Процессоры. Пять поколений Core i7: от Sandy Bridge до Skylake. Сравнительное тестирование

Интеловский принцип «тик-так», описывающий идеологию попеременного ввода новых микроархитектур и внедрения более тонких техпроцессов, продолжает действовать. Изначально компания обещала выдавать новые продукты каждый год, и, надо сказать, в целом она придерживается этого плана. В прошлом году нам преподнесли микроархитектуру Sandy Bridge, существенно увеличившую быстродействие современных компьютеров, а теперь Intel запускает проект Ivy Bridge — усовершенствованный процессорный дизайн, предполагающий использование новой производственной технологии с 22-нм нормами и инновационными трёхмерными транзисторами.

Однако ослабление конкуренции на рынке высокопроизводительных процессоров всё же не может не сказываться на темпах прогресса. Маятник интеловской концепции постепенно замедляет свой ход, и если Sandy Bridge были представлены в самом начале 2011 года, то анонса Ivy Bridge нам пришлось ждать до конца апреля. Впрочем, у Intel есть неплохое оправдание: новое поколение процессоров — это не простая косметическая переделка старого ядра с учётом новых технологических норм. Инженеры внесли целый ряд существенных изменений в микроархитектуру, поэтому Ivy Bridge предлагается считать не за один «тик», а за «тик» и ещё «полтака» в придачу.

Можно ли принять такое объяснение возникшей задержки? Всё зависит от того, с каких позиций оценивать современные процессоры вообще. Большинство изменений, произошедших в дизайне Ivy Bridge, касается не вычислительных ядер, а графического ядра. Поэтому для традиционных CPU это — явный «тик». Однако если считать, что предложенная AMD парадигма гетерогенных процессоров оказалась очередным пророчеством (они, в отличие от микроархитектур, AMD явно удаются), то Ivy Bridge может потянуть и на полноценный «так».

Так вот и получается, что новый интеловский продукт — очень многогранная и противоречивая вещь. Приверженцы десктопов, которые видят в Ivy Bridge возможный стимул к модернизации своих систем, новинкой будут, скорее всего, разочарованы. Для них в ней нет ничего особенно привлекательного, так как простой переход на новую технологию производства сам по себе ничего особенного не привносит. Тем более что «утончение» техпроцесса уже давно выливается не в увеличение тактовых частот CPU, а в снижение их тепловыделения.

Зато для пользователей разного рода мобильных или компактных систем Ivy Bridge сулит очень хороший гешефт. Наконец-то о представителях серий Intel Core можно будет думать как о полноценных гибридных процессорах — APU, которые обеспечивают неплохую 3D-производительность, совместимы с DirectX 11 и способны к выполнению GPGPU-вычислений. Недаром именно с выходом Ivy Bridge компания Intel напрямую связывает расцвет ультрабуков — новинки вписываются в этот класс компьютеров практически идеально.

Впрочем, в этом материале мы будем позиционировать себя как энтузиастов старой закалки. Всякие ультракомпактные компьютеры — это детские игрушки, нам подавай традиционные вычислительные системы, внушающие уважение как своим внешним видом, так и уровнем производительности. Может ли Ivy Bridge органично вписаться и в такую экосистему? Попробуем на этот вопрос ответить.

⇡ Микроархитектура Ivy Bridge: краткий обзор

Хотя мы и сказали о том, что микроархитектура Ivy Bridge имеет значительные отличия от своей предшественницы, Sandy Bridge, узреть близкое родство между ними — проще простого. На самом верхнем уровне, в общей структуре новых процессоров не изменилось ровным счётом ничего, все сделанные усовершенствования — в деталях. Подробное описание нововведений можно найти в специальном материале , здесь же мы приведём краткий обзор ключевых моментов.

Начать, пожалуй, следует с того, что появление новых процессоров Ivy Bridge не означает смены платформы. Эти CPU используют тот же самый процессорный разъём LGA1155, что и их предшественники, и полностью совместимы с имеющимся парком материнских плат. К выпуску Ivy Bridge компания Intel приурочила появление семейства наборов логики седьмой серии во главе с Z77 , однако применение плат на его основе вместе с новыми процессорами не является необходимостью. Для соединения Ivy Bridge с набором системной логики используется та же самая, что и в случае с Sandy Bridge, шина DMI 2.0 с пропускной способностью 20 Гбит/с. Поэтому новые процессоры превосходно работают в любых материнских платах с разъёмом LGA1155.

Как и Sandy Bridge, процессоры семейства Ivy Bridge состоят из того же самого набора функциональных узлов. Они содержат два или четыре вычислительных ядра, оборудованных индивидуальным L2-кешем объёмом 256 Кбайт; графическое ядро; разделяемую кеш-память третьего уровня объёмом до 8 Мбайт; двухканальный контроллер памяти с поддержкой DDR3 SDRAM; контроллер графической шины PCI Express; а также системный агент, отвечающий за работу технологии Turbo и реализующий вспомогательные интерфейсы. Все составные части Ivy Bridge соединяются посредством кольцевой шины Ring Bus — тут тоже нет ничего нового.

Если же говорить об отличиях Ivy Bridge от её предшественников, то это в первую очередь — новая 22-нм производственная технология, применённая производителем для изготовления полупроводниковых кристаллов. Причём новизна в данном случае заключается не только в «утончённых» нормах, но и в принципиальном изменении внутренней конструкции транзисторов. Intel характеризует новые транзисторы как имеющие трёхмерную конструкцию (Tri-Gate), что на практике выливается в установку на кремниевой подложке высокого покрытого High-K диэлектриком вертикального ребра, врезающегося в затвор.

Учитывая, что одной из главных целей выпуска Ivy Bridge является их массированное проникновение в ультра-мобильные компьютеры, такое улучшение экономичности отнюдь не лишнее. К тому же разработчики Intel усилили достигнутый эффект внедрением новых энергосберегающих технологий: более глубоких состояний сна, возможности отключения от линий питания контроллера памяти и поддержки DDR3L SDRAM с пониженным напряжением. Появилось и такое понятие, как конфигурируемый TDP. В результате, в числе различных модификаций Ivy Bridge возникает целый класс ULV-продуктов с 17-Вт тепловым пакетом, снижаемым при необходимости до 14 Вт.

Ввод в строй свежей производственной технологии автоматически означает и уменьшение размеров полупроводниковых кристаллов. Так, кристалл четырёхъядерного Ivy Bridge имеет площадь 160 кв. мм — это на 35% меньше площади Sandy Bridge.

При этом сложность нового процессора значительно выросла, он состоит из 1,4 млрд транзисторов, в то время как количество транзисторов в процессорах-предшественниках аналогичного класса составляло 995 млн штук.

Процессор Техпроцесс Количество ядер Кеш L3 Число транзисторов Площадь ядра
AMD Bulldozer 32 нм 8 8 Мбайт 1,2 млрд 315 кв. мм
AMD Llano 32 нм 4 + GPU Нет 1,45 млрд 228 кв. мм
Intel Ivy Bridge 22 нм 4 + GPU 8 Мбайт 1,4 млрд 160 кв. мм
Intel Sandy Bridge E (6C) 32 нм 6 15 Мбайт 2,27 млрд 435 кв. мм
Intel Sandy Bridge E (4C) 32 нм 4 10 Мбайт 1,27 млрд 294 кв. мм
Intel Sandy Bridge 32 нм 4 + GPU 8 Мбайт 995 млн 216 кв. мм

Наиболее привычный путь задействования дополнительного транзисторного бюджета — это наращивание объёмов кеш-памяти. Однако в Ivy Bridge ничего такого нет, эти процессоры располагают точно такими же по ёмкости и схеме работы L1-, L2- и L3-кешами, что и Sandy Bridge. Дополнительные же транзисторы в большинстве своём ушли во встроенное графическое ядро — оно в Ivy Bridge отличается от графики предыдущего поколения, Intel HD Graphics 3000/2000, чуть менее чем полностью.

Новое видеоядро, получившее название HD Graphics 4000, наконец-то можно именовать современным во всех смыслах этого слова. Главное достижение разработчиков в том, что с новой версией графики они смогли добиться соответствия требованиям DirectX 11 вместе с DirectCompute и Shader Model 5.0, а также открыли возможность GPGPU-вычислений через интерфейс OpenCL 1.1. В дополнение к этому у HD Graphics 4000 появилась поддержка трёх независимых мониторов, а уровень производительности существенно увеличился благодаря добавлению дополнительных исполнительных устройств: теперь их 16 вместо 12. Поэтому Intel считает, что число систем, использующих процессоры компании без внешней видеокарты, существенно увеличится, однако произойдёт это, главным образом, в мобильном рыночном сегменте.

Но для пользователей настольных систем графическое ядро не слишком интересно. Гораздо сильнее они ожидают улучшений микроархитектуры вычислительной части, способных сказаться на производительности. А тут-то новым процессорам поколения Ivy Bridge похвастать особенно нечем. Возможный прирост в быстродействии при работе Ivy Bridge и Sandy Bridge на одинаковой тактовой частоте, даже по самым оптимистичным официальным данным, не превосходит и 5 %. Дело в том, что вычислительные ядра в новых процессорах не перерабатывались, а место имеют лишь незначительные улучшения косметического характера. Так, в Ivy Bridge ускорена работа команд целочисленного и вещественного деления, с учётом использования регистрового файла оптимизировано исполнение инструкций пересылки данных между регистрами, кроме того, реализовано динамическое, а не статическое распределение ресурсов внутренних буферов между потоками при использовании технологии Hyper-Threading.

Чтобы оценить практический эффект этих изменений, мы воспользовались синтетическими бенчмарками из пакета SiSoft Sandra, которые реализуют простые алгоритмы, позволяющие оценить производительность процессоров при выполнении разнообразных операций. В рамках данного предварительного теста мы сравнили между собой скорость работы четырёхъядерных Sandy Bridge и Ivy Bridge, функционирующих на одинаковой частоте 4,0 ГГц без использования технологии Hyper-Threading.

