Увеличение оперативной памяти компьютера: основные и альтернативные способы решение проблемы. Оперативная память и система Windows

Добрый день.

Сегодняшняя статья посвящена оперативной памяти, а точнее ее количеству на наших компьютерах (оперативную память часто сокращают - ОЗУ). ОЗУ играет большую роль в работе компьютера, если памяти не хватает - ПК начинает тормозить, игры и приложения открываются неохотно, картинка на мониторе начинает «дергаться», повышается нагрузка на жесткий диск. В статье как раз и остановимся на вопросах связанных с памятью: ее видах, о том, сколько нужно памяти, на что она влияет.

Как узнать количество оперативной памяти?

1) Самый простой способ это сделать - зайти в «мой компьютер» и нажать правой кнопкой мышки в любом месте окна. Далее выбрать в контекстном меню проводника «свойства». Так же можно открыть панель управления, в поисковую строку ввести «система». См. скриншот ниже.

Количество оперативной памяти указано рядом с индексом производительности, под информацией о процессоре.

4GB - объем оперативной памяти. Чем больше - тем лучше. Но не забывайте, что если процессор в системе не такой мощный - то ставить большой объем ОЗУ нет никакого смысла. Вообще, планки могут быть совершенно разного объема: от 1гб до 32 и более. Об объеме см. ниже.

1600Mhz PC3-12800 - Рабочая частота (пропускная способность). Разобраться с данным показателем поможет вот эта табличка:

Модули DDR3

Название

Частота шины

Пропускная способность

Как видно из таблицы пропускная способность такого ОЗУ равна 12800 мб/с. Не самая быстрая на сегодняшний день, но как показывает практика, для быстродействия компьютера куда важнее объем этой самой памяти.

Количество оперативной памяти на компьютере

1 ГБ - 2 ГБ

На сегодняшний день данное количество оперативной памяти может использоваться только на офисных компьютерах: для редактирования документов, просмотра интернета, почты. Запустить игры с таким объемом ОЗУ, конечно можно, но лишь самые простые.

Кстати, с таким объемом можно установить и Windows 7, она будет нормально работать. Правда, если вы откроете пяток документов - система может начать «задумываться»: будет не так резко и рьяно реагировать на ваши команды, картинка на экране может начать «дергаться» (особенно, это касается игр).

Так же при нехватки оперативной памяти, компьютер будет использовать : часть информации из оперативной памяти, которая в данный момент не используется, будет записываться на жесткий диск, а затем, по мере необходимости - считываться с него. Очевидно, что при таком положении дела возникнет повышенная нагрузка на жесткий диск, а так же это сильно может отразиться на скорости работы пользователя.

4 ГБ

Самое популярное количество ОЗУ в последнее время. На многие современные ПК и ноутбуки под управлением Windows 7/8 ставят 4 гб памяти. Этого объема достаточно для нормальной работы и с офисными приложениями, позволит запускать почти все современные игры (пусть и не на максимальных настройках), просматривать HD видео.

8 ГБ

Такой объем памяти с каждым днем все более популярен. Он позволяет открывать десятки приложений, при этом компьютер ведет себя очень «шустро». К тому же, при таком объеме памяти можно запускать на высоких настройках многие современные игры.

Однако, стоит сразу отметить. Что такой объем памяти будет оправдан в том случае, если у вас в системе установлен мощный процессор: Core i7 или Phenom II X4. Тогда он сможет использовать память на все сто - и файл подкачки использовать вообще не придется, тем самым скорость работы повышается в разы. К тому же уменьшается нагрузка на жесткий диск, снижается энергопотребление (актуально для ноутбука).

Кстати, здесь действует и обратное правило: если процессор у вас бюджетного варианта - то ставить 8 гб памяти нет никакого смысла. Просто процессор будет обрабатывать некоторый объем оперативной памяти, скажем 3-4 гб, а остальная память не добавит абсолютно никакой скорости вашему компьютеру.

Не секрет, что наличие большого объема оперативной памяти благотворно сказывается на скорости работы многих приложений. В этом материале мы поговорим о взаимодействии ОЗУ и системы Windows, а так же ответим на многие распространенные вопросы по этой теме.

Вступление

Технологический прогресс не стоит на месте и с каждым годом компьютеры становятся все совершеннее и совершеннее. При этом с ростом технических характеристик, неумолимо снижается цена на комплектующие и сегодня ПК, которые еще три года назад стоили несколько тысяч долларов, продаются за несколько сотен.

Не обошла эта тенденция и оперативную память, которая в последнее время очень сильно подешевела. Лет 15 назад, модуль памяти объемом четыре мегабайта (только вдумайтесь!) стоил около 100 долларов, а на сегодняшний день стоимость четырех гигабайт ОЗУ (ОЗУ - оперативное запоминающее устройство или оперативная память) составляет всего около 700 рублей. Не секрет, что наличие большого объема оперативной памяти благотворно сказывается на скорости работы многих приложений, поэтому именно этот объем является минимальным для большинства современных компьютеров даже начального уровня. Более же продвинутые системы содержат 8, 16 и более гигабайт «оперативки».

И все бы хорошо, но наверняка многие пользователи сталкивались с одной неприятностью, в том случае, если в компьютере установлено четыре и более гигабайт оперативной памяти, 32-разрядная операционная система Windows их попросту не видит.

В этой статье вы узнаете, как операционная система работает с оперативной памятью, какие объемы ОЗУ поддерживают различные редакции Windows, почему в некоторых случаях ОС не видит всю установленную память, из-за чего это происходит и можно ли что-то сделать в этой ситуации, что такое файл подкачки, а так же многое другое. Но для начала давайте сделаем небольшой экскурс в теорию организации физической памяти компьютера, а так же разберемся, как вообще ОЗУ влияет на производительность системы.

Адресное пространство

Базовой единицей измерения количества информации является бит , который может принимать только два значения - ноль и один. В современных вычислительных архитектурах минимальной единицей обработки и хранения информации является байт , равный восьми битам. По сути, память компьютера является огромным массивом байт.

