Как выбрать сетевой коммутатор (свитч, свич, англ. switch). Что такое Коммутатор

Сетевой коммутатор(свитч) (network switch , switching hub, bridging hub) - устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного или нескольких сегментов сети. В отличие от концентратора, который распространяет трафик от одного подключенного устройства ко всем остальным, коммутатор передаёт данные только непосредственно получателю, исключение составляет широковещательный трафик (на MAC -адрес -адрес FF:FF:FF:FF:FF:FF) всем узлам сети. Это повышает производительность и безопасность сети, избавляя остальные сегменты сети от необходимости (и возможности) обрабатывать данные, которые им не предназначались.

Принцип работы коммутатора. Коммутатор хранит в памяти таблицу коммутации (хранящуюся в ассоциативной памяти), в которой указывается соответствие MAC-адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует кадры (фреймы) и, определив MAC-адрес хоста-отправителя, заносит его в таблицу. Впоследствии, если на один из портов коммутатора поступит кадр, предназначенный для хоста, MAC-адрес которого уже есть в таблице, то этот кадр будет передан только через порт, указанный в таблице. Если MAC-адрес хоста-получателя не ассоциирован с каким-либо портом коммутатора, то кадр будет отправлен на все порты. Со временем коммутатор строит полную таблицу для всех своих портов, и в результате трафик локализуется. Стоит отметить малую латентность (задержку) и высокую скорость пересылки на каждом порту интерфейса.

Какие коммутаторы бывают?

Коммутаторы бывают неуправляемые (unmanaged switch) и управляемые (managed switch).

    Неуправляемые коммутаторы - это простые автономные устройства, которые управляют передачей данных самостоятельно и не имеющие инструментов ручного управления. Такие коммутаторы получили наибольшее распространение в "домашних" ЛВС и малых предприятиях, основным плюсом которых можно назвать низкую цену и автономную работу, без вмешательства человека. Минусами у неуправляемых коммутаторов является отсутствие инструментов управления и малая внутренняя производительность . Поэтому в больших сетях предприятий неуправляемые коммутаторы использовать не разумно, так как администрирование такой сети требует огромных человеческих усилий и накладывает ряд существенных ограничений.

    Управляемые коммутаторы - это более продвинутые устройства, которые также работают в автоматическом режиме, но помимо этого имеют ручное управление. Ручное управление позволяет очень гибко настроить работу коммутатора и облегчить жизнь системного администратора. Основным минусом управляемых коммутаторов является цена, которая зависит от возможностей самого коммутатора и его производительности.

Абсолютно все коммутаторы можно разделить по уровням. Чем выше уровень, тем сложней устройство, а значит и дороже. Уровень коммутатора определяется слоем на котором он работает по сетевой модели OSI .

    Коммутатор 2 уровня (Layer 2). Сюда относятся все устройства, которые работают на 2 уровне сетевой модели OSI - канальном уровне (Что такое Ethernet)). Умеют анализировать получаемые кадры и работать с MAC -адрес -адресами устройств отправителей и получателей кадра. Такие коммутаторы не понимают IP-адреса компьютеров, для них все устройства имеют названия в виде MAC-адресов. IEEE 802.1p или приоритизация (Priority tags). IEEE 802.1q или виртуальные сети (Настройка VLAN Debian D-Link). IEEE 802.1d Spanning Tree Protocol (STP).

    Коммутатор 3 уровня (Layer 3) . Сюда относятся все устройства, которые работают на 3 уровне сетевой модели OSI - сетевом уровне. Умеет управлять сетевыми протоколами: IPv4, IPv6, IPX, IPSec - протокол защиты сетевого трафика на IP-уровне и т.д. Коммутаторы 3 уровня целесообразнее отнести уже не к разряду коммутаторов, а к разряду маршрутизаторов, так как эти устройства уже полноценно могут маршрутизировать, проходящий трафик, между разными сетями. Коммутаторы 3 уровня полностью поддерживают все функции и стандарты коммутаторов 2 уровня. С сетевыми устройствами могут работать по IP-адресам. Коммутатор 3 уровня поддерживает установку различных соединений: PPTP , Как работает PPPoE , vpn и т.д.

    Коммутатор 4 уровня (Layer 4). Сюда относятся все устройства, которые работают на 4 уровне сетевой модели OSI - транспортном уровне. К таким устройствам относятся более продвинутые маршрутизаторы, которые умеют работать уже с приложениями. Коммутаторы 4 уровня используют информацию, которая содержится в заголовках пакетов и относится к уровню 3 и 4 стека протоколов, такую как IP-адреса источника и приемника, биты SYN/FIN, отмечающие начало и конец прикладных сеансов, а также номера портов TCP/UDP для идентификации принадлежности трафика к различным приложениям. На основании этой информации, коммутаторы уровня 4 могут принимать интеллектуальные решения о перенаправлении трафика того или иного сеанса.

Выбор switch сетевого коммутатора

Когда нужно выбирать неуправляемый коммутатор? Если вам необходимо:

    Просто раздать интернет на несколько устройств (5-8 штук);

    Объем трафика, который будут потреблять подключаемые девайсы - небольшой;

    Вам не нужна возможность дополнительных ручных настроек, как-то: фильтрация трафика, ограничение скорости на отдельных портах и т.д.

Как выбрать коммутатор по параметрам и функциям? Рассмотрим, что подразумевается под некоторыми из часто встречающихся обозначений в характеристиках.