Sandy Bridge
4С/4T 4,0 ГГц
Ivy Bridge
4С/4T 4,0 ГГц
Преимущество
новой микроархитектуры
Processor Arithmetic
Dhrystone SSE4.2 100,82 100,86 0,0%
Whetstone SSE3 58,2 59,92 +3,0%
Processor Multi-Media
Integer x16 AVX 195,13 195,82 +0,4%
Float x16 AVX 235,87 239,11 +1,4%
Double x8 AVX 135,07 136,07 +0,7%
Float/Double x8 AVX 178,49 180,38 +1,1%
Cryptography
AES-256-ECB AES 08,4 08,7 +0,4%
SHA2-256 AVX 01,1 1,24 +12,7%

Результаты и впрямь не слишком обнадёживающие. Улучшения микроархитектуры вычислительных ядер в Ivy Bridge выливаются в практически неуловимый прирост производительности.

Поэтому гораздо более интересными для пользователей настольных систем нам представляются те изменения, которые коснулись работы смежных внутрипроцессорных интерфейсов — памяти и шины PCI Express. Так, встроенный в Ivy Bridge контроллер PCI Express получил поддержку третьей версии этой спецификации, что автоматически (при условии применения совместимых оконечных устройств) означает увеличение пропускной способности шины по сравнению с PCI Express 2.0 почти вдвое — до 8 гигатранзакций в секунду.

При этом поддерживаемые Ivy Bridge шестнадцать линий PCI Express могут дробиться на две или на три части — по схеме 8x + 8x или 8x + 4x + 4x. Последний вариант может быть интересен для систем с тремя видеокартами, тем более что PCI Express 3.0 вполне способна обеспечить приемлемую для видеокарт пропускную способность даже в случае использования только четырёх линий.

Что же касается контроллера памяти Ivy Bridge, то его базовые характеристики по сравнению с тем, что мы видели в Sandy Bridge, не изменились. Он точно также может работать с двухканальной DDR3 SDRAM. Но в то же время интеловские инженеры сделали определенные шаги в сторону производителей оверклокерской памяти и добавили в процессор возможность более гибкой настройки частотного режима. Во-первых, максимальной поддерживаемой частотой теперь является DDR3-2800 SDRAM. Во-вторых, для изменения частоты работы памяти теперь можно использовать два режима тактования — с шагом 200 или 266 МГц.

Практическая скорость работы контроллера памяти при этом тоже немного изменилась. Это подтверждают в том числе и бенчмарки. Например, ниже мы приводим показатели AIDA64 Cache & Memory Benchmark, снятые в системе с процессорами Sandy Bridge и Ivy Bridge, работающими на частоте 4,0 ГГц.

Sandy Bridge 4,0 ГГц, DDR3-1867 (9-11-9-30-1T)

Ivy Bridge 4,0 ГГц, DDR3-1867 (9-11-9-30-1T)

Процессор поколения Ivy Bridge обеспечивает немного меньшую практическую латентность подсистемы памяти, но это преимущество минимально. При этом тест выявляет и другую интересную деталь: L3-кеш у новых процессоров якобы стал заметно быстрее. Однако вынуждены разочаровать — в данном случае различие в показателях AIDA64 Cache & Memory Benchmark вызвано не улучшением скоростных характеристик L3-кеша, а изменениями в темпе исполнения инструкций, фигурирующих в алгоритме теста. На самом же деле латентность L3-кеша Ivy Bridge составляет 24 цикла — и это на один цикл больше латентности кеша третьего уровня процессоров Sandy Bridge. Иными словами, кеш в новых процессорах стал работать даже чуть медленнее, чем раньше, но в практических задачах это незаметно.

⇡ Процессоры Ivy Bridge для десктопов, первый заход

Проблемы производственного характера, возникающие почти каждый раз, когда дело касается внедрения каких-либо принципиальных нововведений, пока не позволили Intel завалить рынок разномастными модификациями Ivy Bridge. Поэтому внедрение нового дизайна происходит поэтапно: сегодня анонсируются лишь четырёхъядерные модификации новых процессоров, относящиеся к семействам Core i7 и Core i5.

Моделей для настольных систем из них всего пять, следующая таблица раскрывает их спецификации.

Честно говоря, знакомство с приведёнными характеристиками особого оптимизма по поводу новых процессоров не добавляет. По сравнению с Sandy Bridge мы не видим прогресса ни в числе ядер, ни в тактовых частотах, ни в размерах кеш-памяти. А так как новая микроархитектура практически не увеличивает число обрабатываемых за такт инструкций, становится понятно: по традиционно-процессорным понятиям модельный ряд Ivy Bridge — это ординарное эволюционное обновление Sandy Bridge. Положительных моментов лишь два: привлекательное для отдельных категорий пользователей графическое ядро и снизившееся тепловыделение.


Кстати, с характеристикой TDP связан весьма забавный казус. Хотя в официальной документации типичное тепловыделение новых процессоров указывается как 77 Вт, на коробках с реальными продуктами Intel пишет «95 Вт». Такая нестыковка уже породила массу нелепых суждений, но на самом деле объяснение очень простое. Реально наблюдаемое тепловыделение не выходит за 77-ваттную границу, однако такая величина TDP в употреблении ранее не была, поэтому Intel решила не осложнять жизнь пользователям, производителям компонентов и сборщикам систем и будет указывать на коробках хорошо знакомое всем число. Кроме того, как нам удалось выяснить у представителей компании, в перспективе возможен выпуск более скоростных моделей Ivy Bridge, которые приведут реальное и формальное TDP к единому знаменателю.

Принципиальных изменений нет и в общей структуре предложений. Старшие LGA1155-процессоры новой формации нацеливаются на продвинутых пользователей и имеют литеру «K» в своём индексе. Такие предложения имеют свободный множитель и открыты для оверклокерских экспериментов. Прочие же модели Core i7 и Core i5, как и раньше, не дают повышать коэффициент умножения более чем на четыре единицы.

Отсутствие ярких революционных изменений в вычислительной производительности новых процессоров не удержало Intel от присвоения им номеров из трёхтысячной серии. Таким образом, в структуре интеловских предложений Ivy Bridge для LGA1155-систем становятся под процессоры Sandy Bridge-E для LGA 2011 и вытесняют собой двухтысячные Sandy Bridge. На это указывают и цены. Новинки не дороже Core годичной давности, так что привычное течение процессорной жизни, когда поколения интеловских CPU последовательно сменяют друг друга, не нарушатся и на этот раз.

Для проведения тестирования компания Intel предоставила нам образцы старших процессоров в обновлённых линейках Core третьего поколения: Core i7-3770K и Core i5-3570K.

Обратите внимание, 22-нм производственная технология хорошо проглядывается сквозь практические аспекты эксплуатации новинок. Их рабочее напряжение понизилось относительно Sandy Bridge примерно на 15-20 процентов и находится теперь в районе 1,0 В. Это — одна из основных причин более низкого тепловыделения.

Благодаря работе технологий энергосбережения Enhanced Intel SpeedStep и C1E в состоянии простоя напряжение Ivy Bridge падает до примерно 0,9 В, а частота снижается до 1,6 ГГц.

ВведениеЭтим летом компания Intel совершила странное: она умудрилась сменить целых два поколения процессоров, ориентированных на общеупотребительные персональные компьютеры. Сначала на смену Haswell пришли процессоры с микроархитектурой Broadwell, но затем в течение буквально пары месяцев они утратили свой статус новинки и уступили место процессорам Skylake, которые будут оставаться наиболее прогрессивными CPU как минимум ещё года полтора. Такая чехарда со сменой поколений произошла главным образом в связи с проблемами Intel, возникшими при внедрении нового 14-нм техпроцесса, который применяется при производстве и Broadwell, и Skylake. Производительные носители микроархитектуры Broadwell по пути в настольные системы сильно задержались, а их последователи вышли по заранее намеченному графику, что привело к скомканности анонса процессоров Core пятого поколения и серьёзному сокращению их жизненного цикла. В результате всех этих пертурбаций, в десктопном сегменте Broadwell заняли совсем узкую нишу экономичных процессоров с мощным графическим ядром и довольствуются теперь лишь небольшим уровнем продаж, свойственным узкоспециализированным продуктам. Внимание же передовой части пользователей переключилось на последователей Broadwell – процессоры Skylake.

Надо заметить, что в последние несколько лет компания Intel совсем не радует своих поклонников ростом производительности предлагаемых продуктов. Каждое новое поколение процессоров прибавляет в удельном быстродействии лишь по несколько процентов, что в конечном итоге приводит к отсутствию у пользователей явных стимулов к модернизации старых систем. Но выход Skylake – поколения CPU, по пути к которому Intel, фактически, перепрыгнула через ступеньку – внушал определённые надежды на то, что мы получим действительно стоящее обновление самой распространённой вычислительной платформы. Однако, ничего подобного так и не случилось: Intel выступила в своём привычном репертуаре. Broadwell был представлен общественности в качестве некого ответвления от основной линии процессоров для настольных систем, а Skylake оказались быстрее Haswell в большинстве приложений совсем незначительно .

Поэтому несмотря на все ожидания, появление Skylake в продаже вызвало у многих скептическое отношение. Ознакомившись с результатами реальных тестов, многие покупатели попросту не увидели реального смысла в переходе на процессоры Core шестого поколения. И действительно, главным козырем свежих CPU выступает прежде всего новая платформа с ускоренными внутренними интерфейсами, но не новая процессорная микроархитектура. И это значит, что реальных стимулов к обновлению основанных систем прошлых поколений Skylake предлагает немного.

Впрочем, мы бы всё-таки не стали отговаривать от перехода Skylake всех без исключения пользователей. Дело в том, что пусть Intel и наращивает производительность своих процессоров очень сдержанными темпами, с момента появления Sandy Bridge, которые всё ещё трудятся во многих системах, сменилось уже четыре поколения микроархитектуры. Каждый шаг по пути прогресса вносил свой вклад в увеличение производительности, и к сегодняшнему дню Skylake способен предложить достаточно существенный прирост в производительности по сравнению со своими более ранними предшественниками. Только чтобы увидеть это, сравнивать его надо не с Haswell, а с более ранними представителями семейства Core, появившимися до него.