Один байт может хранить одно из 256 значений (2 8), которые в зависимости от их интерпретации могут быть как числами, так символами или буквами. Например, значение 56, может обозначать как обычное число, так и букву «V» в кодировке ASCII. В нескольких байтах, можно хранить гораздо большие значения. Например, три байта могут принимать уже 16 777 216 значений (256 3), в которых может быть закодировано целиком короткое слово.

Что бы какое-либо устройство или программа могли иметь возможность обратиться к конкретному байту в памяти (адресовать его) для того, что бы записать туда или получить оттуда данные, ему присваивается уникальный индекс, называемый адресом . Диапазон адресов от нуля до максимума получил название адресного пространства .

Физическая и виртуальная память

В первых ЭВМ, размер адресного пространства был тождественно равен размеру установленной оперативной памяти. То есть, если в компьютере было установлено 128 Кб памяти, то и максимальный объем памяти, который могла использовать программа при работе, равнялся 128 Кб. При этом адрес какого-либо объекта приложения равнялся адресу физической ячейки запоминающего устройства.

Такой способ адресации был весьма простым, но имел пару существенных недостатков. Во-первых, память выполняемого приложения была ограничена оперативной памятью, которая на тот момент была сильно дорогой и устанавливалась на компьютер в очень маленьких количествах. Во-вторых, все запущенные программы выполнялись в одном адресном пространстве, что приводило к вероятности ошибочной записи данных несколькими приложениями в одну и ту же ячейку. В случае возникновения такой ситуации, о последствиях догадаться несложно.

В современных компьютерах устройства и программы работают не с реальной (физической ) памятью, а виртуальной , которая ее имитирует. Это дает возможность приложению считать, что на машине установлено максимальное теоритически возможное количество ОЗУ, а так же то, что оно является единственной программой, запущенной на компьютере.

Таким образом, адресное пространство ЭВМ наших дней, больше не ограничено размером ее физической (оперативной) памяти и имеет свой максимальный возможный размер, зависящий от рабочей среды, которой является операционная система.

На сегодняшний день операционная система Windows имеет как 32-разрядную, так и 64-разрядную версии. В первой, исходя из названия, для адресации используется 32-битное адресное пространство, максимальный размер которого равен 2 32 = 4 294 967 296 байт или 4 Гб (гигабайт). 64-битная версия операционной системы увеличивает размер адресного пространства до невероятных 2 64 = 18 446 744 073 709 551 616 байт - более 18 квинтиллионов байт или 16 Эб (эксабайт). Правда стоит отметить, что современные клиентские операционные системы Windows 7 x64 в силу объективных причин поддерживают максимальное адресное пространство размером 16 Тб (2 44).

При этом объемы в 4 Гб и 16 Тб, в зависимости от системы, выделяются каждому работающему приложению! То есть любая запущенная программа получает свое собственное адресное пространство, которое не пересекается с другими.

Влияние объема оперативной памяти на скорость работы системы

А что же происходит, когда записи в адресном пространстве по размеру начинают превышать реально установленный объем физической памяти? В этом случае, часть временно не использующихся данных переносится из ОЗУ на жесткий диск в так называемый файл подкачки или «своп» (swap). Если программам вновь понадобятся эти данные, то система по первому требованию, вернет их обратно с диска в оперативную память.

Если в компьютере установлен небольшой объем оперативной памяти, то ОС возможно довольно часто придется перемещать данные из ОЗУ в файл подкачки и обратно, вследствие чего сильно возрастает нагрузка на жесткий диск, что в свою очередь приводит к замедлению работы всей системы. В случае запуска сразу нескольких приложений, может получиться так, что все свое время система начнет тратить на обмен информацией между памятью и диском, вместо того чтобы выполнять программы. Визуально, в этот момент, система «зависает», то есть перестает отвечать на команды пользователя.

Чем больше реальный объем оперативной памяти, тем реже идет обращение к винчестеру, а вследствие этого возрастает и общая производительность компьютера. Именно поэтому, увеличение размера ОЗУ практически всегда положительно сказывается на скорости работы системы, а с учетом нынешних цен на память, многим пользователям вполне доступна установка 8, 16 или даже 32 Гб «оперативки». Особенно благоприятно большой объем памяти сказывается при работе с графическими приложениями (включая современные трехмерные игры) и программами видеомонтажа.

Стоит знать, что разные версии 64-битной операционной системы Windows могут поддерживать разный максимальный объем оперативной памяти. И если пользователям старших редакций Vista или 7 (Professional, Enterprise, Ultimate), поддерживающих до 192 Гб памяти, волноваться особо нечего, так как на домашних компьютерах такой объем практически не достижим, то тем, у кого установлены версии Home Basic и Home Premium есть над чем задуматься. Возможности этих редакций сильно урезаны, и если Premium поддерживает до 16 Гб «оперативки», то Basic только 8 Гб. Максимально доступный объем оперативной памяти, поддерживаемый уже устаревшей Windows XP (64-битной версии) составляет 16 Гб.

Почему 32-битная система Windows не видит 4 Гб ОЗУ

Наверняка, многие пользователи хотят воспользоваться падением цен на память и нарастить ее объем в собственных компьютерах. Процедура эта нехитрая - вынуть старые планки из системной платы и вставить новые можно за считанные минуты без каких-либо специальных инструментов. Далее включаем компьютер, тихо радуемся, когда при загрузке программа самотестирования отображает новый объем установленной ОЗУ (хотя и здесь могут быть проблемы, но об этом чуть ниже). Затем, дожидаемся загрузки Windows, заходим в свойства компьютера и… видим, что в разделе «Установленная память» красуется цифра в три с лишним гигабайта, вместо, например, реально установленных четырех. Так что же произошло и можно ли это исправить?

Как мы уже знаем, чисто теоретически 32-х разрядной системе без каких-либо дополнительных ухищрений доступны до 4 гигабайт оперативной памяти (2 32), но Windows не может использовать весь этот объем, так как часть его отводится под устройства компьютера.