Базовые параметры:

    Количество портов. Их число варьируется от 5 до 48. При выборе коммутатора лучше предусмотреть запас для дальнейшего расширения сети.

    Базовая скорость передачи данных. Чаще всего мы видим обозначение 10/100/1000 Мбит/сек - скорости, которые поддерживает каждый порт устройства. Т. е. выбранный коммутатор может работать со скоростью 10 Мбит/сек, 100 Мбит/сек или 1000 Мбит/сек. Достаточно много моделей, которые оснащены и гигабитными, и портами 10/100 Мб/сек. Большинство современных коммутаторов работают по стандарту IEEE 802.3 Nway, автоматически определяя скорость портов.

    Пропускная способность и внутренняя пропускная способность. Первая величина, называемая еще коммутационной матрицей - это максимальный объем трафика, который может быть пропущен через коммутатор в единицу времени. Вычисляется очень просто: кол-во портов х скорость порта х 2 (дуплекс). К примеру, 8-портовый гигабитный коммутатор имеет пропускную способность в 16 Гбит/сек. Внутренняя пропускная способность обычно обозначается производителем и нужна только для сравнения с предыдущей величиной. Если заявленная внутренняя пропускная способность меньше максимальной - устройство будет плохо справляться с большими нагрузками, тормозить и зависать .

    Автоматическое определение MDI/MDI-X. Это автоопределение и поддержка обоих стандартов, по которым была обжата витая пара, без необходимости ручного контроля соединений. Настоятельно рекомендуется обжимать по стандарту MDI EIA/TIA-568B , тем более если планируется использование РоЕ.

    Слоты расширения. Возможность подключения дополнительных интерфейсов, например, оптических SFP.

    Размер таблицы MAC-адресов. Для выбора коммутатора важно заранее просчитать необходимый вам размер таблицы, желательно с учетом будущего расширения сети. Если записей в таблице не будет хватать, коммутатор будет записывать новые поверх старых, и это будет тормозить передачу данных. MAC -адрес -адрес состоит из 48 бит.

    Форм-фактор. Коммутаторы выпускаются в двух разновидностях корпуса: настольный/настенный вариант размещения и для стойки. В последнем случае принят стандартный размер устройства -19-дюймов. Специальные ушки для крепления в стойку могут быть съемными.

Функции для работы с трафиком:

    Зеркалирование трафика (port mirroring). Для обеспечения безопасности внутри сети, контроля или проверки производительности сетевого оборудования, может использоваться зеркалирование (дублирование трафика). К примеру, вся поступающая информация отправляется на один порт для проверки или записи определенным ПО. Теория и практика SPAN/RSPAN

    Защита от "петель" (Loopback Detection) - функции Spanning Tree Protocol и LBD. Особенно важны при выборе неуправляемых коммутаторов. В них обнаружить образовавшуюся петлю - закольцованный участок сети, причину многих глюков и зависаний - практически невозможно. LoopBack Detection автоматически блокирует порт, на котором произошло образование петли. Протокол STP (IEEE 802.1d) и его более совершенные потомки - IEEE 802.1w, IEEE 802.1s - действуют немного иначе, оптимизируя сеть под древовидную структуру. Изначально в структуре предусмотрены запасные, закольцованные ветви. По умолчанию они отключены, и коммутатор запускает их только тогда, когда происходит разрыв связи на какой-то основной линии.

    Агрегирование каналов (link aggregation) (IEEE 802.3ad). Повышает пропускную способность канала, объединяя несколько физических портов в один логический. Максимальная пропускная способность по стандарту - 8 Гбит/сек.

    Стекирование . Под стекированием коммутаторов понимается объединение нескольких коммутаторов в одно логическое устройство. Стекирование целесообразно производить, когда в итоге требуется получить коммутатор с большим количеством портов (больше 48 портов). Различные производители коммутаторов используют свои фирменные технологии стекирования, к примеру, Cisco использует технологию стекирования StackWise (шина между коммутаторами 32 Гбит/сек) и StackWise Plus (шина между коммутаторами 64 Гбит/сек). При выборе коммутатора следует отдавать предпочтение устройствам поддерживающим стекирование, т.к. в будущем эта функция может оказаться полезной.

    IGMP Snooping. Имеет смысл включать если вещание IPTV. Разработан для предотвращения широковещательной (broadcast) ретрансляции multicast трафика компьютерам-потребителям, которые явно не заявили о своей заинтересованности в нём. Это позволяет коммутаторам исключать такой трафик из потоков, направляемых через порты, к которым не подключены его потребители, тем самым существенно снижая нагрузку на сеть. Однако при этом нагрузка на сам коммутатор не снижается, а повышается, поскольку такая фильтрация требует затрат памяти, NPU и CPU, в то время как простая ретрансляция по всем портам - операция "дешёвая".

    Storm Control (Управление широковещательным/однонаправленным штормом) . Широковещательный шторм (англ. broadcast storm) - передача большого количества широковещательных пакетов в сети, часто с последующим увеличением их количества. Может возникать, например, как следствие петель в сети на канальном уровне или из-за атак на сеть. Из-за широковещательного шторма нормальные данные в сети зачастую не могут передаваться. Избежать возникновения широковещательных пакетов в сети практически невозможно, так как они используются многими служебными протоколами. На коммутаторах без защиты от широковещательного шторма его легко вызвать, просто соединив два порта патчкордом между собой. А "однонаправленный шторм" это, например, различные атаки. Пример такой атаки это отправка большого количества ICMP протокол диагностики перегрузки сети - запросов на широковещательный адрес, с адресом отправителя в пакете, который указывает на "жертву" атаки. В результате все устройства в этом широковещательном сегменте начинают отвечать на ICMP-запрос на указанный адрес "жертвы". В обычной плоской сети (где только традиционные сервисы, не подразумевающие рассылок) реальный "флуд" диагностируется по показателю в 100 Kbs ). Как работает? Storm control в каждую секунду измеряет количество бродкастов и, все что свыше, обрезает. Порт при этом продолжает работать для пересылки всего остального трафика.