Собственно, именно таким сравнением мы сегодня и займёмся. Учитывая всё сказанное, мы решили посмотреть, насколько выросла производительность процессоров Core i7 с 2011 года, и собрали в едином тесте старшие Core i7, относящиеся к поколениям Sandy Bridge, Ivy Bridge, Haswell, Broadwell и Skylake. Получив же результаты такого тестирования, мы постараемся понять, обладателям каких процессоров целесообразно затевать модернизацию старых систем, а кто из них может повременить до появления последующих поколений CPU. Попутно мы посмотрим и на уровень производительности новых процессоров Core i7-5775C и Core i7-6700K поколений Broadwell и Skylake, которые до настоящего момента в нашей лаборатории ещё не тестировались.

Сравнительные характеристики протестированных CPU

От Sandy Bridge до Skylake: сравнение удельной производительности

Для того, чтобы вспомнить, как же менялась удельная производительность интеловских процессоров в течение последней пятилетки, мы решили начать с простого теста, в котором сопоставили скорость работы Sandy Bridge, Ivy Bridge, Haswell, Broadwell и Skylake, приведённых к одной и той же частоте 4,0 ГГц. В этом сравнении нами были использованы процессоры линейки Core i7, то есть, четырёхъядерники, обладающие технологией Hyper-Threading.

В качестве основного тестового инструмента был взят комплексный тест SYSmark 2014 1.5, который хорош тем, что воспроизводит типичную пользовательскую активность в общеупотребительных приложениях офисного характера, при создании и обработке мультимедийного контента и при решении вычислительных задач. На следующих графиках отображены полученные результаты. Для удобства восприятия они нормированы, за 100 процентов принята производительность Sandy Bridge.



Интегральный показатель SYSmark 2014 1.5 позволяет сделать следующие наблюдения. Переход от Sandy Bridge к Ivy Bridge увеличил удельную производительность совсем незначительно – примерно на 3-4 процента. Дальнейший шаг к Haswell оказался гораздо более результативным, он вылился в 12-процентное улучшение производительности. И это – максимальный прирост, который можно наблюдать на приведённом графике. Ведь дальше Broadwell обгоняет Haswell всего лишь на 7 процентов, а переход от Broadwell к Skylake и вовсе наращивает удельную производительность лишь на 1-2 процента. Весь же прогресс от Sandy Bridge до Skylake выливается в 26-процентное увеличение производительности при постоянстве тактовых частот.

Более подробную расшифровку полученных показателей SYSmark 2014 1.5 можно посмотреть на трёх следующих графиках, где интегральный индекс производительности разложен по составляющим по типу приложений.









Обратите внимание, наиболее заметно с вводом новых версий микроархитектур прибавляют в скорости исполнения мультимедийные приложения. В них микроархитектура Skylake превосходит Sandy Bridge на целых 33 процента. А вот в счётных задачах, напротив, прогресс проявляется меньше всего. И более того, при такой нагрузке шаг от Broadwell к Skylake даже оборачивается небольшим снижением удельной производительности.

Теперь, когда мы представляем себе, что же происходило с удельной производительностью процессоров Intel в течение последних нескольких лет, давайте попробуем разобраться, чем наблюдаемые изменения были обусловлены.

От Sandy Bridge до Skylake: что изменилось в процессорах Intel

Сделать точкой отсчёта в сравнении разных Core i7 представителя поколения Sandy Bridge мы решили не просто так. Именно данный дизайн подвёл крепкий фундамент под всё дальнейшее совершенствование производительных интеловских процессоров вплоть до сегодняшних Skylake. Так, представители семейства Sandy Bridge стали первыми высокоинтегрированными CPU, в которых в одном полупроводниковом кристалле были собраны и вычислительные, и графическое ядра, а также северный мост с L3-кешем и контроллером памяти. Кроме того, в них впервые стала использоваться внутренняя кольцевая шина, посредством которой была решена задача высокоэффективного взаимодействия всех структурных единиц, составляющих столь сложный процессор. Этим заложенным в микроархитектуре Sandy Bridge универсальным принципам построения продолжают следовать все последующие поколения CPU без каких бы то ни было серьёзных корректив.

Немалые изменения в Sandy Bridge претерпела внутренняя микроархитектура вычислительных ядер. В ней не только была реализована поддержка новых наборов команд AES-NI и AVX, но и нашли применение многочисленные крупные улучшения в недрах исполнительного конвейера. Именно в Sandy Bridge был добавлен отдельный кеш нулевого уровня для декодированных инструкций; появился абсолютно новый блок переупорядочивания команд, основанный на использовании физического регистрового файла; были заметно улучшены алгоритмы предсказания ветвлений; а кроме того, два из трёх исполнительных порта для работы с данными стали унифицированными. Такие разнородные реформы, проведённые сразу на всех этапах конвейера, позволили серьёзно увеличить удельную производительность Sandy Bridge, которая по сравнению с процессорами предыдущего поколения Nehalem сразу выросла почти на 15 процентов. К этому добавился 15-процентный рост номинальных тактовых частот и отличный разгонный потенциал, в результате чего в сумме получилось семейство процессоров, которое до сих пор ставится в пример Intel, как образцовое воплощение фазы «так» в принятой в компании маятниковой концепции разработки.

И правда, подобных по массовости и действенности улучшений в микроархитектуре после Sandy Bridge мы уже не видели. Все последующие поколения процессорных дизайнов проводят куда менее масштабные усовершенствования в вычислительных ядрах. Возможно, это является отражением отсутствия реальной конкуренции на процессорном рынке, возможно причина замедления прогресса кроется в желании Intel сосредоточить усилия на совершенствовании графических ядер, а может быть Sandy Bridge просто оказался настолько удачным проектом, что его дальнейшее развитие требует слишком больших трудозатрат.

Отлично иллюстрирует произошедший спад интенсивности инноваций переход от Sandy Bridge к Ivy Bridge. Несмотря на то, что следующее за Sandy Bridge поколение процессоров и было переведено на новую производственную технологию с 22-нм нормами, его тактовые частоты совсем не выросли. Сделанные же улучшения в дизайне в основном коснулись ставшего более гибким контроллера памяти и контроллера шины PCI Express, который получил совместимость с третьей версией данного стандарта. Что же касается непосредственно микроархитектуры вычислительных ядер, то отдельные косметические переделки позволили добиться ускорения выполнения операций деления и небольшого увеличения эффективности технологии Hyper-Threading, да и только. В результате, рост удельной производительности составил не более 5 процентов.

Вместе с тем, внедрение Ivy Bridge принесло и то, о чём теперь горько жалеет миллионная армия оверклокеров. Начиная с процессоров этого поколения, Intel отказалась от сопряжения полупроводникового кристалла CPU и закрывающей его крышки посредством бесфлюсовой пайки и перешла на заполнение пространства между ними полимерным термоинтерфейсным материалом с очень сомнительными теплопроводящими свойствами. Это искусственно ухудшило частотный потенциал и сделало процессоры Ivy Bridge, как и всех их последователей, заметно менее разгоняемыми по сравнению с очень бодрыми в этом плане «старичками» Sandy Bridge.

Впрочем, Ivy Bridge – это всего лишь «тик», а потому особых прорывов в этих процессорах никто и не обещал. Однако никакого воодушевляющего роста производительности не принесло и следующее поколение, Haswell, которое, в отличие от Ivy Bridge, относится уже к фазе «так». И это на самом деле немного странно, поскольку различных улучшений в микроархитектуре Haswell сделано немало, причём они рассредоточены по разным частям исполнительного конвейера, что в сумме вполне могло бы увеличить общий темп исполнения команд.

Например, во входной части конвейера была улучшена результативность предсказания переходов, а очередь декодированных инструкций стала делиться между параллельными потоками, сосуществующими в рамках технологии Hyper-Threading, динамически. Попутно произошло увеличение окна внеочередного исполнения команд, что в сумме должно было поднять долю параллельно выполняемого процессором кода. Непосредственно в исполнительном блоке были добавлены два дополнительных функциональных порта, нацеленных на обработку целочисленных команд, обслуживание ветвлений и сохранение данных. Благодаря этому Haswell стал способен обрабатывать до восьми микроопераций за такт – на треть больше предшественников. Более того, новая микроархитектура удвоила и пропускную способность кеш-памяти первого и второго уровней.

Таким образом, улучшения в микроархитектуре Haswell не затронули лишь скорость работы декодера, который, похоже, на данный момент стал самым узким местом в современных процессорах Core. Ведь несмотря на внушительный список улучшений, прирост удельной производительности у Haswell по сравнению с Ivy Bridge составил лишь около 5-10 процентов. Но справедливости ради нужно оговориться, что на векторных операциях ускорение заметно гораздо сильнее. А наибольший выигрыш можно увидеть в приложениях, использующих новые AVX2 и FMA-команды, поддержка которых также появилась в этой микроархитектуре.

Процессоры Haswell, как и Ivy Bridge, сперва тоже не особенно понравились энтузиастам. Особенно если учесть тот факт, что в первоначальной версии никакого увеличения тактовых частот они не предложили. Однако спустя год после своего дебюта Haswell стали казаться заметно привлекательнее. Во-первых, увеличилось количество приложений, обращающихся к наиболее сильным сторонам этой архитектуры и использующих векторные инструкции. Во-вторых, Intel смогла исправить ситуацию с частотами. Более поздние модификации Haswell, получившие собственное кодовое наименование Devil’s Canyon, смогли нарастить преимущество над предшественниками благодаря увеличению тактовой частоты, которая, наконец, пробила 4-гигагерцовый потолок. Кроме того, идя на поводу у оверклокеров, Intel улучшила полимерный термоинтерфейс под процессорной крышкой, что сделало Devil’s Canyon более подходящими объектами для разгона. Конечно, не такими податливыми, как Sandy Bridge, но тем не менее.