Теперь, самое время сделать небольшой экскурс в историю. В первых настольных ПК, выпущенных в начале 80-ых годов, адресное пространство их физической памяти было поделено на две части в соотношении пять к трем. Первая часть отводилось под оперативную память (ОЗУ), а вторая предназначалась для размещения программы самотестирования (POST), базовой системы ввода-вывода (BIOS) и памяти устройств. При этом та часть адресного пространства, которая отводилась под устройства, не могла быть одновременно использована под оперативную память компьютера.

Все изменилось, когда в 1985 году компания Intel выпустила на рынок процессор 80386. Тогда были приняты сразу два решения об изменении распределения физической памяти в компьютерах, основанных на новых чипах. Распределение адресов в первом мегабайте памяти было принято оставить неизменным для совместимости со старым программным обеспечением и предыдущими моделями ЭВМ. Для компьютерных же устройств, нуждающихся в использовании памяти, теперь выделялся четвертый гигабайт. Все остальное пространство отводилось под ОЗУ.

Возможно, сегодня это решение многим покажется не совсем верным, но в то время несколько гигабайт оперативной памяти казалось просто фантастикой! Да и вряд ли кто предполагал, что сама архитектура и такой порядок распределения адресов проживет столько лет. Но и посей день, во всех современных компьютерах оперативная память начинает занимать адреса, начиная с нулевого, а оборудование - начиная с отметки 4 Гб в обратном направлении.

Теперь давайте более наглядно рассмотрим, как же распределяется память с момента начала загрузки компьютера. Здесь важно помнить, что все программы и компьютерные устройства работают не с физической памятью напрямую, а с адресным пространством, размер которого никак не зависит от реального объема установленной ОЗУ. То есть если убрать из компьютера всю установленную в него оперативную память, то размер адресного пространства ни капли не изменится. Напомним, что для 32-битных систем он равен 4 Гб.

Сразу же после включения машины, специальная программа, называемая БИОС (BIOS), начинает обращаться к установленным устройствам. Ее задача, сначала собрать сведения о том, какие диапазоны адресов то или иное устройство может использовать, а потом распределить память так, что бы они не мешали друг другу при работе. После того, как необходимые виртуальные адреса под оборудование становятся зарезервированными в адресном пространстве (от четвертого гигабайта сверху вниз), начинается загрузка операционной системы.

Как мы уже говорили ранее, под установленную оперативную память адресное пространство выделяется снизу вверх - от нуля и далее. Таким образом, после загрузки системы физическая память «проецируется» на адресное пространство (от 0 до 2 Гб) и Windows не видя никаких конфликтов с адресами, зарезервированными под устройства, показывает вам весь установленный объем оперативной памяти.

Таким образом, пока объем оперативной памяти не превышает двух-трех гигабайт, в большинстве случаев никаких проблем не возникает, но как только этот рубеж превышается, возможны появления конфликтов. В четвертом гигабайте вполне вероятно возникновение ситуации, когда на один и тот же адрес будут претендовать как ячейка оперативной памяти, так и ячейка памяти устройства, например видеокарты. Если туда будут записаны данные ОЗУ, то это приведет к искажению изображения на экране, в случае же смены картинки на мониторе - исказится содержимое памяти. Чтобы не допустить таких конфликтов, операционная система не использует под ОЗУ ту часть физической памяти, которая отведена под адреса устройств.

После установки 4 Гб физической памяти, теоретически ее адреса займут все доступное адресное пространство для 32-битных систем. Но доступными останутся только те, которые попадут в незарезервированную устройствами область. В нашем примере, Windows будет считать, что объем установленной оперативной памяти равен 3,5 Гб.

Довольно долгое время никого особенно проблема четвертого гигабайта не волновала. Под нужды устройств использовалось совсем немного места - десятки килобайт для контроллеров дисков и сетевого адаптера, плюс несколько мегабайт под память видеокарты. Сами же объемы оперативной памяти были тоже небольшими, а значит, пересечение адресов используемых ОЗУ и устройствами в доступном адресном пространстве было практически невозможным.

Первый тревожный звонок прозвенел с появлением технологии AGP. На тот момент, видеоадаптеры с аппаратным ускорением трехмерной графики резко увеличили свою потребность в использовании собственной оперативной памяти. А AGP дала возможность графическим адаптерам использовать для собственных нужд часть памяти компьютера, в случае нехватки собственной. При этом вне зависимости от типа адаптера и количества у него собственной памяти, резервируется 256 Мбайт адресов, так как этот размер задается не самой видеоплатой, а оборудованием шины AGP. С приходом технологии PCI-Express ситуация принципиально не изменилась и размер резервируемого места остался тем же.

Помимо увеличившихся аппетитов графических подсистем, постоянно росло и количество интегрированных устройств в системную плату. К ним добавились высокоскоростные сетевые интерфейсы, многоканальные звуковые карты и различные виды контроллеров. Ко всему прочему под устройства адресное пространство отводится не в точном необходимом количестве, а блоками, определяемыми их характеристиками, заданными изготовителями. Из-за этого между адресами различных устройств появляются свободные промежутки, которые еще больше увеличивают зарезервированное пространство памяти.

В некоторых случаях, правда, довольно редких, объем адресного пространства, отведённого под устройства, может достигать и двух гигабайт. В большинстве же случаев, заблокированным оказывается пространство от 500 Мб до 1 Гб.

Технология PAE

Так можно все-таки увидеть все 4 Гб памяти в 32-разрядной Windows? Да, если у вас установлена серверная ОС, например Windows Server 2003 или Server 2008.

В середине 90-х годов была разработана технология расширения доступного объема ОЗУ, получившая название PAE (Physical Address Extension). Впервые она была воплощена в процессорах Intel Pentium Pro, в результате чего они смогли использовать не 32-х, а 36-битную шину адреса, что теоретически позволяло использовать максимально не 4, а 64 Гб оперативной памяти.