Другие функции:

    Диагностика кабеля. Многие коммутаторы определяют неисправность кабельного соединения, обычно при включении устройства, а также вид неисправности - обрыв жилы, короткое замыкание и т.п. Например, в D-Link предусмотрены специальные индикаторы на корпусе: в случае неполадки индикатор горит желтым, если кабель в рабочем состоянии - горит зеленым.

    Защита от вирусного трафика (Safeguard Engine). Методика позволяет повысить стабильность работы и защитить центральный процессор от перегрузок "мусорным" трафиком вирусных программ. Что такое SafeGuard Engine и как настроить данную функцию на коммутаторах D-Link?

    Энергосбережение. Ethernet 802.3az (Green Ethernet) . Обращайте внимание на наличие функций энергосбережения. Некоторые производители, выпускают коммутаторы с регулировкой потребления электроэнергии. Например, умный свитч мониторит подключенные к нему устройства, и если в данный момент какое-то из них не работает, соответствующий порт переводится в "спящий режим". Суть Green Ethernet: сетевое устройство с поддержкой функции Green Ethernet периодически пингует свои порты (разъемы), и в случае если подключенное устройство не работает, то есть выключено или вообще не подключено, – порт отключается от питания. Помимо этого, специальное программное обеспечение определяет длину кабелей и в зависимости от их длины регулирует мощность сигнала. По заявлениям производителя, Green Ethernet позволяет сократить энергопотребление на величину от 45% до 80%.

    Power over Ethernet (PoE, стандарт IEEE 802.af) . Коммутатор с использованием этой технологии может питать подключенные к нему устройства по витой паре.

Если раньше сетевой кабель, по которому происходила передача данных, просто подключали напрямую к компьютеру, то сейчас ситуация изменилась. В одной жилой квартире, в офисе или крупной компании часто возникает необходимость создать компьютерную сеть.

Для этого используются девайсы, которые входят в категорию «компьютерное оборудование». К таким девайсам относится и свитч, позволяющий создать дома или в офисе локальную сеть. Так что же такое свитч, и как его применять для построения компьютерной сети?

Для чего нужны устройства свитч?

В дословном переводе с английского языка, компьютерный термин «свитч» обозначает устройство, которое используется для создания локальной сети через объединение нескольких компьютеров. Синоним слова свитч – коммутатор или переключатель.

Свитч является своеобразным мостом с множеством портов, через которые идет передача пакетных данных конкретным получателям. Свитч помогает оптимизировать работу сети, снижает нагрузку в ней, повышает уровень безопасности, фиксирует индивидуальные МАС-адреса, что позволяет быстро и качественно передавать данные.

Подобные коммутаторы смогли вытеснить хабы, которые ранее применялись для построения компьютерных сетей. Свитч – это умный девайс, способный обрабатывать получаемую информацию о подключенных устройствах, а потом перенаправлять данные по конкретному адресу. В результате в несколько раз повышается производительность сети и ускоряется работа Интернета.

Виды оборудования

Свитч-устройства делятся на разные виды по таким критериям:

  • Тип портов.
  • Количество портов.
  • Скорость работы портов – 10 Мбит/сек, 100 Мбит/сек и 1000 Сбит/сек.
  • Управляемые и неуправляемые устройства.
  • Производители.
  • Функции.
  • Технические характеристики.

По количеству портов свитч-коммутаторы делятся на:

  • 8-портовые.
  • 16-портовые.
  • 24-портовые.
  • 48-портовые.

Для дома и небольшого офиса подойдет коммутатор на 8 или 16 портов, которые работают со скоростью 100 Мбит/секунду.

Для больших предприятий, компаний и фирм нужны порты со скоростью работы 1000 Мбит в секунду. Такие устройства нужны для подключения серверов и крупного коммуникационного оборудования.

Неуправляемые коммутаторы – самые простые из оборудования. Сложные коммутаторы управляются на сетевом или третьем уровне модели OSI – Layer 3 Switch.

Также управление осуществляется через такие методы, как:

  • Веб-интерфейс.
  • Интерфейс командной строки.
  • Протоколы SNMP и RMON.

Сложные или управляемые коммутаторы позволяют применять функции VLAN, QoS, зеркалирование и агрегирование. Также такие коммутаторы объединяют в одно устройство, которое называется стек. Оно предназначено для того, чтобы увеличить число портов. Для стекирования применяют другие порты.

Что применяют провайдеры?


Компании-провайдеры при создании компьютерной сети создают один из ее уровней:

  • Уровень доступа.
  • Уровень агрегации.
  • Уровень ядра.

Уровни нужны для того, чтобы легче обращаться с сетью: масштабировать, настраивать, вводить избыточность, проектировать сеть.

На уровне доступа свитч-устройства должно проводится подключение конечных пользователей к порту на 100 Мбит/сек. К другим требованиям, которые предъявляются к устройству, относятся:

  • Подключение через SFP к коммутатору уровня агрегации, где происходит передача информации на скорости в 1 гигабайт в секунду.
  • Поддержка VLAN, acl, port security.
  • Поддержка функций безопасности.