И вот с таким багажом Intel подошла к Broadwell. Поскольку основной ключевой особенностью этих процессоров должна была стать новая технология производства с 14-нм нормами, никаких значительных нововведений в их микроархитектуре не планировалось – это должен был быть почти самый банальный «тик». Всё необходимое для успеха новинок вполне мог бы обеспечить один только тонкий техпроцесс с FinFET-транзисторами второго поколения, в теории позволяющий уменьшить энергопотребление и поднять частоты. Однако практическое внедрение новой технологии обернулось чередой неудач, в результате которых Broadwell досталась лишь экономичность, но не высокие частоты. В итоге те процессоры этого поколения, которые Intel представила для настольных систем, вышли больше похожими на мобильные CPU, чем на продолжателей дела Devil’s Canyon. Тем более, что кроме урезанных тепловых пакетов и откатившихся частот они отличаются от предшественников и уменьшившимся в объёме L3-кешем, что, правда, несколько компенсируется появлением расположенного на отдельном кристалле кэша четвёртого уровня.

На одинаковой с Haswell частоте процессоры Broadwell демонстрируют примерно 7-процентное преимущество, обеспечиваемое как добавлением дополнительного уровня кеширования данных, так и очередным улучшением алгоритма предсказания ветвлений вместе с увеличением основных внутренних буферов. Кроме того, в Broadwell реализованы новые и более быстрые схемы выполнения инструкций умножения и деления. Однако все эти небольшие улучшения перечёркиваются фиаско с тактовыми частотами, относящими нас в эпоху до Sandy Bridge. Так, например, старший оверклокерский Core i7-5775C поколения Broadwell уступает по частоте Core i7-4790K целых 700 МГц. Понятно, что ожидать какого-то роста производительности на этом фоне бессмысленно, лишь бы обошлось без её серьёзного падения.

Во многом именно из-за этого Broadwell и оказался непривлекательным для основной массы пользователей. Да, процессоры этого семейства отличаются высокой экономичностью и даже вписываются в тепловой пакет с 65-ваттными рамками, но кого это, по большому счёту, волнует? Разгонный же потенциал первого поколения 14-нм CPU оказался достаточно сдержанным. Ни о какой работе на частотах, приближающихся к 5-гигагерцовой планке речь не идёт. Максимум, которого можно добиться от Broadwell при использовании воздушного охлаждения пролегает в окрестности величины 4,2 ГГц. Иными словами, пятое поколение Core вышло у Intel, как минимум, странноватым. О чём, кстати, микропроцессорный гигант в итоге и пожалел: представители Intel отмечают, что поздний выход Broadwell для настольных компьютеров, его сокращённый жизненный цикл и нетипичные характеристики отрицательно сказались на уровне продаж, и больше компания на подобные эксперименты пускаться не планирует.

Новейший же Skylake на этом фоне представляется не столько как дальнейшее развитие интеловской микроархитектуры, сколько своего рода работа над ошибками. Несмотря на то, что при производстве этого поколения CPU используется тот же 14-нм техпроцесс, что и в случае Broadwell, никаких проблем с работой на высоких частотах у Skylake нет. Номинальные частоты процессоров Core шестого поколения вернулись к тем показателям, которые были свойственны их 22-нм предшественникам, а разгонный потенциал даже немного увеличился. На руку оверклокерам здесь сыграл тот факт, что в Skylake конвертер питания процессора вновь перекочевал на материнскую плату и снизил тем самым суммарное тепловыделение CPU при разгоне. Жаль только, что Intel так и не вернулась к использованию эффективного термоинтерфейса между кристаллом и процессорной крышкой.

Но вот что касается базовой микроархитектуры вычислительных ядер, то несмотря на то, что Skylake, как и Haswell, представляет собой воплощение фазы «так», нововведений в ней совсем немного. Причём большинство из них направлено на расширение входной части исполнительного конвейера, остальные же части конвейера остались без каких-либо существенных изменений. Перемены касаются улучшения результативности предсказания ветвлений и повышения эффективности блока предварительной выборки, да и только. При этом часть оптимизаций служит не столько для улучшения производительности, сколько направлена на очередное повышение энергоэффективности. Поэтому удивляться тому, что Skylake по своей удельной производительности почти не отличается от Broadwell, не следует.

Впрочем, существуют и исключения: в отдельных случаях Skylake могут превосходить предшественников в производительности и более заметно. Дело в том, что в этой микроархитектуре была усовершенствована подсистема памяти. Внутрипроцессорная кольцевая шина стала быстрее, и это в конечном итоге расширило полосу пропускания L3-кэша. Плюс к этому контроллер памяти получил поддержку работающей на высоких частотах памяти стандарта DDR4 SDRAM.

Но в итоге тем не менее получается, что бы там не говорила Intel о прогрессивности Skylake, с точки зрения обычных пользователей это – достаточно слабое обновление. Основные улучшения в Skylake сделаны в графическом ядре и в энергоэффективности, что открывает перед такими CPU путь в безвентиляторные системы планшетного форм-фактора. Десктопные же представители этого поколения отличаются от тех же Haswell не слишком заметно. Даже если закрыть глаза на существование промежуточного поколения Broadwell, и сопоставлять Skylake напрямую с Haswell, то наблюдаемый рост удельной производительности составит порядка 7-8 процентов, что вряд ли можно назвать впечатляющим проявлением технического прогресса.

Попутно стоит отметить, что не оправдывает ожиданий и совершенствование технологических производственных процессов. На пути от Sandy Bridge дo Skylake компания Intel сменила две полупроводниковых технологии и уменьшила толщину транзисторных затворов более чем вдвое. Однако современный 14-нм техпроцесс по сравнению с 32-нм технологией пятилетней давности так и не позволил нарастить рабочие частоты процессоров. Все процессоры Core последних пяти поколений имеют очень похожие тактовые частоты, которые если и превышают 4-гигагерцовую отметку, то совсем незначительно.

Для наглядной иллюстрации этого факта можно посмотреть на следующий график, на котором отображена тактовая частота старших оверклокерских процессоров Core i7 разных поколений.



Более того, пик тактовой частоты приходится даже не на Skylake. Максимальной частотой могут похвастать процессоры Haswell, относящиеся к подгруппе Devil’s Canyon. Их номинальная частота составляет 4,0 ГГц, но благодаря турбо-режиму в реальных условиях они способны разгоняться до 4,4 ГГц. Для современных же Skylake максимум частоты – всего лишь 4,2 ГГц.

Всё это, естественно, сказывается на итоговой производительности реальных представителей различных семейств CPU. И далее мы предлагаем посмотреть, как всё это отражается на быстродействии платформ, построенных на базе флагманских процессоров каждого из семейств Sandy Bridge, Ivy Bridge, Haswell, Broadwell и Skylake.

Как мы тестировали

В сравнении приняли участие пять процессоров Core i7 разных поколений: Core i7-2700K, Core i7-3770K, Core i7-4790K, Core i7-5775C и Core i7-6700K. Поэтому список комплектующих, задействованных в тестировании, получился достаточно обширным:

Процессоры:

Intel Core i7-2600K (Sandy Bridge, 4 ядра + HT, 3,4-3,8 ГГц, 8 Мбайт L3);
Intel Core i7-3770K (Ivy Bridge, 4 ядра + HT, 3,5-3,9 ГГц, 8 Мбайт L3);
Intel Core i7-4790K (Haswell Refresh, 4 ядра + HT, 4,0-4,4 ГГц, 8 Мбайт L3);
Intel Core i7-5775C (Broadwell, 4 ядра, 3,3-3,7 ГГц, 6 Мбайт L3, 128 Мбайт L4).
Intel Core i7-6700K (Skylake, 4 ядра, 4,0-4,2 ГГц, 8 Мбайт L3).

Процессорный кулер: Noctua NH-U14S.
Материнские платы:

ASUS Z170 Pro Gaming (LGA 1151, Intel Z170);
ASUS Z97-Pro (LGA 1150, Intel Z97);
ASUS P8Z77-V Deluxe (LGA1155, Intel Z77).

Память:

2x8 Гбайт DDR3-2133 SDRAM, 9-11-11-31 (G.Skill F3-2133C9D-16GTX);
2x8 Гбайт DDR4-2666 SDRAM, 15-15-15-35 (Corsair Vengeance LPX CMK16GX4M2A2666C16R).

Видеокарта: NVIDIA GeForce GTX 980 Ti (6 Гбайт/384-бит GDDR5, 1000-1076/7010 МГц).
Дисковая подсистема: Kingston HyperX Savage 480 GB (SHSS37A/480G).
Блок питания: Corsair RM850i (80 Plus Gold, 850 Вт).

Тестирование выполнялось в операционной системе Microsoft Windows 10 Enterprise Build 10240 с использованием следующего комплекта драйверов:

Intel Chipset Driver 10.1.1.8;
Intel Management Engine Interface Driver 11.0.0.1157;
NVIDIA GeForce 358.50 Driver.

Производительность

Общая производительность

Для оценки производительности процессоров в общеупотребительных задачах мы традиционно используем тестовый пакет Bapco SYSmark, моделирующий работу пользователя в реальных распространённых современных офисных программах и приложениях для создания и обработки цифрового контента. Идея теста очень проста: он выдаёт единственную метрику, характеризующую средневзвешенную скорость компьютера при повседневном использовании. После выхода операционной системы Windows 10 этот бенчмарк в очередной раз обновился, и теперь мы задействуем самую последнюю версию – SYSmark 2014 1.5.



