+\ln \left|\frac{1+t}{1-t} \right|+C$Сделав обратную замену, получим окончательный результат:

\[\begin{array}{l} {\int \frac{(1-\sqrt{1+x+x^{2} })^{2} }{x^{2} \sqrt{1+x+x^{2} } } dx =-2\cdot \frac{\sqrt{1+x+x^{2} } -1}{x} +\ln \left|\frac{x+\sqrt{1+x+x^{2} } -1}{x-\sqrt{1+x+x^{2} } +1} \right|+C=-2\cdot \frac{\sqrt{1+x+x^{2} } -1}{x} +} \\ {+\ln \left|2x+2\sqrt{1+x+x^{2} } +1\right|+C} \end{array}\]

Третья подстановка Эйлера