Но что самое примечательное, некоторые особенности использования этой технологии в контроллерах памяти, предоставляют возможность не только использовать ее по прямому назначению, но и перебрасывать некоторые участки памяти в другие адреса. Таким образом, появляется возможность переместить в область выше 4 Гб, например, в пятый гигабайт адресного пространства, ту часть ОЗУ, которая была заблокирована из-за возможности возникновения конфликтов с устройствами, после чего она вновь становится доступной. Правда, для этого необходимо соблюсти два условия.

Первое - процессор должен быть установлен в системную плату, оснащенную специальным диспетчером памяти, осуществляющим поддержку расширения физических адресов. Как правило, в микропрограмме BIOS Setup (БИОС), запускающейся сразу же после включения компьютера, существует специальная настройка, запрещающая или разрешающая переадресацию. В разных моделях материнских плат ее наименование может быть различным, например: Memory Remap, 64-bit OS, Memory Hole и другое. Точное название этой опции можно выяснить из руководства конкретной системной платы. Кстати, старые материнские платы могут вообще не поддерживать режим расширения адресов (это так же можно выяснить из инструкции).

Второе - в операционной системе должен быть включен режим PAE. Так вот в серверных системах он задействован по умолчанию. Поэтому, если у вас установлена 32-битная Windows подобного типа и не слишком старый компьютер (нет вышеуказанных ограничений по железу), то благодаря использованию технологии PAE, будут доступны все 4 Гб оперативной памяти.

Вполне логично, что данную технологию можно было бы применить в клиентских системах и ее применяют, но с некоторыми ограничениями.

Изначально, в первой версии Windows XP данный режим был отключен, так как в 2001 году средний объем ОЗУ в персональных компьютерах составлял 128 - 256 Мб, и никакой необходимости в его включении не было. Возможно, положение дел оставалось бы таким еще довольно долго, но в 2003 году компания Microsoftприступила к разработке второго пакета исправлений для XP, призванного существенно снизить количество уязвимостей в системе. Одним из нововведений, принесенным вторым сервис паком, стало использование аппаратных и программных технологий, предотвращающих запуск вредоносного кода путем дополнительной проверки содержимого памяти. На аппаратном уровне эту проверку выполняет процессор. При этом в компании Intel данная функция носит названия Execute Disable bit (запрет на выполнение), а в AMD - No-execute page-protection (защита страниц от выполнения).

Однако, что бы такая аппаратная защита стала возможна, необходим перевод процессора в режим PAE. Именно поэтому, начиная с Windows XP SP2, данный режим, при наличии подходящего процессора, включается автоматически. Но самое основное, что в 32-разрядных Windows XP с пакетами обновлений SP2 и SP3, а так же последующих Windows Vista и Windows 7, расширение физических адресов реализовано только частично. Эти системы не поддерживают 36-битную адресацию памяти и включенный режим PAE, не добавляет в их распоряжение ни байта адресного пространства, что делает невозможным переброску в верхние участки заблокированных адресов ОЗУ. Причина такой реализации - обеспечение совместимости с драйверами устройств.

Как мы помним, операционная система и все программы используют виртуальные адресные пространства и соответственно виртуальные адреса, которые впоследствии пересчитывается в физические. Процедура эта происходит в два этапа при выключенном режиме PAE и в три, при включенном расширении физических адресов. Драйверы, в отличие от обычных программ, работают напрямую с реальными адресами и для корректной работы в режиме PAE должны понимать усложненную процедуру трансляции адресов. Ведь сформированный драйвером 32-битный адрес после дополнительного (третьего) этапа трансляции может измениться и чтобы выданная им команда достигла цели, необходимо это учитывать.

Разработчики драйверов, предназначенных для серверных систем это принимали в расчет, а вот драйвера для клиентских Windows, устанавливаемых на обычные домашние ПК, во многих случаях были написаны без учета алгоритма работы с включенным PAE. Ведь так было проще - меньше времени уходило на программирование и тестирование, да и сам драйвер занимал меньше места. Тем более к тому моменту, до выхода Windows XP SP2, режим PAE в настольных системах не использовался, а оборудование, которое выпускалось для «персоналок», во многих случаев не было предназначено для серверов (например, звуковые платы). Так что никакой острой необходимости усложнять драйвера, и выпускать их серверные версии у производителей не было.

Именно с такими, неадаптированными драйверами, и возникли серьезные проблемы в Windows со вторым пакетом обновлений. Не смотря на то, что, общее количество драйверов, вызывавших сбои или крах системы, было не таким уж и большим, количество устройств их использующих исчислялось миллионами. В результате огромное количество пользователей после установки второго сервис-пака могли столкнуться с неприятностями и в дальнейшем отказаться от его использования. Поэтому Microsoft пришлось идти на компромисс.

Для обеспечения совместимости с некорректно написанными драйверами функционал PAE в Windows XP SP2 было решено обрезать. Выразилось это в том, что на третьем этапе трансляции адресов на выход передавались те же адреса, которые были поданы на вход. Таким образом, никакого расширения адресного пространства не происходило, и система продолжала оперировать теми же четырьмя гигабайтами.

Как уже упоминалось выше, такой обрезанный режим PAE унаследовали все современные 32-разрядные системы, включая Windows 7 и Windows 8. А вот если вы установите ради эксперимента на свой компьютер оригинальную Windows XP или XP SP1 и включите режим PAE (там он по умолчанию отключен), то увидите собственными глазами, что системе будет доступно все 4 Гб ОЗУ.

ОЗУ и 64-битные системы Windows

Казалось бы, что у 64-разрядных систем никаких проблем с установкой больших объемов памяти быть недолжно. Сколько ОЗУ установили, столько «операционка» и будет видеть. И все же здесь есть свои подводные камни.