При сравнении Core i7 разных поколений, когда они работают в своих номинальных режимах, результаты получаются совсем не такие, как при сопоставлении на единой тактовой частоте. Всё-таки реальная частота и особенности работы турбо-режима оказывает достаточно существенное влияние на производительность. Например, согласно полученным данным, Core i7-6700K быстрее Core i7-5775C на целых 11 процентов, но при этом его преимущество над Core i7-4790K совсем незначительно – оно составляет всего лишь порядка 3 процентов. При этом нельзя обойти вниманием и то, что новейший Skylake оказывается существенно быстрее процессоров поколений Sandy Bridge и Ivy Bridge. Его преимущество над Core i7-2700K и Core i7-3770K достигает 33 и 28 процентов соответственно.

Более глубокое понимание результатов SYSmark 2014 1.5 способно дать знакомство с оценками производительности, получаемое в различных сценариях использования системы. Сценарий Office Productivity моделирует типичную офисную работу: подготовку текстов, обработку электронных таблиц, работу с электронной почтой и посещение Интернет-сайтов. Сценарий задействует следующий набор приложений: Adobe Acrobat XI Pro, Google Chrome 32, Microsoft Excel 2013, Microsoft OneNote 2013, Microsoft Outlook 2013, Microsoft PowerPoint 2013, Microsoft Word 2013, WinZip Pro 17.5 Pro.



В сценарии Media Creation моделируется создание рекламного ролика с использованием предварительно отснятых цифровых изображений и видео. Для этой цели применяются популярные пакеты Adobe Photoshop CS6 Extended, Adobe Premiere Pro CS6 и Trimble SketchUp Pro 2013.



Сценарий Data/Financial Analysis посвящён статистическому анализу и прогнозированию инвестиций на основе некой финансовой модели. В сценарии используются большие объёмы численных данных и два приложения Microsoft Excel 2013 и WinZip Pro 17.5 Pro.



Результаты, полученные нами при различных сценариях нагрузки, качественно повторяют общие показатели SYSmark 2014 1.5. Обращает на себя внимание лишь тот факт, что процессор Core i7-4790K совсем не выглядит устаревшим. Он заметно проигрывает новейшему Core i7-6700K только в расчётном сценарии Data/Financial Analysis, а в остальных случаях либо уступает своему последователю на совсем малозаметную величину, либо вообще оказывается быстрее. Например, представитель семейства Haswell опережает новый Skylake в офисных приложениях. Но процессоры более старых годов выпуска, Core i7-2700K и Core i7-3770K, выглядят уже несколько устаревшими предложениями. Они проигрывают новинке в разных типах задач от 25 до 40 процентов, и это, пожалуй, является вполне достаточным основанием, чтобы Core i7-6700K можно было рассматривать в качестве достойной им замены.

Игровая производительность

Как известно, производительность платформ, оснащенных высокопроизводительными процессорами, в подавляющем большинстве современных игр определяется мощностью графической подсистемы. Именно поэтому при тестировании процессоров мы выбираем наиболее процессорозависимые игры, а измерение количества кадров выполняем дважды. Первым проходом тесты проводятся без включения сглаживания и с установкой далеко не самых высоких разрешений. Такие настройки позволяют оценить, насколько хорошо проявляют себя процессоры с игровой нагрузкой в принципе, а значит, позволяют строить догадки о том, как будут вести себя тестируемые вычислительные платформы в будущем, когда на рынке появятся более быстрые варианты графических ускорителей. Второй проход выполняется с реалистичными установками – при выборе FullHD-разрешения и максимального уровня полноэкранного сглаживания. На наш взгляд такие результаты не менее интересны, так как они отвечают на часто задаваемый вопрос о том, какой уровень игровой производительности могут обеспечить процессоры прямо сейчас – в современных условиях.

Впрочем, в этом тестировании мы собрали мощную графическую подсистему, основанную на флагманской видеокарте NVIDIA GeForce GTX 980 Ti. И в результате в части игр частота кадров продемонстрировала зависимость от процессорной производительности даже в FullHD-разрешении.

Результаты в FullHD-разрешении с максимальными настройками качества


















Обычно влияние процессоров на игровую производительность, особенно если речь идёт о мощных представителях серии Core i7, оказывается незначительным. Однако при сопоставлении пяти Core i7 разных поколений результаты получаются совсем не однородными. Даже при установке максимальных настроек качества графики Core i7-6700K и Core i7-5775C демонстрируют наивысшую игровую производительность, в то время как более старые Core i7 от них отстают. Так, частота кадров, которая получена в системе с Core i7-6700K превышает производительность системы на базе Core i7-4770K на малозаметный один процент, но процессоры Core i7-2700K и Core i7-3770K представляются уже ощутимо худшей основой геймерской системы. Переход с Core i7-2700K или Core i7-3770K на новейший Core i7-6700K даёт прибавку в числе fps величиной в 5-7 процентов, что способно оказать вполне заметное влияние на качество игрового процесса.

Увидеть всё это гораздо нагляднее можно в том случае, если на игровую производительность процессоров посмотреть при сниженном качестве изображения, когда частота кадров не упирается в мощность графической подсистемы.

Результаты при сниженном разрешении


















Новейшему процессору Core i7-6700K вновь удаётся показать наивысшую производительность среди всех Core i7 последних поколений. Его превосходство над Core i7-5775C составляет порядка 5 процентов, а над Core i7-4690K – около 10 процентов. В этом нет ничего странного: игры достаточно чутко реагируют на скорость подсистемы памяти, а именно по этому направлению в Skylake были сделаны серьёзные улучшения. Но гораздо заметнее превосходство Core i7-6700K над Core i7-2700K и Core i7-3770K. Старший Sandy Bridge отстаёт от новинки на 30-35 процентов, а Ivy Bridge проигрывает ей в районе 20-30 процентов. Иными словами, как бы ни ругали Intel за слишком медленное совершенствование собственных процессоров, компания смогла за прошедшие пять лет на треть повысить скорость работы своих CPU, а это – очень даже ощутимый результат.

Тестирование в реальных играх завершают результаты популярного синтетического бенчмарка Futuremark 3DMark.









Вторят игровым показателям и те результаты, которые выдаёт Futuremark 3DMark. При переводе микроархитектуры процессоров Core i7 c Sandy Bridge на Ivy Bridge показатели 3DMark выросли на величину от 2 до 7 процентов. Внедрение дизайна Haswell и выпуск процессоров Devil’s Canyon добавил к производительности старших Core i7 дополнительные 7-14 процентов. Однако потом появление Core i7-5775C, обладающего сравнительно невысокой тактовой частотой, несколько откатило быстродействие назад. И новейшему Core i7-6700K, фактически, пришлось отдуваться сразу за два поколения микроархитектуры. Прирост в итоговом рейтинге 3DMark у нового процессора семейства Skylake по сравнению с Core i7-4790K составил до 7 процентов. И на самом деле это не так много: всё-таки самое заметное улучшение производительности за последние пять лет смогли привнести процессоры Haswell. Последние же поколения десктопных процессоров, действительно, несколько разочаровывают.

Тесты в приложениях

В Autodesk 3ds max 2016 мы тестируем скорость финального рендеринга. Измеряется время, затрачиваемое на рендеринг в разрешении 1920x1080 с применением рендерера mental ray одного кадра стандартной сцены Hummer.



Ещё один тест финального рендеринга проводится нами с использованием популярного свободного пакета построения трёхмерной графики Blender 2.75a. В нём мы измеряем продолжительность построения финальной модели из Blender Cycles Benchmark rev4.



Для измерения скорости фотореалистичного трёхмерного рендеринга мы воспользовались тестом Cinebench R15. Maxon недавно обновила свой бенчмарк, и теперь он вновь позволяет оценить скорость работы различных платформ при рендеринге в актуальных версиях анимационного пакета Cinema 4D.



Производительность при работе веб-сайтов и интернет-приложений, построенных с использованием современных технологий, измеряется нами в новом браузере Microsoft Edge 20.10240.16384.0. Для этого применяется специализированный тест WebXPRT 2015, реализующий на HTML5 и JavaScript реально использующиеся в интернет-приложениях алгоритмы.



Тестирование производительности при обработке графических изображений происходит в Adobe Photoshop CC 2015. Измеряется среднее время выполнения тестового скрипта, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, который включает типичную обработку четырёх 24-мегапиксельных изображений, сделанных цифровой камерой.



По многочисленным просьбам фотолюбителей мы провели тестирование производительности в графической программе Adobe Photoshop Lightroom 6.1. Тестовый сценарий включает пост-обработку и экспорт в JPEG с разрешением 1920x1080 и максимальным качеством двухсот 12-мегапиксельных изображений в RAW-формате, сделанных цифровой камерой Nikon D300.



В Adobe Premiere Pro CC 2015 тестируется производительность при нелинейном видеомонтаже. Измеряется время рендеринга в формат H.264 Blu-Ray проекта, содержащего HDV 1080p25 видеоряд с наложением различных эффектов.



Для измерения быстродействия процессоров при компрессии информации мы пользуемся архиватором WinRAR 5.3, при помощи которого с максимальной степенью сжатия архивируем папку с различными файлами общим объёмом 1,7 Гбайт.



Для оценки скорости перекодирования видео в формат H.264 используется тест x264 FHD Benchmark 1.0.1 (64bit), основанный на измерении времени кодирования кодером x264 исходного видео в формат MPEG-4/AVC с разрешением 1920x1080@50fps и настройками по умолчанию. Следует отметить, что результаты этого бенчмарка имеют огромное практическое значение, так как кодер x264 лежит в основе многочисленных популярных утилит для перекодирования, например, HandBrake, MeGUI, VirtualDub и проч. Мы периодически обновляем кодер, используемый для измерений производительности, и в данном тестировании приняла участие версия r2538, в которой реализована поддержка всех современных наборов инструкций, включая и AVX2.



Кроме того, мы добавили в список тестовых приложений и новый кодер x265, предназначенный для транскодирования видео в перспективный формат H.265/HEVC, который является логическим продолжением H.264 и характеризуется более эффективными алгоритмами сжатия. Для оценки производительности используется исходный 1080p@50FPS Y4M-видеофайл, который перекодируется в формат H.265 с профилем medium. В этом тестировании принял участие релиз кодера версии 1.7.