По такой схеме происходит создание трех уровней сети от Интернет-провайдера. Сначала идет формирование сети на уровне жилого дома (многоэтажного, частного).

Потом сеть «разбрасывается» на микрорайон, когда происходит присоединение к сети нескольких жилых домов, офисов, компаний. На последнем этапе создается сеть уровня ядра, когда к сети подключатся целые микрорайоны.

Формирование сети у Интернет-провайдеров происходит с помощью технологии Ethernet, позволяющей подсоединить абонентов к сети.

Как работает свитч?


В памяти коммутатора находится МАС-таблица, в которой собираются все МАС-адреса. Их свитч получает в узел порта коммутатора. Когда происходит подключение свитч, то таблица еще не заполнена, поэтому оборудование работает в обучающем режиме. Данные поступают на другие порты коммутатора, свитч анализирует информацию, определяет МАС-адреса компьютера, с которого осуществлена передача данных. На последнем этапе адрес заносится в МАС-таблицу.

Таким образом, когда на тот или иной порт оборудования поступит пакет данных, который предназначен только для одного ПК, то информация передается адресно на указанный порт. Когда МАС-адрес еще не определен, информация передается на остальные интерфейсы. Локализация трафика происходит в течение работы устройства свитч, когда МАС-таблица заполнена нужными адресами.

Особенности настройки параметров устройства

Внесение соответствующих изменений в параметры свитч-устройства проходит одинаково для каждой модели. Настройка оборудования требует выполнения поэтапных действий:

  1. Создать два порта VLAN – для клиентов и для управления коммутаторов. VLAN должны быть обозначены в настройках, как порты свитч.
  2. Настроить порт security, запретив получать больше одного МАС-адреса на порт. Это позволит избежать передачи информации на другой порт. Иногда может возникнуть слияние бродакстового домена домашней сети с доменом провайдера.
  3. Запретить STP на порте клиента, чтобы другие пользователи не смогли загрязнять сеть провайдера различными пакетами BPDU.
  4. Настроить параметр loopback detection. Это позволит отклонять неправильные, бракованные сетевые карточки, и не мешать работе пользователей, которые подключены к порту.
  5. Создать и настроить параметр acl, чтобы запретить прохождение пакетов не PPPoE в пользовательскую сеть. Для этого в настройках нужно заблокировать такие ненужные протоколы, как DCHP, ARP, IP. Подобные протоколы предназначены для того, чтобы пользователи общались напрямую, обходя протоколы PPPoE.
  6. Создать acl, который запрещает PPPoE РADO пакеты, приходящие с клиентских портов.
  7. Включить Storm Control, что позволит бороться с мультикастовыми и бродкастовыми флудами. Данный параметр должен заблокировать не PPPoE трафик.

Если что-то идет не так, то стоит проверить PPPoE, который может атаковаться вирусами или поддельными пакетами данных. По неопытности и незнанию пользователи могут некорректно настроить последний параметр, и тогда нужно обратиться за помощью к оператору провайдера Интернет-услуг.

Как подключать свитч?

Создание локальной сети из компьютеров или ноутбуков требует использования сетевого коммутатора – свитча. Перед настройкой оборудования и создания нужной конфигурации сети происходит процесс физического разворачивания сети. Это означает, что между коммутатором и компьютером создается связь. Для этого стоит использовать сетевой кабель.

Соединения между узлами сети происходит с помощью патч-корда – особого вида сетевого коммуникационного кабеля, сделанного на основе витой пары. Сетевой кабель рекомендуется приобретать в специализированном магазине, чтобы процесс подключения прошел без проблем.

Настроить свитч можно двумя способами:

  1. Через консольный порт, который предназначен для внесения первичных настроек свитча.
  2. Через универсальный порт Ethernet.

Выбор способа подключения зависит от интерфейса оборудования. Подключение через консольный порт не требует расхода полосы пропускания коммутатора. Это одно из достоинств данного способа подключения.

Необходимо запустить эмулятор терминала VT 100, потом выбрать параметры подключения в соответствии с обозначениями в документации. Когда произойдет соединение, пользователь или сотрудник Интернет-компании вводит логин и пароль.


Для подключения через порт Ethernet потребуется IP-адрес, который указывается в документах к устройству или запрашивается у провайдера.

Когда внесены настройки и с помощью свитч создана компьютерная сеть, пользователи со своих ПК или ноутбуков должны без проблем выйти в Интернет.

Выбирая устройство для создания сети, нужно учитывать, сколько компьютеров будут к ней подключены, какая скорость портов, как они работают. Современные провайдеры используют для подключения технологию Ethernet, позволяющую получить скоростную сеть с помощью одного кабеля.

Коммутатор работает на канальном (втором) уровне модели OSI . Коммутаторы были разработаны с использованием мостовых технологий и часто рассматриваются как многопортовые мосты . Для соединения нескольких сетей на основе сетевого уровня служат маршрутизаторы (3 уровень OSI).

Энциклопедичный YouTube

Принцип работы коммутатора

Коммутатор хранит в памяти (т.н. ассоциативной памяти) таблицу коммутации, в которой указывается соответствие MAC-адреса узла порту коммутатора . При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует фреймы (кадры) и, определив MAC-адрес хоста-отправителя, заносит его в таблицу на некоторое время. Впоследствии, если на один из портов коммутатора поступит кадр , предназначенный для хоста , MAC-адрес которого уже есть в таблице, то этот кадр будет передан только через порт, указанный в таблице. Если MAC-адрес хоста-получателя не ассоциирован с каким-либо портом коммутатора, то кадр будет отправлен на все порты, за исключением того порта, с которого он был получен. Со временем коммутатор строит таблицу для всех активных MAC-адресов, в результате трафик локализуется.