Не смотря на то, что 64-битная Windows может использовать адресное пространство и оперативную память, объемы которых далеко превышают четыре гигабайта, правило размещения адресов устройств, здесь точно такое же, как и в 32-битных системах, то есть устройства занимают ячейки в четвертом гигабайте сверху вниз. Сохранение этого принципа опять же обеспечивает нормальную работоспособность любого оборудования, предназначенного для обычных ПК, которое должно с одинаковым успехом работать, как в 32-разрядной системе, так и в 64-разрядной.

Получается, что все ограничения, накладываемые на физическую память в 32-битной системе, должны остаться и в 64-битной, а значит, видимый объем оперативной памяти будет опять неполным, если ваша материнская плата не поддерживает переадресацию или она отключена в настройках. Конечно, такие системные платы уже не выпускаются, но все еще используются во многих компьютерах.

Еще один «сюрприз» вас может ожидать, если в материнскую плату будет установлен максимальный поддерживаемый объем памяти. Например, еще недавно популярный чипсет для бюджетных решений Intel G41 позволяет устанавливать до 8 Гб оперативной памяти. Как правило, в этом случае, на системной плате разведены 33 адресные линии (2 33 = 8 589 934 592 байт = 8 Гб). С точки зрения производителя это вполне объяснимо - зачем делать шину более высокой разрядности, если набор системной логики все равно не поддерживает большие объемы памяти? Но из-за этого, даже если контроллер памяти и может перекинуть заблокированный участок ОЗУ в девятый гигабайт, сделать это у него не получиться, так как для этого потребуется 34-разрядная шина, а не 33-х, как в нашем случае. В итоге пользователю будет доступно только семь с небольшим гигабайт ОЗУ. Тоже самое касается плат поддерживающих 16 и 32 Гб.

В некоторых случаях, даже при работающей переадресации в 64-битной системе несколько десяткой или сотен мегабайт могут все равно оказаться заблокированы системой под оборудование. Виной тому могут стать технологические особенности системной платы, которая в любой ситуации будет резервировать какой-то объем памяти, например, для нужд встроенного видеоадаптера или RAID-контроллера.

Заключение

В заключение давайте сделаем несколько основополагающих выводов, исходя из всего вышесказанного.

Хотя 32-битные системы Windows чисто теоретически могут использовать до 4 Гб оперативной памяти, некоторый ее объем всегда оказывается зарезервированным под нужды устройств, после чего в доступности оказывается обычно не более 3-3,5 Гб.

Однако эта проблема решена в 32-разрядных серверных ОС. Благодаря использованию технологии расширения физических адресов (PAE), в системе может быть виден весь максимальный установленный объем ОЗУ (4 Гб).

В клиентских 32-разрядных версиях Windowsрежим PAE был урезан для обеспечения совместимости с драйверами устройств из-за чего в WindowsXP SP2/SP3, Windows Vista, Windows 7, а так же Windows 8 увидеть все максимально допустимые четыре гигабайта ОЗУ невозможно и исправить это нельзя.

Таким образом, если вы собираетесь установить в компьютер более трех гигабайт оперативной памяти, то необходимо использовать 64-битные версии операционных систем, которые позволяют видеть до 192 Гб ОЗУ и имеют неурезанный режим PAE. В противном случае весь остальной объем памяти будет недоступен для использования.

Так же следует помнить, что для работы PAE, либо процессор, либо системная плата должны иметь специальный контроллер памяти, поддерживающий технологию расширения физических адресов.

История оперативной памяти , или ОЗУ , началась в далёком 1834 году, когда Чарльз Беббидж разработал «аналитическую машину» - по сути, прообраз компьютера. Часть этой машины, которая отвечала за хранение промежуточных данных, он назвал «складом». Запоминание информации там было организовано ещё чисто механическим способом, посредством валов и шестерней.

В первых поколениях ЭВМ в качестве ОЗУ использовались электронно-лучевые трубки, магнитные барабаны, позже появились магнитные сердечники, и уже после них, в третьем поколении ЭВМ появилась память на микросхемах.

Сейчас ОЗУ выполняется по технологии DRAM в форм-факторах DIMM и SO-DIMM , это динамическая память, организованная в виде интегральных схем полупроводников. Она энергозависима, то есть данные исчезают при отсутствии питания.

Выбор оперативной памяти не является сложной задачей на сегодняшний день, главное здесь разобраться в типах памяти, её назначении и основных характеристиках.

Типы памяти

SO-DIMM

Память форм-фактора SO-DIMM предназначена для использования в ноутбуках, компактных ITX-системах, моноблоках - словом там, где важен минимальный физический размер модулей памяти. Отличается от форм-фактора DIMM уменьшенной примерно в 2 раза длиной модуля, и меньшим количеством контактов на плате (204 и 360 контактов у SO-DIMM DDR3 и DDR4 против 240 и 288 на платах тех же типов DIMM-памяти).
По остальным характеристикам - частоте, таймингам, объёму, модули SO-DIMM могут быть любыми, и ничем принципиальным от DIMM не отличаются.

DIMM

DIMM - оперативная память для полноразмерных компьютеров.
Тип памяти, который вы выберете, в первую очередь должен быть совместим с разъёмом на материнской плате. ОЗУ для компьютера делится на 4 типа – DDR , DDR2 , DDR3 и DDR4 .

Память типа DDR появилась в 2001 году, и имела 184 контакта. Напряжение питания составляло от 2.2 до 2.4 В. Частота работы – 400МГц . До сих пор встречается в продаже, правда, выбор невелик. На сегодняшний день формат устарел, - подойдёт, только если вы не хотите обновлять систему полностью, а в старой материнской плате разъёмы только под DDR.

Стандарт DDR2 вышел уже в 2003-ем, получил 240 контактов, которые увеличили число потоков, прилично ускорив шину передачи данных процессору. Частота работы DDR2 могла составлять до 800 МГц (в отдельных случаях – до 1066 МГц), а напряжение питания от 1.8 до 2.1 В – чуть меньше, чем у DDR. Следовательно, понизились энергопотребление и тепловыделение памяти.
Отличия DDR2 от DDR:

· 240 контактов против 120
· Новый слот, несовместимый с DDR
· Меньшее энергопотребление
· Улучшенная конструкция, лучшее охлаждение
· Выше максимальная рабочая частота

Также, как и DDR, устаревший тип памяти - сейчас подойдёт разве что под старые материнские платы, в остальных случаях покупать нет смысла, так как новые DDR3 и DDR4 быстрее.