Преимущество Core i7-6700K над ранними предшественниками в различных приложениях не подлежит сомнению. Однако больше всего выиграли от произошедшей эволюции два типа задач. Во-первых, связанные с обработкой мультимедийного контента, будь то видео или изображения. Во-вторых, финальный рендеринг в пакетах трёхмерного моделирования и проектирования. В целом, в таких случаях Core i7-6700K превосходит Core i7-2700K не менее, чем на 40-50 процентов. А иногда можно наблюдать и гораздо более впечатляющее улучшение скорости. Так, при перекодировании видео кодеком x265 новейший Core i7-6700K выдаёт ровно вдвое более высокую производительность, чем старичок Core i7-2700K.

Если же говорить о том приросте в скорости выполнения ресурсоёмких задач, которую может обеспечить Core i7-6700K по сравнению с Core i7-4790K, то тут уже столь впечатляющих иллюстраций к результатам работы интеловских инженеров привести нельзя. Максимальное преимущество новинки наблюдается в Lightroom, здесь Skylake оказался лучше в полтора раза. Но это скорее – исключение из правила. В большинстве же мультимедийных задач Core i7-6700K по сравнению с Core i7-4790K предлагает лишь 10-процентное улучшение производительности. А при нагрузке иного характера разница в быстродействии и того меньше или же вообще отсутствует.

Отдельно нужно сказать пару слов и о результате, показанном Core i7-5775C. Из-за небольшой тактовой частоты этот процессор медленнее, чем Core i7-4790K и Core i7-6700K. Но не стоит забывать о том, что его ключевой характеристикой является экономичность. И он вполне способен стать одним из лучших вариантов с точки зрения удельной производительности на каждый ватт затраченной электроэнергии. В этом мы легко убедимся в следующем разделе.

Энергопотребление

Процессоры Skylake производятся по современному 14-нм технологическому процессу с трёхмерными транзисторами второго поколения, однако, несмотря на это, их тепловой пакет вырос до 91 Вт. Иными словами, новые CPU не только «горячее» 65-ваттных Broadwell, но и превосходят по расчётному тепловыделению Haswell, выпускаемые по 22-нм технологии и уживающиеся в рамках 88-ваттного теплового пакета. Причина, очевидно, состоит в том, что изначально архитектура Skylake оптимизировалась с прицелом не на высокие частоты, а на энергоэффективность и возможность использования в мобильных устройствах. Поэтому для того, чтобы десктопные Skylake получили приемлемые тактовые частоты, лежащие в окрестности 4-гигагерцевой отметки, пришлось задирать напряжение питания, что неминуемо отразилось на энергопотреблении и тепловыделении.

Впрочем, процессоры Broadwell низкими рабочими напряжениями тоже не отличались, поэтому существует надежда на то, что 91-ваттный тепловой пакет Skylake получили по каким-то формальным обстоятельствам и, на самом деле, они окажутся не прожорливее предшественников. Проверим!

Используемый нами в тестовой системе новый цифровой блок питания Corsair RM850i позволяет осуществлять мониторинг потребляемой и выдаваемой электрической мощности, чем мы и пользуемся для измерений. На следующем ниже графике приводится полное потребление систем (без монитора), измеренное «после» блока питания и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. КПД самого блока питания в данном случае не учитывается. Для правильной оценки энергопотребления мы активировали турборежим и все имеющиеся энергосберегающие технологии.



В состоянии простоя качественный скачок в экономичности настольных платформ произошёл с выходом Broadwell. Core i7-5775C и Core i7-6700K отличаются заметно более низким потреблением в простое.



Зато под нагрузкой в виде перекодирования видео самыми экономичными вариантами CPU оказываются Core i7-5775C и Core i7-3770K. Новейший же Core i7-6700K потребляет больше. Его энергетические аппетиты находятся на уровне старшего Sandy Bridge. Правда, в новинке, в отличие от Sandy Bridge, есть поддержка инструкций AVX2, которые требуют достаточно серьёзных энергетических затрат.

На следующей диаграмме приводится максимальное потребление при нагрузке, создаваемой 64-битной версией утилиты LinX 0.6.5 с поддержкой набора инструкций AVX2, которая базируется на пакете Linpack, отличающемся непомерными энергетическими аппетитами.



И вновь процессор поколения Broadwell показывает чудеса энергетической эффективности. Однако если смотреть на то, сколько электроэнергии потребляет Core i7-6700K, то становится понятно, что прогресс в микроархитектурах обошёл стороной энергетическую эффективность настольных CPU. Да, в мобильном сегменте с выходом Skylake появились новые предложения с чрезвычайно соблазнительным соотношением производительности и энергопотребления, однако новейшие процессоры для десктопов продолжают потреблять примерно столько же, сколько потребляли их предшественники за пять лет до сегодняшнего дня.

Выводы

Проведя тестирование новейшего Core i7-6700K и сравнив его с несколькими поколениями предшествующих CPU, мы вновь приходим к неутешительному выводу о том, что компания Intel продолжает следовать своим негласным принципам и не слишком стремится наращивать быстродействие десктопных процессоров, ориентированных на высокопроизводительные системы. И если по сравнению со старшим Broadwell новинка предлагает примерно 15-процентное улучшение производительности, обусловленное существенно лучшими тактовыми частотами, то в сравнении с более старым, но более быстрым Haswell она уже не кажется столь же прогрессивной. Разница в производительности Core i7-6700K и Core i7-4790K, несмотря на то, что эти процессоры разделяет два поколения микроархитектуры, не превышает 5-10 процентов. И это очень мало для того, чтобы старший десктопный Skylake можно было бы однозначно рекомендовать для обновления имеющихся LGA 1150-систем.

Впрочем, к столь незначительным шагам Intel в деле повышения скорости работы процессоров для настольных систем стоило бы давно привыкнуть. Прирост быстродействия новых решений, лежащий примерно в таких пределах, – давно сложившаяся традиция. Никаких революционных изменений в вычислительной производительности интеловских CPU, ориентированных на настольные ПК, не происходит уже очень давно. И причины этого вполне понятны: инженеры компании заняты оптимизацией разрабатываемых микроархитектур для мобильных применений и в первую очередь думают об энергоэффективности. Успехи Intel в адаптации собственных архитектур для использования в тонких и лёгких устройствах несомненны, но адептам классических десктопов при этом только и остаётся, что довольствоваться небольшими прибавками быстродействия, которые, к счастью, пока ещё не совсем сошли на нет.

Однако это совсем не значит, что Core i7-6700K можно рекомендовать лишь для новых систем. Задуматься о модернизации своих компьютеров вполне могут обладатели конфигураций, в основе которых лежит платформа LGA 1155 с процессорами поколений Sandy Bridge и Ivy Bridge. В сравнении с Core i7-2700K и Core i7-3770K новый Core i7-6700K выглядит очень неплохо – его средневзвешенное превосходство над такими предшественниками оценивается в 30-40 процентов. Кроме того, процессоры с микроархитектурой Skylake могут похвастать поддержкой набора инструкций AVX2, который к настоящему моменту нашел достаточно широкое применение в мультимедийных приложениях, и благодаря этому в некоторых случаях Core i7-6700K оказывается быстрее гораздо сильнее. Так, при перекодировании видео мы даже видели случаи, когда Core i7-6700K превосходил Core i7-2700K в скорости работы более чем в два раза!

Есть у процессоров Skylake и целый ряд других преимуществ, связанных с внедрением сопутствующей им новой платформы LGA 1151. И дело даже не столько в появившейся в ней поддержке DDR4-памяти, сколько в том, что новые наборы логики сотой серии наконец-то получили действительно скоростное соединение с процессором и поддержку большого количества линий PCI Express 3.0. В результате, передовые LGA 1151-системы могут похвастать наличием многочисленных быстрых интерфейсов для подключения накопителей и внешних устройств, которые лишены каких-либо искусственных ограничений по пропускной способности.

Плюс к тому, оценивая перспективы платформы LGA 1151 и процессоров Skylake, в виду нужно иметь и ещё один момент. Intel не будет спешить с выводом на рынок процессоров следующего поколения, известных как Kaby Lake. Если верить имеющейся информации, представители этой серии процессоров в вариантах для настольных компьютеров появятся на рынке только в 2017 году. Так что Skylake будет с нами ещё долго, и система, построенная на нём, сможет оставаться актуальной в течение очень продолжительного промежутка времени.

Представляем обзор Intel Core i7 - 3770K - процессора, разработанного компанией Intel. Вероятно, вам уже приходилось слышать о стратегии компании Intel, именуемой Tick-Tock, где Tick – это новый, меньший производственный процесс, а Tock – существенное изменение архитектуры, так вот Ivy Bridge официально относится к части Tick - он имеет новый процесс 22 нм, в отличие от 32 нм Sandy Bridge, но архитектура основного процессора не претерпела никаких изменений. Однако новые процессоры имеют значительно улучшенную архитектуру графики, которая гарантирует более высокую скорость в играх, а также более скоростное кодирование видео с помощью GPU по технологии Intel QuickSync. Вследствие этих усовершенствований разработчики Intel стали называть Ivy Bridge ступенью «Tick+». По сравнению с Sandy Bridge, новые процессоры имеют меньший 22 нм процесс для снижения энергопотребления и меньший TDP.

Совместимость

Intel сохранил фирменное оформление, как у и - но с маркировкой Ivy Bridge, обозначенной как «3-е поколение Intel Core», что может привести к путанице. Но ещё больше озадачивают проблемы с совместимостью. Хорошей новостью является то, что Ivy Bridge использует тот же разъём LGA1155, что и предыдущее поколение. Есть целый ряд новых чипсетов материнских плат 7-й серии, предназначенных для использования с новыми процессорами (Z77, Z75 и H77), но процессоры также будут работать на материнских платах H61, H67, P67 и Z68 - с одной оговоркой. Более ранние чипсеты необходимо обновить для поддержки нового драйвера от Intel - ME8 Management Engine, что, безусловно, выполнить сложнее, чем простое обновление BIOS, и должно осуществляться производителем. Корпорация Intel рекомендует перед покупкой удостовериться, что материнская плата будет поддерживать Ivy Bridge, или же просто приобрести плату с микросхемой 7-й серии.