Стоит отметить малую латентность (задержку) и высокую скорость пересылки на каждом порту интерфейса.

Режимы коммутации

Существует три способа коммутации. Каждый из них - это комбинация таких параметров, как время ожидания и надёжность передачи.

  1. С промежуточным хранением (Store and Forward). Коммутатор читает всю информацию в кадре, проверяет его на отсутствие ошибок, выбирает порт коммутации и после этого посылает в него кадр.
  2. Сквозной (cut-through). Коммутатор считывает в кадре только адрес назначения и после выполняет коммутацию. Этот режим уменьшает задержки при передаче, но в нём нет метода обнаружения ошибок.
  3. Бесфрагментный (fragment-free) или гибридный . Этот режим является модификацией сквозного режима. Передача осуществляется после фильтрации фрагментов коллизий (первые 64 байта кадра анализируются на наличие ошибки и при её отсутствии кадр обрабатывается в сквозном режиме).

Задержка, связанная с «принятием коммутатором решения», добавляется к времени, которое требуется кадру для входа на порт коммутатора и выхода с него, и вместе с ним определяет общую задержку коммутатора.

Симметричная и асимметричная коммутация

Свойство симметрии при коммутации позволяет дать характеристику коммутатора с точки зрения ширины полосы пропускания для каждого его порта . Симметричный коммутатор обеспечивает коммутируемые соединения между портами с одинаковой шириной полосы пропускания, например, когда все порты имеют ширину пропускания 10 Мб/с или 100 Мб/с.

Асимметричный коммутатор обеспечивает коммутируемые соединения между портами с различной шириной полосы пропускания, например, в случаях комбинации портов с шириной полосы пропускания 10 Мб/с или 100 Мб/с и 1000 Мб/с.

Асимметричная коммутация используется в случае наличия больших сетевых потоков типа клиент-сервер , когда многочисленные пользователи обмениваются информацией с сервером одновременно, что требует большей ширины пропускания для того порта коммутатора, к которому подсоединён сервер, с целью предотвращения переполнения на этом порте. Для того, чтобы направить поток данных с порта 100 Мб/с на порт 10 Мб/с без опасности переполнения на последнем, асимметричный коммутатор должен иметь буфер памяти.

Асимметричный коммутатор также необходим для обеспечения большей ширины полосы пропускания каналов между коммутаторами, осуществляемых через вертикальные кросс-соединения, или каналов между сегментами магистрали.

Буфер памяти

Для временного хранения фреймов и последующей их отправки по нужному адресу, коммутатор может использовать буферизацию. Буферизация может быть также использована в том случае, когда порт пункта назначения занят. Буфером называется область памяти, в которой коммутатор хранит передаваемые данные.

Буфер памяти может использовать два метода хранения и отправки фреймов: буферизация по портам и буферизация с общей памятью. При буферизации по портам пакеты хранятся в очередях (queue), которые связаны с отдельными входными портами. Пакет передаётся на выходной порт только тогда, когда все фреймы, находившиеся впереди него в очереди, были успешно переданы. При этом возможна ситуация, когда один фрейм задерживает всю очередь из-за занятости порта его пункта назначения. Эта задержка может происходить даже в том случае, когда остальные фреймы могут быть переданы на открытые порты их пунктов назначения.

При буферизации в общей памяти все фреймы хранятся в общем буфере памяти, который используется всеми портами коммутатора. Количество памяти, отводимой порту, определяется требуемым ему количеством. Такой метод называется динамическим распределением буферной памяти. После этого фреймы, находившиеся в буфере, динамически распределяются по выходным портам. Это позволяет получить фрейм на одном порте и отправить его с другого порта, не устанавливая его в очередь.

Коммутатор поддерживает карту портов, в которые требуется отправить фреймы. Очистка этой карты происходит только после того, как фрейм успешно отправлен.

Поскольку память буфера является общей, размер фрейма ограничивается всем размером буфера, а не долей, предназначенной для конкретного порта. Это означает, что крупные фреймы могут быть переданы с меньшими потерями, что особенно важно при асимметричной коммутации, то есть когда порт с шириной полосы пропускания 100 Мб/с должен отправлять пакеты на порт 10 Мб/с.

Возможности и разновидности коммутаторов

Коммутаторы подразделяются на управляемые и неуправляемые (наиболее простые).

Речь пойдет о коммутаторах в локальных сетях с 5-ю и 8-ю портами.

Сначала пару слов о том, чем коммутатор (switch) отличается от концентратора (HUB).

В общих выражениях различия (в пользу коммутатора) можно охарактеризовать как:

  • большую пропускную способность
  • большую скорость передачи информации
  • большую надежность и гарантию правильности передаваемой информации
  • как следствие — уменьшает загруженность всей сети или ее отдельных участков

За счет чего это достигается?

Попробуем объяснить это без специальных терминов.

Концентратор просто является устройством, куда подключаются все сетевые кабели от компьютеров, и он допускает в данный момент проход информации только от одного узла сети к другому. Причем до этого он предлагает информацию каждому узлу сети, пока не попадет на того, кто ее должен получить. Кроме того, концентратор (если есть несколько желающих получить или отправить информацию) последовательно решает кому разрешить передачу или прием информационных пакетов случайным образом, «подкидывая монетку». От этого и появляются коллизии. Все это осуществляется по одной шине с пропускной способностью 100 Mbit/sec.