В 2007 году ОЗУ обновились типом DDR3 , который до сих пор массово распространён. Остались всё те же 240 контактов, но слот подключения для DDR3 стал другим – совместимости с DDR2 нет. Частота работы модулей в среднем от 1333 до 1866 МГц . Встречаются также модули с частотой вплоть до 2800 МГц .
DDR3 отличается от DDR2:

· Слоты DDR2 и DDR3 несовместимы.
· Тактовая частота работы DDR3 выше в 2 раза – 1600 МГц против 800 МГц у DDR2.
· Отличается сниженным напряжением питания – порядка 1.5В, и меньшим энергопотреблением (в версии DDR3L это значение в среднем ещё ниже, около 1.35 В).
· Задержки (тайминги) DDR3 больше, чем у DDR2, но рабочая частота выше. В целом скорость работы DDR3 на 20-30% выше.

DDR3 - на сегодня хороший выбор. Во многих материнских платах в продаже разъёмы под память именно DDR3, и в связи с массовой популярностью этого типа, вряд ли он скоро исчезнет. Также он немного дешевле DDR4.

DDR4 – новый тип ОЗУ, разработанный только в 2012 году. Является эволюционным развитием предыдущих типов. Пропускная способность памяти снова повысилась, теперь достигая 25,6 Гб/с. Частота работы также поднялась – в среднем от 2133 МГц до 3600 МГц . Если же сравнивать новый тип с DDR3, который продержался на рынке целых 8 лет и получил массовое распространение, то прирост производительности незначителен, к тому же далеко не все материнские платы и процессоры поддерживают новый тип.
Отличия DDR4:

· Несовместимость с предыдущими типами
· Пониженно напряжение питания – от 1.2 до 1.05 В, энергопотребление тоже снизилось
· Рабочая частота памяти до 3200 МГц (может достигать 4166 МГц в некоторых планках), при этом, конечно, выросшие пропорционально тайминги
· Может незначительно превосходить по скорости работы DDR3

Если у вас уже стоят планки DDR3, то торопиться менять их на DDR4 нет никакого смысла. Когда этот формат распространится массово, и все материнские платы уже будут поддерживать DDR4, переход на новый тип произойдёт сам собой с обновлением всей системы. Таким образом, можно подытожить, что DDR4 – скорее маркетинг, чем реально новый тип ОЗУ.

Какую частоту памяти выбрать?

Выбор частоты нужно начинать с проверки максимально поддерживаемых частот вашим процессором и материнской платой. Частоту выше поддерживаемой процессором имеет смысл брать только при разгоне процессора.

На сегодняшний день не стоит выбирать память с частотой ниже 1600 МГц. Вариант 1333 МГц допустим в случае DDR3, если это не завалявшиеся у продавца древние модули, которые явно будут медленнее новых.

Оптимальный вариант на сегодня - это память с интервалом частот от 1600 до 2400 МГц . Частота выше почти не имеет преимущества, но стоит гораздо дороже, и как правило является разогнанными модулями с поднятыми таймингами. Для примера, разница между модулями в 1600 и 2133 Мгц в ряде рабочих программ будет не более 5-8 %, в играх разница может быть ещё меньше. Частоты в 2133-2400 Мгц стоит брать, если вы занимаетесь кодированием видео/аудио, рендерингом.

Разница же между частотами в 2400 и 3600 Мгц обойдётся вам довольно дорого, при этом не прибавив ощутимо скорости.

Какой объём оперативной памяти брать?

Объём, который вам понадобится, зависит от типа работы, производимой на компьютере, от установленной операционной системы, от используемых программ. Также не стоит упускать из виду максимально поддерживаемый объём памяти вашей материнской платой.

Объём 2 ГБ - на сегодняшний день, может хватить разве что только для просмотра интернета. Больше половину будет съедать операционная система, оставшегося хватит на неторопливую работу нетребовательных программ.

Объём 4 ГБ
– подойдёт для компьютера средней руки, для домашнего пк-медиацентра. Хватит, чтобы смотреть фильмы, и даже поиграть в нетребовательные игры. Современные – увы, с потянет с трудом. (Станет лучшим выбором, если у вас 32-разрядная операционная система Windows, которая видит не больше 3 ГБ оперативной памяти)

Объём 8 ГБ (или комплект 2х4ГБ) – рекомендуемый объём на сегодня для полноценного ПК. Этого хватит для почти любых игр, для работы с любым требовательным к ресурсам софтом. Лучший выбор для универсального компьютера.

Объём 16 ГБ (или наборы 2х8ГБ , 4х4ГБ)- будет оправданным, если вы работаете с графикой, тяжёлыми средами программирования, или постоянно рендерите видео. Также отлично подойдёт для ведения онлайн-стримов – здесь с 8 ГБ могут быть подвисания, особенно при высоком качестве видео-трансляции. Некоторые игры в высоких разрешениях и с HD-текстурами могут лучше себя вести с 16 ГБ оперативной памяти на борту.

Объём 32 ГБ (набор 2х16ГБ , или 4х8ГБ)– пока очень спорный выбор, пригодится для каких-то совсем экстремальных рабочих задач. Лучше будет потратить деньги на другие комплектующие компьютера, это сильнее отразится на его быстродействии.

Режимы работы: лучше 1 планка памяти или 2?

ОЗУ может работать в одно-канальном, двух-, трёх- и четырёх-канальном режимах. Однозначно, если на вашей материнской плате есть достаточное количество слотов, то лучше взять вместо одной планки памяти несколько одинаковых меньшего объёма. Скорость доступа к ним вырастет от 2 до 4 раз.