Сжатие отдельных структур «die shrink» означает, что процессоры будут запускать охладитель - они характеризуются максимальным значением TDP на уровне 77 Вт, что меньше, чем 95 Вт у Sandy Bridge. Более низкая тепловая мощность означает, что более продолжительно будет активизирована технология Turbo Boost, что в свою очередь должно привести к повышению производительности при выполнении повседневных задач, чем на , несмотря на ту же архитектуру ядра. Эта теория была подтверждена при тестировании производительности по критериям оценки двухмерных приложений. Там был предоставлен процессор Intel Core i7 - 3770K, представляющий собой 3,5 ГГц четырёхъядерный чип с технологий одновременной многопоточности «Hyper-Threading», который отображается в виде восьми процессоров в Windows. Процессор запускает Turbo Boost до 3,9 ГГц для дополнительной производительности, но то насколько долго он будет работать, зависит от поддерживаемой температуры.

Бóльшую часть поверхности чипа занимает графическое аппаратное обеспечение:

Чтобы оценить, насколько улучшилась производительность приложений, мы сравнили Ivy Bridge с процессором предыдущего поколения - Sandy Bridge. В нашем распоряжении был чип Sandy Bridge Core i7 - 2700K, который работает на частоте 3,5 ГГц, с Turbo Boost до 3,9 ГГц, а также Intel Core i7-2600 K, запускающийся на частоте 3,4 ГГц, с Turbo Boost на 3,8 ГГц, поэтому мы увеличили значение его частоты при активном Turbo Boost до 3,9 ГГц, чтобы уравнять основные параметры сравниваемых процессоров, разгон составил примерно 2,5%.

Оценка приложений Intel Core i7 - 3770K

Процессор Ivy Bridge был намного быстрее в наших тестах, если за отправную точку взять Core i5-2500K с его результатом 100. В тесте по кодированию видео i7-3770K достиг 154 очков, по сравнению с результатом в 103 очка у i7-2600K. В оценке многозадачности чип Ivy Bridge получил 126 баллов, в то время, как Sandy Bridge 114. Общая оценка i7-3770K составила 132 балла, в отличие от разогнанного i7-2600K с его суммой 112; таким образом, по оцениваемым критериям новая модель примерно на 15% быстрее.

Вероятно, это благодаря тому, что сниженная тепловая мощность чипа позволяет поддерживать скорость Turbo Boost более продолжительное время. Во время измерений результатов тестов мы отслеживали скорости процессора по монитору с помощью программы CPU-Z и обнаружили, что процессор Ivy Bridge оставался на максимальном Turbo Boost в течение всего комплекса испытаний, в то время как процессору Sandy Bridge пришлось снизиться до своей нормальной скорости спустя лишь четверть времени, отведённого на тестирование. В обоих случаях мы использовали собственные охладители Intel. Даже когда на обоих процессорах были отключены все ядра, кроме одного, чип Ivy Bridge получил общую оценку 35, по сравнению с 30 баллами, полученными процессором Sandy Bridge, демонстрирующие, что каждое ядро нового чипа примерно на 15% быстрее при выполнении стандартных задач.

Разгон процессора и тестирование производительности

Продолжая обзор Intel Core i7 - 3770K , мы не могли не упомянуть ещё об одной сильной стороне процессора. Новый чип также характеризуется прекрасным разгоном. Мы подняли максимальную частоту при активном Turbo Boost с 3,9 ГГц до 4,3 ГГц на обоих процессорах, тем самым разогнав их на 10%. Опять же, даже с помощью небольшого исходного охладителя Intel, процессору удалось продержаться весь период тестирования на максимальной скорости Turbo Boost без необходимости её сбрасывания. Это позволило достичь потрясающего результата в 137 баллов. Для сравнения Sandy Bridge получил лишь 122 и был вынужден сбросить скорость спустя всё ту же четверть времени.

Для проверки усовершенствованной технологии QuickSync, мы использовали программное обеспечение от Cyberlink для конвертирования видео - MediaEspresso 6.5. При отключенной QuickSync и использовании процессора Sandy Bridge Core i7-2600K, настроенным на частоту Turbo Boost на уровне 3,9 ГГц, мы конвертировали шестиминутный видеоролик в формате 1080p AVCHD в формат H.264 для за 4 мин 18 сек. Этот же тест с процессором Ivy Bridge Core i7-3770K занял 4 мин 7 сек. Как видно, без использования QuickSync разница в производительности чипов несущественна. Однако, после активирования технологии QuickSync аналогичная процедура заняла уже 2 мин 1 сек у Sandy Bridge и всего 1 мин 35 сек у процессора Ivy Bridge, что означает, что вы сможете закодировать двухчасовой видео файл в формате AVCHD для воспроизведения на телефоне в течение 30 минут.

Оценка графики Intel Core i7 - 3770K

Наконец, у нас появилась возможность произвести сравнение новой графической карты Intel HD Graphics 4000 с чипсетом HD Graphics 3000, установленным на процессорах предыдущего поколения. В игре-автостимуляторе Dirt 3, запущенной с разрешением 1280×720 и высокой детализацией с 4-кратным сглаживанием мы зафиксировали значение частоты смены кадров на уровне 26,1 fps (кадров в секунду), что по сравнению с 21,6 fps на i7-2600K является достижением, но всё-таки это не достаточно хороший результат для гладкого воспроизведения.

Однако без сглаживания мы получили частоту 39,6 fps, по сравнению с 30,1 fps у процессора Sandy Bridge, так что если вы готовы мириться с качеством графики игровой консоли, то это вполне возможно. Новые чипы по-прежнему в играх намного медленнее, чем последнее поколение процессоров Llano компании AMD, кроме того, AMD планирует запустить свои новые чипы, которые должны быть ещё быстрее в 3D приложениях.

Dirt 3 не является самой графически насыщенной игрой, но относится к числу наиболее востребованных для воспроизведения на домашних игровых консолях:

Заключение

Мы выполнили обзор Intel Core i7 - 3770K и с с большим удовольствием резюмируем, что компания уже добилась успеха, выпустив свой новый процессор Ivy Bridge. Обновлённая графика обеспечивает воспроизведение игр с приемлемым уровнем детализации, но настоящий фурор производит его производительность в 2D приложениях. Меньший производственный процесс означает, что новый чип может работать на своей максимальной тактовой частоте Turbo Boost почти всё время, что делает его гораздо более скоростным при выполнении ресурсоёмких задач, чем его предшественник Sandy Bridge. Высококлассный процессор i7-3770K является чрезвычайно быстрым, хотя есть процессоры, которые способны его обойти в насыщенных играх и 3D приложениях.

Однако эти два материала, как нам кажется, все еще недостаточны для полного раскрытия темы. Первым «тонким моментом» являются тактовые частоты - все-таки при выпуске Haswell Refresh компания уже разделила жестко линейку «обычных» Core i7 и «оверклокерских», фабрично разогнав последние (что было не так уж и сложно, поскольку таких процессоров вообще говоря требуется немного, так что отобрать необходимое количество нужных кристаллов несложно). Появление же Skylake положение дел не только сохранило, но и усугубило: Core i7-6700 и i7-6700K это вообще очень разные процессоры, различающиеся и уровнем TDP. Таким образом, даже при одинаковых частотах эти модели могли бы работать по-разному с точки зрения производительности, а ведь и частоты совсем не одинаковые. В общем, делать выводы по старшей модели опасно, но в основном-то как раз везде изучалась она и только она. «Младшая» (и более востребованная) до последнего времени вниманием тестовых лабораторий избалована не была.

А для чего это может быть нужно? Как раз для сравнения с «верхушками» предыдущих семейств, тем более что там обычно такого большого разброса частот не было. Иногда и вообще не было - например, пары 2600/2600K и 4771/4770К в плане процессорной части в штатном режиме идентичны. Понятно, что 6700 в большей степени является аналогом не названных моделей, а 2600S, 3770S, 4770S и 4790S, но... Важно это лишь с технической точки зрения, которая, в общем-то, мало кого интересует. В плане распространенности, легкости приобретения и других значимых (в отличие от технических деталей) характеристик это как раз «регулярное» семейство, к которому и будет присматриваться большинство владельцев «старых» Core i7. Или потенциальных владельцев - пока еще апгрейд временами остается чем-то полезным, большинство пользователей процессоров младших семейств процессоров при необходимости увеличения производительности присматривается в первую очередь к устройствам для уже имеющейся «на руках» платформы, а только потом уже рассматривает (или не рассматривает) идею ее замены. Правильный это подход или не очень - покажут тесты.