Коммутатор — это устройство более «умное», и после первого включения в локальную сеть, он запоминает сетевой адрес каждого узла в специальной памяти таблицы адресов (address table). Даже маленький коммутатор запоминает от 8К до 16К (для 5-и, 8-портового) адресов узлов. Эта таблица нужна для коммутации пакетов. При запросе передачи или приема пакета от узла, коммутатор определяет адрес как передающего, так и адрес принимающего и коммутирует их друг с другом. Количество таких пар, которые не будут влиять на производительность, зависит от пропускной способности внутренней шины, Так в 5- и 8-портовых моделях фирмы TRENDware — TRENDnet TE100-S55E и S88E она составляет более 1 Gbit/sec. Это более чем в 10 раз превышает показатели шины концентратора, и даже загруженность сети в 10 раз большую, чем предельная для концентратора, клиенты сети не почувствуют, и сеть будет работать также быстро.

Есть и чисто механический (электрический) путь повысить скорость передачи данных между клиентом и коммутатором. Коммутатор умеет работать не только в одном направлении (half duplex) по сетевому кабелю, а в двух направления (full duplex). Таким образом, скорость обмена между клиентом и коммутатором возрастает до 200 Mbit/sec.

Если провести аналогию с автодорогами, то концентратор — это участок дороги всего в одну полосу, к которому сходится 5 или 8 дорог с каждой стороны. Проехать в данное время может только одна машина и только в одном направлении. Остальные стоят и сигналят — пробка.

Коммутатор — это участок дороги с двухсторонним движением по пять полос в каждую сторону для 5 или 8 входящих. При этом все полосы могут быть соединены в разных уровнях, не мешая друг другу и не пересекаясь. Поэтому по ней могут ехать одновременно 10 авто (5 пар) не замечая друг друга. По какой дороге поехали бы Вы?

Но и этим не исчерпываются преимущества коммутатора. В нем еще встроена промежуточная память, буфер обмена, в котором запоминаются те пакеты, которые предназначаются занятым в данный момент клиентам. Когда они освободятся, коммутатор сам передаст данные адресатам уже без участия передающих клиентов. Для 5- и 8-портовых коммутаторов TRENDnet буфер обмена (buffer memory) составляет 512 Kbyte и 1 MByte на устройство соответственно. Возвращаясь к аналогии с автодорогами: 0 — это транзитный склад, где автомобиль может выгрузить свой груз (пакет) и уехать, не занимая дороги и давая проехать другим.

Примерно понятно, что коммутатор позволяет прокачивать через себя гораздо больший поток информации и существенно быстрее.

А зачем и кому это нужно?

По-моему, существует несколько случаев построения сетей, при которых необходим маленький коммутатор.

1. Маленькая одноранговая сеть с большим обменом от каждого к каждому. Например, происходит обмен большими графическими файлами (чертежи, плакаты, фото и т.п.).

2. В сети есть несколько групп, в которых обмен (traffic) происходит интенсивнее, чем с другими узлами сети. Чтобы обмен активных групп не влиял на производительность всех остальных, их надо изолировать. Это как раз и делается с помощью коммутаторов. Если каждую группу объединить одним концентратором, а эти концентраторы уже подключать к коммутатору, то между группами будет проходить только то, что должно проходить между группами.

3. Если в сети есть более одного сервера или несколько узлов куда «стекается» информация: серверы, принтсерверы, интернет-серверы и т.д. Тогда, подключив их к коммутатору, Вы ускорите работу с ними как за счет скорости передачи (200MB/s full duplex), так и за счет разделения потоков (1 Gbps internal bus) и освободите сеть.

4. В некоторой степени коммутаторы можно применять и как повторители (удлинители) сети. Если с помощью двух концентраторов Вы можете построить сеть только в радиусе 205 м (для сети 100 Mbps), то, применяя 4 коммутатора, можно попытаться протянуть сеть до 500 м.

Наверняка есть еще большое количество вариантов применения.

Впрочем, при разнице в цене концентраторов и коммутаторов фирмы TRENDware, их можно применять почти везде.

Посмотрим, что может собой представлять коммутатор на примере устройств TRENDnet TE100-S55E/88E. Это небольшая металлическая коробочка 171x100x28 mm, с выносным блоком питания 220V и панелью разъемов с обратной стороны. На лицевой панели размещены светодиоды индикации питания, режима работы на скорости 10/100 Mbps, collision/fullduplex, индикатор подсоединения/активности (link/activity).

Для тех, кто не любит коробочек и выносных блоков питания (и унести тоже сложнее) выпускается внутренний коммутатор TE100-S4PCI, который также позволяет объединить в сеть до 5-и устройств. Причем, вместо коробочки и блока питания, Вы за ту же цену получаете сетевой адаптер в который и встроен коммутатор.

Когда эти строки выйдут из печати уже будет доступен еще один «меленький» коммутатор на 16 портов.

Коммутаторы - это промышленные устройства, которые могут располагаться отдельно либо быть составной частью какой-нибудь электронной системы.

Принцип работы коммутатора заключается в выборе нужной электрической цепи и подключения ее к входной цепи.

Современные коммутаторы бывают одно-, двух- или многоканальными и имеют также аварийный режим работы. Многоканальность обеспечивает большую надежность и стабильность работы той системы, куда подключен коммутатор. Фото одного из устройств данного вида представлено ниже.