Чтобы память работала в двухканальном режиме, нужно устанавливать планки в слоты одного цвета на материнской плате. Как правило, цвет повторяется через разъём. Важно при этом, чтобы частота памяти в двух планках была одинаковой.

- Single chanell Mode – одноканальный режим работы. Включается, когда установлена одна планка памяти, или разные модули, работающие на разной частоте. В итоге память работает на частоте самой медленной планки.
- Dual Mode – двухканальный режим. Работает только с модулями памяти одинаковой частоты, увеличивает скорость работы в 2 раза. Производители выпускают специально для этого комплекты модулей памяти , в которых может быть 2 или 4 одинаковых планки.
- Triple Mode – работает по тому же принципу, что и двух-канальный. На практике не всегда быстрее.
- Quad Mode - четырёх-канальный режим, который работает по принципу двухканального, соответственно увеличивая скорость работы в 4 раза. Используется, там где нужна исключительно высокая скорость - например, в серверах.

- Flex Mode – более гибкий вариант двухканального режима работы, когда планки разного объёма, а одинаковая только частота. При этом в двухканальном режиме будут использоваться одинаковые объёмы модулей, а оставшийся объём будет функционировать в одноканальном.

Нужен ли памяти радиатор?

Сейчас уже давно не те времена, когда при напряжении в 2 В достигалась частота работы в 1600 МГц, и в результате выделялось много тепла, которое надо было как-то отводить. Тогда радиатор мог быть критерием выживаемости разогнанного модуля.

В настоящее время же энергопотребление памяти сильно снизилось, и радиатор на модуле может быть оправдан с технической точки зрения, только если вы увлекаетесь оверклокингом, и модуль будет работать у вас на запредельных для него частотах. Во всех остальных случаях радиаторы можно оправдать, разве что, красивым дизайном.

В случае, если радиатор массивный, и заметно увеличивает высоту планки памяти – это уже существенный минус, поскольку он может помешать вам поставить в систему процессорный суперкулер. Существуют, кстати, специальные низкопрофильные модули памяти , предназначенные для установки в компактные корпуса. Они несколько дороже модулей обычного размера.



Что такое тайминги?

Тайминги , или латентность (latency) – одна из самых важных характеристик оперативной памяти, определяющих её быстродействие. Обрисуем общий смысл этого параметра.

Упрощённо оперативную память можно представить, как двумерную таблицу, в которой каждая ячейка несёт информацию. Доступ к ячейкам происходит по указанию номера столбца и строки, и указание это происходит при помощи стробирующего импульса доступа к строке RAS (Row Access Strobe ) и стробирующего импульса доступа к столбцу CAS (Acess Strobe ) путём изменения напряжения. Таким образом, за каждый такт работы происходят обращения RAS и CAS , и между этими обращениями и командами записи/чтения существуют определённые задержки, которые и называются таймингами.

В описании модуля оперативной памяти можно увидеть пять таймингов, которые для удобства записываются последовательностью цифр через дефис, например 8-9-9-20-27 .

· tRCD (time of RAS to CAS Delay) - тайминг, который определяет задержку от импульса RAS до CAS
· CL (timе of CAS Latency) - тайминг, определяющий задержку между командой о записи/чтении и импульсом CAS
· tRP (timе of Row Precharge) - тайминг, определяющий задержку при переходах от одной строки к следующей
· tRAS (time of Active to Precharge Delay) - тайминг, который определяет задержку между активацией строки и окончанием работы с ней; считается основным значением
· Command rate – определяет задержку между командой выбора отдельного чипа на модуле до команды активации строки; этот тайминг указывают не всегда.

Если говорить ещё проще, то о таймингах важно знать только одно – чем их значения меньше, тем лучше. При этом планки могут иметь одинаковую частоту работы, но разные тайминги, и модуль с меньшими значениями всегда будет быстрее. Так что стоит выбирать минимальные тайминги, для DDR4 ориентиром средних значений будут тайминги 15-15-15-36, для DDR3 - 10-10-10-30. Также стоит помнить, что тайминги связаны с частотой памяти, так что при разгоне скорее всего придётся поднять и тайминги, и наоборот - можно вручную опустить частоту, снизив при этом тайминги. Выгоднее всего обращать внимание на совокупность этих параметров, выбирая скорее баланс, и не гнаться за крайними значениями параметров.

Как определиться с бюджетом?

Располагая большей суммой, вы сможете позволить себе больший объём оперативной памяти. Основное отличие дешёвых и дорогих модулей будет в таймингах, частоте работы, и в бренде – известные, разрекламированные могут стоить немного дороже noname модулей непонятного производителя.
Кроме того, дополнительных денег стоит радиатор, установленный на модули. Далеко не всем планкам он нужен, но производители сейчас на них не скупятся.

Цена будет также зависеть от таймингов, чем они ниже- тем выше скорость, и соответственно, цена.

Итак, имея до 2000 рублей , вы сможете приобрести модуль памяти объёмом 4 ГБ, или 2 модуля по 2 ГБ, что предпочтительнее. Выбирайте в зависимости от того, что позволяет конфигурация вашего пк. Модули типа DDR3 обойдутся почти вдвое дешевле чем DDR4. При таком бюджете разумнее брать именно DDR3.

В группу до 4000 рублей входят модули объёмом в 8 ГБ, а также наборы 2х4 ГБ. Это оптимальный выбор для любых задач, кроме профессиональной работы с видео, и в любых других тяжёлых средах.

В сумму до 8000 рублей обойдётся объём памяти в 16 ГБ. Рекомендуется для профессиональных целей, или для заядлых геймеров - хватит даже про запас, в ожидании новых требовательных игр.

Если не проблема потратить до 13000 рублей , то самым лучшим выбором будет вложить их в набор из 4 планок по 4 ГБ. За эти деньги можно выбрать даже радиаторы покрасивее, возможно для последующего разгона.