В авто и мототехнике коммутатор представляет собой своеобразный микрокомпьютер, что вырабатывает и подает токовый импульс на катушку зажигания (на свечу, которая поджигает топливо в моторе).

В компьютерных сетях также существуют коммутирующие устройства, например, ethernet. Принцип работы коммутатора ethernet заключается в том, что, когда приходит пакет для определенного адреса, он находит его порт и пересылает пакет именно одному этому пользователю. В то время как другие устройства передают информацию на все порты.

Для чего предназначен коммутатор

Эти приборы широко используются в различных отраслях, а также устанавливаются на транспортные средства в качестве перераспределителей, выключателей или переключателей.

Принцип действия коммутатора такой же, что и у электронных, электромеханических, а также электронно-лучевых приборов.

Назначение коммутатора состоит в том, чтобы управлять токами катушки зажигания, опираясь на сигналы синхронизационного датчика.

В транспортном средстве цепь, где находится коммутатор, выполняет функцию тестировщика узлов систем зажигания, автоматическим путем во время переключения с бензина на газ регулирует и многое другое.

Немного истории

Следующим шагом стало создание многоканальных устройств, а затем и установка отдельной системы, состоящей из коммутатора и катушки, выполненных на каждой свече. Это дало свои преимущества:

  • стала вырабатываться более мощная искра;
  • удалось уменьшить, а затем и ликвидировать потери в трамблере;
  • получилось добиться стабильного хода на холостых оборотах;
  • заметно снился расход горючего;
  • при низких температурах улучшился запуск двигателя.

Функционирование устройства

Принцип работы коммутатора состоит в том, чтобы максимально быстро коммутировать цепь с датчиками вращения и управлять токами в катушке зажигания.

Дело в том, что сигналы, поступающие от датчиков вращения, являются слабыми, либо аналоговыми и неудобными в использовании. Поэтому для применения в системе управления их нужно не только сформировать, а еще и усилить, а затем передать первичной обмотке катушки, что позволяет осуществлять высокоскоростную коммутацию.

Многоканальные устройства способны производить управление и коммутацию сразу нескольких катушек зажигания.

Место расположения

Конструктивно коммутатор может совмещаться с электронным блоком управления двигателя, при этом управляющие сигналы с него поступают сразу на катушку зажигания.

Если конструкция такова, что устройство расположено отдельно, то оно может устанавливаться:

  • на распределителе зажигания, как у ВАЗа;
  • в непосредственной близости от катушки зажигания;
  • отдельно на поверхности из металла для осуществления теплоотвода, например, на крыле или перегородке под капотом, как у "Форда";
  • возле электронного блока управления и другое.

Например, коммутатор "Ауди" располагается под ветровым стеклом в отсеке двигателя в кожухе из водонепроницаемого материала. Там же есть разъемы для диагностических устройств.

Типы коммутаторов

Из всего разнообразия данного вида приборов для авто и мототехники предназначены следующие:

  • устройство, которое имеет высоковольтный встроенный генератор - DC CDI;
  • коммутатор, что работает только в присутствии дополнительного источника высокого напряжения - AC CDI;
  • катушка-коммутатор.

Коммутаторы DC-типа являются самыми применяемыми из-за легкого подключения, они имеют на корпусе лишь четыре контакта: датчик Холла, минус, плюс, катушка зажигания.

Данные приборы имеют широкий модельный ряд:

  • без ограничителя максимального числа оборотов или с ним;
  • с возможностью изменять фазы опережения зажигания;
  • для различных нужд - наличие дополнительных контактных групп.

Коммутаторы АС-типа отличаются от первых тем, что им не нужно постоянное наличие напряжения, и подключаются они несколько сложнее. Также они имеют очень маленькие размеры и, следовательно, более простую конструкцию. В силу этого они не обладают ограничителем максимального числа оборотов, что снижает безопасность использования техники.

Коммутаторы-катушки представляют собой самый интересный, слабоизученный и малораспространенный вид. Они соединяют в себе катушку зажигания и коммутирующий элемент, а также не оснащены датчиком Холла.

Принцип их действия заключается в прерывании тока, который протекает через высоковольтный трансформатор с низковольтной намоткой-катушкой. Само прерывание осуществляется контактным выключателем, что приводится в действие с помощью вала распределителя зажигания.

Система с механическим прерывателем имеет следующие недостатки:

  1. Из-за слишком высокого тока, протекающего в первичной обмотке катушки, в прерывателе часто вырабатывается искра, которая приводит к порче контактов: они оплавляются и обгорают.
  2. В холодное и сырое время года контакты подвергаются электрохимической эрозии.
  3. Высокий ток в контактах прерывателя приводит к тому, что продолжительность разряда искры зажигания является кратковременной, это приводит к некачественному поджиганию топлива и нестабильной работе двигателя на низких оборотах. Следовательно, требуются затраты на обогащенную смесь.

Устранение этих недостатков стало возможным с появлением высоковольтных транзисторов высокой мощности и созданием бесконтактных систем электронного зажигания.

Некоторые водители пытаются улучшить технические характеристики транспортного средства путем замены контактной системы зажигания бесконтактной от новой модели. Это затратно и трудоемко, ведь требуется поменять систему зажигания полностью и приобрести электронный коммутатор. Кроме того, не всегда удается найти подходящий к старому новый вариант коммутации зажигания.

Несмотря на это, даже если между катушкой зажигания и контактным прерывателем подключить простой коммутатор на мощном транзисторе, можно заметно повысить качество системы контактного зажигания автомобиля:

  • перестанут оплавляться контакты прерывателя из-за уменьшения тока;
  • продолжительность заряда искры увеличится примерно вдвое, что вызовет лучшее поджигание горючего;
  • систему всегда можно вернуть к первоначальному варианту простой перекоммутацией провода в случае поломки коммутатора на транзисторе.

Виды коммутаторов

Различают следующие виды:

  • стандартный (стоковый);
  • спорт;
  • с возможностью изменения фаз опережения зажигания.

Стандартный , еще называемый стоковым, коммутатор монтируется заводом-изготовителем, поэтому он рассчитан на параметры той техники, куда производится установка. Это, в свою очередь, дает гарантии того, что двигатель будет работать надежно, экономично и долго. Часто такие коммутаторы снабжены ограничителями числа оборотов, которые не только могут спасти жизнь водителю, но и сохранить долговечность агрегатов и узлов техники.

Спорт-коммутатор предназначен для того, чтобы повысить верхнюю границу оборотов двигателя. Устанавливается он вместо стандартного по желанию водителя. Но производить такую замену должны только специалисты, так как вместе с этим устройством необходимо заменить еще некоторые детали. Если этого не сделать или сделать неумело, узлы техники будут работать неправильно вплоть до скорого выхода из строя мотора.

Кроме этого, даже профессиональная замена стандартного коммутатора на спорт добавляет существенный риск аварии, если транспортным средством управляет неопытный водитель. Поэтому производить такие действия нужно крайне осторожно, осознавая предстоящий риск, особенно устанавливая такой коммутатор на скутер. Собственно, осторожность нужна всегда.

Принцип работы коммутатора с изменением фазы опережения зажигания заключается в том, что он компенсирует недостающую мощность в тех зонах оборотов, где это необходимо, и выравнивает кривую графика крутящего момента. Этим обеспечивается выигрыш в разгоне по сравнению со стандартными коммутаторами и равномерная динамика работы двигателя на различных оборотах.

Какие бывают неисправности

Признаками того, что в системе зажигания происходит сбой либо присутствует неисправность, являются такие состояния:

  • отсутствует искра на свечах, двигатель не запускается;
  • двигатель запускается, но через короткое время глохнет;
  • работа двигателя автомашины происходит со сбоями, неравномерно и приходит в нормальный режим при замене на запасной исправный коммутатор.

Обычно сбои в работе электрической части встречаются следующих видов:

  • в результате перегрузки одной или обеих первичных обмоток катушки зажигания;
  • сбой в работе высоковольтной системы.

Как проверить работу

Для того чтобы проверить работоспособность устройства, существует несколько популярных способов. В частности, для этого необходимо:

  • самый простой метод на начальном этапе - заменить прибор на заведомо работающий и сравнить результат;
  • проверить, подается ли напряжение питания на выводы прибора. Сделать это нужно двумя способами: вольтметром и нагрузкой;
  • с помощью осциллограммы проверить правильность формы входного сигнала, что подается на коммутатор;
  • тем же методом проверить форму выходного сигнала;
  • если в автомобиле оснащена вольтметром, то проверку можно провести визуально, следя за его шкалой. Для этого включается зажигание, в этот момент номинальное значение на индикаторе должно равняться примерно 12В, и коммутатор некоторое время добирает на себя напряжение. После того как зажигание будет включено, стрелка на короткое время замирает, а затем движется еще около миллиметра вправо и останавливается. Нарушение этой последовательности свидетельствует о сбое в работе коммутатора;
  • также для проверки работы зажигания можно использовать контрольную - обычную автомобильную - лампочку. Один ее контакт подсоединяется к нагрузке, а второй - на выход катушки, что соединен с коммутаторной клеммой. При исправном коммутаторе при включении зажигания лампочка будет мигать и со временем засветится более ярко;
  • также для контроля зажигания, если сбой не связан с коммутатором, нужно проверить провода, контакты и разъемы, а также осмотреть датчик Холла.

Важно не забывать, что коммутаторы, применяемые с генераторными датчиками, нельзя использовать в тех системах, что содержат датчик Холла. То же и наоборот.

Как ремонтируют коммутатор

Данное устройство играет важную роль в системе зажигания автомобиля. Принцип работы коммутатора таков, что при выходе его из строя завести двигатель машины не получится.

Однако ремонт в большинстве случаев невозможен, и прибор подлежит замене, поэтому не лишним будет иметь водителю при себе запасное исправное устройство.

Коммутатор на скутер

Как правило, в китайских и в большинстве японских скутеров используется система зажигания на основе конденсаторов. Функция конденсатора состоит в том, что после запуска мотора в нем копится энергия, и при достижении необходимого напряжения ток поступает через тиристор в катушку, где преобразовывается в силу, превыщающую входную в 60-200 раз, что и приводит к запуску двигателя скутера.

Типичным представителем устройства для скутера, содержащим в себе накапливающий напряжение конденсатор, является коммутатор "Хонда" Dio AF 34. Преимущество таких приборов в том, что искра вырабатывается всегда одной и той же мощности, что приводит к стабильности процесс запуска двигателя.

Но из-за того, что многие скутеры систему зажигания содержат конструктивно в общей схеме электроснабжения, то в случае ее короткого замыкания или перегрузки коммутатор выходит из строя первым. Поэтому есть смысл при приобретении скутера обратить внимание на те модели, где подключение коммутатора и блок зажигания смонтированы самостоятельной электрической цепью. Риск поломки в этом случае заметно снизится.