Больше 16 ГБ без цели работы в профессиональных тяжёлых средах (да и то не во всех) брать не советую, но если очень хочется, то за сумму от 13000 рублей вы сможете залезть на Олимп, приобретя комплект на 32 ГБ или даже 64 ГБ . Правда, смысла для рядового пользователя или геймера в этом будет не много – лучше потратить средства, скажем, на флагманскую видеокарту.

Наверное многие помнят, или слышали про первые, на сегодняшний день уже древние компьютеры, такие как к примеру ZX Spectrum? Кто не помнит или забыл, то напомним, что оперативная память для этих динозавров измерялась в килобайтах. Да-да, именно в килобайтах, даже не в мегабайтах. Сейчас любой мобильник в разы мощнее древних Спектрумов Технология продвигается, время бежит, и оперативной памяти уже требуется не килобайты, а Гигабайты. В будущем и этого конечно будет мало, и наши сегодняшние самые мощные компьютеры, тоже будут называть динозаврами прошлого. Но вернемся в наше время.

Речь сегодня пойдет о том — Сколько оперативной памяти поддерживает Windows XP, 7, 8.1 и 10?
Допустим вы захотели в свой компьютер установить дополнительные линейки оперативки. Предположим было у вас 4 Гб, воткнули еще 4 Гб. Включаем комп, а в свойствах все те-же 4Гб (Да и то это округленный показатель, на деле максимум 3.750 Гб). Почему так? О ужас!!!


Почему остались те-же 4 Гб оперативы? Давайте разберемся с этими вопросами, раз и навсегда.

Все операционные системы Windows с разрядностью x86 (32 bit) не важно какая версия, все они видят только до 4 Гб. памяти. Вы хоть истыкайте памятью весь компьютер, как ежика с иголками, он будет видеть только до 4 гигабайта. Связано это с внутренними архитектурными ограничениями.

Если вы установите на компьютере 64 битную операционную систему, то все ваши линейки памяти система и увидит.

Сколько оперативной памяти максимально видит разная версия Windows

Windows XP
Windows XP x86 (32 bit): 4 гб
Windows XP x64 (64 bit): 128 Гб

Windows 7
Windows 7 Starter x86 (32 bit): 2 Гб
Windows 7 Home Basic x86 (32 bit): 4 Гб
Windows 7 Home Premium x86 (32 bit): 4 Гб
Windows 7 Professional x86 (32 bit): 4 Гб
Windows 7 Enterprise x86 (32 bit): 4 Гб
Windows 7 Ultimate x86 (32 bit): 4 Гб
Windows 7 Home Basic x64 (64 bit): 8 Гб
Windows 7 Home Premium x64 (64 bit): 16 Гб
Windows 7 Professional x64 (64 bit): 192 Гб
Windows 7 Enterprise x64 (64 bit): 192 Гб
Windows 7 Ultimate x64 (64 bit): 192 Гб

Windows 8 / 8.1
Windows 8 x86 (32 bit): 4 Гб
Windows 8 Professional x86 (32 bit): 4 Гб
Windows 8 Enterprise x86 (32 bit): 4 Гб
Windows 8 x64 (64 bit): 128 Гб
Windows 8 Professional x64 (64 bit): 512 Гб
Windows 8 Enterprise x64 (64 bit): 512 Гб

Windows 10
Windows 10 Home x86 (32 bit): 4 Гб
Windows 10 Home x64 (64 bit): 128 Гб
Windows 10 Pro x86 (32 bit): 4 Гб
Windows 10 Pro x64 (64 bit): 512 Гб

Как видите, 64-битные редакции поддерживает огромный объем оперативной памяти, а вот в случае с 32-битной версией нужно быть внимательным с выбором: зачастую система не поддерживает даже указанные 4 Гб.

Итог: Максимальное количество оперативной памяти, которые способны «увидеть» 32 разрядные версии Windows - это 4 Гб. Таким образом, если у вас больший объем RAM, следует установить 64-разрядную версию, чтобы воспользоваться этой памятью. Для того, чтобы узнать, какая версия Windows установлена на вашем компьютере, откройте пункт «Система» в панели управления (или кликните по «Мой компьютер» правой кнопкой мыши и выберите «Свойства»).

Если вы занялись модернизацией вашего компьютера, то в списке одних из первых будет оперативная память. Однако просто так купить и поставить легко, но не факт что такие действия станут панацеей на пути к реальном апгрейду вашего компьютера или ноутбука. Все дело в том, что по факту имеются ограничения по поддержке оперативной памяти, по ее объему в зависимости от разрядности установленной на нем системы.

Сколько по объему памяти поддерживает Windows 32 и 64 разрядная система

Здесь действует одно золотое правило, которое будет работать вне зависимости от того о какой системе мы сейчас ведем речь, будь то Windows 7, 8 или Windows Vista. 32 разрядная система поддерживает объем оперативной памяти до 3,3-3,5 Гб, а 64 разрядная от 128 Гб и более. В принципе о дальнейшем можно уже не читать, так как руководствуясь этими данными уже можно говорить о том, сколько же в итоге оперативной памяти можно поставить именно вам.

О поддержке оперативной памяти для системы Windows

Если обратиться к данным WinSuperSite, Windows 7,8 поддерживает до 192 Гбайт оперативной памяти но для 64 разрядной системы. Итак, 64-битная версии Windows 7, как мы писали, корректно «видит» 192 Гбайт RAM, но опять таки только для версий Professional, Enterprise и Ultimate. Предельный лимит объема памяти для версии Home Basic и Home Premium составит 8 и 16 Гбайт соответственно.
Что относительно 32-битной версии, она по-прежнему даже если и «увидит» всю память, но работает с объемом не более 4 Гбайт RAM.
В общем все так, как мы писали выше. Если у Вас 64 разрядная система, то скорее всего вы купите и добавите оперативную память без проблем. А вот с 32 разрядной системой такой апгрейд не пройдет. Придется вначале поставить что-нибудь посовременнее, это мы о системе, а потом и думать об оперативке.