Конфигурация тестовых стендов

Процессор Intel Core i7-2700K Intel Core i7-3770 Intel Core i7-4770K Intel Core i7-5775C Intel Core i7-6700
Название ядра Sandy Bridge Ivy Bridge Haswell Broadwell Skylake
Технология пр-ва 32 нм 22 нм 22 нм 14 нм 14 нм
Частота ядра std/max, ГГц 3,5/3,9 3,4/3,9 3,5/3,9 3,3/3,7 3,4/4,0
Кол-во ядер/потоков 4/8 4/8 4/8 4/8 4/8
Кэш L1 (сумм.), I/D, КБ 128/128 128/128 128/128 128/128 128/128
Кэш L2, КБ 4×256 4×256 4×256 4×256 4×256
Кэш L3 (L4), МиБ 8 8 8 6 (128) 8
Оперативная память 2×DDR3-1333 2×DDR3-1600 2×DDR3-1600 2×DDR3-1600 2×DDR4-2133
TDP, Вт 95 77 84 65 65
Графика HDG 3000 HDG 4000 HDG 4600 IPG 6200 HDG 530
Кол-во EU 12 16 20 48 24
Частота std/max, МГц 850/1350 650/1150 350/1250 300/1150 350/1150
Цена T-7762352 T-7959318 T-10384297 T-12645073 T-12874268

Для пущей академичности имело бы смысл тестировать Core i7-2600 и i7-4790, а вовсе не 2700К и 4770К, но первый в наше время найти уже сложно, в то время как 2700К у нас под рукой в свое время нашелся и был протестирован. Равно как и 4770К тоже изучался, причем в «обычном» семействе он имеет полный (4771) и близкий (4770) аналоги, и вся упомянутая троица от 4790 отличается несущественно, так что возможностью минимизировать количество работы мы решили не пренебрегать. В итоге, кстати, процессоры Core второго, третьего и четвертого поколений оказались максимально близки друг к другу по официальному диапазону тактовых частот, да и 6700 отличается от них незначительно. Broadwell тоже можно было «подтянуть» к этому уровню, взяв результаты не i7-5775C, а Xeon E3-1285 v4, но только лишь подтянуть, а не полностью устранить различие. Именно поэтому мы решили воспользоваться более массовым (благо и большинство других участников такие же), а не экзотическим процессором.

Что касается прочих условий тестирования, то они были равными, но не одинаковыми: частота работы оперативной памяти была максимальной поддерживаемой по спецификациям. А вот ее объем (8 ГБ) и системный накопитель (Toshiba THNSNH256GMCT емкостью 256 ГБ) были одинаковыми для всех испытуемых.

Методика тестирования

Для оценки производительности мы использовали нашу методику измерения производительности с применением бенчмарков и iXBT Game Benchmark 2015 . Все результаты тестирования в первом бенчмарке мы нормировали относительно результатов референсной системы, которая в этом году будет одинаковой и для ноутбуков, и для всех остальных компьютеров, что призвано облегчить читателям нелегкий труд сравнения и выбора:

iXBT Application Benchmark 2015

Как мы уже не раз писали, в этой группе немалое значение имеет видеоядро. Однако далеко не все так просто, как можно было бы предположить только лишь по техническим характеристикам - например, i7-5775C все же медленнее, чем i7-6700, хотя у первого как раз GPU намного мощнее. Впрочем, еще более показательно тут сравнение 2700К и 3770, которые в плане исполнения OpenCL-кода различаются принципиально - первый задействовать для этого GPU вообще не способен. Второй - способен. Но делает это настолько медленно, что никаких преимуществ перед предшественником не имеет. С другой стороны, наделение такими способностями «самого массового GPU на рынке» привело к тому, что их начали понемногу использовать производители программного обеспечения, что проявилось уже к моменту выхода на рынок следующих поколений Core. И наряду с небольшими улучшениями и процессорных ядер способно привести к достаточно заметному эффекту.

Однако не везде - вот как раз случай, когда прирост от поколения к поколению совсем незаметен. Впрочем, он есть, но такой, что проще не обращать на него внимания. Интересным тут является разве что то, что прошедший год позволил совместить такое увеличение производительности с существенно менее жесткими требованиями к системе охлаждения (что открывает обычным настольным Core i7 и сегмент компактных систем), однако не во всех случаях это актуально.

А вот пример, когда на GPU уже удалось переложить немалую часть нагрузки. Единственное, что может «спасти» в этом случае старые Core i7 это дискретная видеокарта, однако пересылки данных по шине эффект портят, так что i7-2700K и в этом случае не обязательно догонит i7-6700, а 3770 на это способен , но вот угнаться ни за 4790К или 6700К, ни за 5775С с любым видео уже не может . Собственно, ответ на иногда возникающий у части пользователей недоуменный вопрос - зачем в Intel уделяют столько внимания интегрированной графике, если для игр ее все равно мало, а для других целей давно достаточно? Как видим, не слишком-то и «достаточно», если самым быстрым иногда способен (как здесь) оказаться процессор с далеко не самой мощной «процессорной» частью. И уже заранее интересно - что мы сможем получить от Skylake в модификации GT4e ;)

Поразительное единодушье, обеспеченное тем, что этой программе не требуются ни новые наборы инструкций, ни какие-то чудеса на ниве увеличения многопоточной производительности. Небольшая разница между поколениями процессоров, все же, есть. Но выискивать ее можно разве что при в точности идентичной тактовой частоте. А когда таковая различается существенно (что мы имеем в исполнении i7-5775С, в однопоточном режиме отстающем от всех на 10%) - можно и не искать:)

Audition «умеет» более-менее все. Разве что к дополнительным потокам вычисления довольно равнодушен, но использовать их умеет. Причем, судя по результатам, на Skylake делает это лучше, чем было свойственно предыдущим архитектурам: преимущество 4770К над 4690К составляет порядка 15%, а вот 6700 обходит 6600К уже на 20% (при том, что частоты у всех примерно равные). В общем, скорее всего, в новой архитектуре будет ждать нас еще немало открытий. Небольших, но иногда дающих кумулятивный эффект.

Как и в случае распознавания текста, где именно 6700 отрывается от предшественников наиболее «резво». Хоть в абсолютном итоге и незначительно, но ждать на относительно старых и хорошо «вылизанных» алгоритмах такого прироста при учете того, что, по сути, перед нами энергоэффективный процессор (кстати - 6700К действительно намного быстрее справляется с этой задачей) априори было бы слишком оптимистично. Мы и не ждали. А практика оказалась интереснее априорных предположений:)

С архиваторами все топовые процессоры справляются очень хорошо независимо от поколения. Во многом, как нам кажется, потому, что для них-то эта задача уж очень уже простая. Собственно, счет уже идет на секунды, так что что-то здесь радикально улучшить практически невозможно. Если только ускорить работу системы памяти, но DDR4 имеет более высокие задержки, нежели DDR3, так что гарантированный результат дает разве что увеличение кэшей. Поэтому самым быстрым оказался единственный среди протестированных процессор с GPU GT3e - кэш-память четвертого уровня используется не только видеоядром. С другой стороны, не так уж и велик прирост от дополнительного кристалла, так что архиваторы просто та нагрузка, на которую в случае заведомо быстрых систем (а не каких-нибудь мини-ПК) можно уже не обращать внимания.

Плюс-минус пол-лаптя от Солнца, что, в общем, тоже подтверждает, что все топовые процессоры справляются с такими задачами одинаково, контроллеры в чипсетах трех серий примерно идентичные, так что существенная разница может быть обусловлена только накопителем.

А вот в таком банальном сценарии, как простое копирование файлов, еще и теплопакетом: модели с пониженным «разгоняются» достаточно вяло (благо формально и не за чем), что приводит к чуть более низким результатам, чем могло бы. Но в целом тоже не тот случай, ради которого может возникнуть желание менять платформу.

Что получаем в итоге? Все процессоры примерно идентичны друг другу. Да, конечно, разница между лучшим и худшим превышает 10%, но не стоит забывать о том, что это различия, накопившиеся за три с лишним года (а возьми мы i7-2600, так было бы 15% почти за пять). Таким образом, практического смысла в замене одной платформы на другую нет, пока старая работает. Естественно, если речь идет о LGA1155 и ее последователях - как мы уже убедились «перепад» между LGA1156 и LGA1155 куда более заметный, причем не только в плане производительности. На последних на данный момент платформах Intel что-то можно «выжать» использованием «стероидных» Core i7 (если уж все равно ориентироваться именно на это недешевое семейство), но не так и много: по интегральной производительности i7-6700K обгоняет i7-6700 на 15%, так что и его отрыв от какого-нибудь i7-2700K увеличивается почти до 30%, что уже более весомо, но все равно еще не принципиально.

Игровые приложения

По понятным причинам, для компьютерных систем такого уровня мы ограничиваемся режимом минимального качества, причем не только в «полном» разрешении, но и с его уменьшением до 1366×768: Несмотря на очевидный прогресс в области интегрированной графики, она пока не способна удовлетворить требовательного к качеству картинки геймера. А 2700К мы решили и вовсе на стандартном игровом наборе не проверять: очевидно, что тех его владельцев, кто использует именно интегрированное видеоядро, игры не интересуют от слова совсем. Кого интересуют хоть как-то, те уж точно как минимум какую-нибудь «затычку для слота» в закромах нашли и установили, благо наше тестирование по предыдущей версии методики показало, что HD Graphics 3000 не лучше, чем даже Radeon HD 6450, причем обоих практически ни на что не хватает. Вот HDG 4000 и более новые IGP уже какой-никакой интерес собой представляют.

Вот, например, в Aliens vs. Predator можно поиграть на любом из изучаемых процессоре, но только снизив разрешение. Для FHD же подходит только GT3e, причем неважно какой - просто в сокетном исполнении такая конфигурация на данный момент доступна лишь для Broadwell со всеми вытекающими.

Зато «танчики» на минималках уже на всем «бегают» столь хорошо, что стройная картина только в высоком разрешении и «вытанцовывается»: в низком даже непонятно - кто лучше, а кто хуже.

Grid2 при всей своей слабой требовательности к видеочасти все еще ставит процессоры строго по ранжиру. Но особенно хорошо это видно опять в FHD, где и пропускная способность памяти уже имеет значение. В итоге на i7-6700 уже можно разрешение не снижать. На i7-5775C тем более, причем и абсолютные результаты намного выше, так что если данная сфера применения интересует, а использование дискретной видеокарты по каким-либо причинам нежелательно, альтернатив этой линейке процессоров по-прежнему нет. В чем нет и ничего нового.

Лишь старшие Haswell «вытягивают» игру хотя бы в низком разрешении, а Skylake делает это уже без оговорок. Broadwell не комментируем - это не архитектурное, а, скажем так, количественное превосходство.

Более старая игра серии на первый взгляд аналогична, но тут уже и между Haswell и Skylake даже количественных отличий не наблюдается.

В Hitman - наблюдаются и заметные, но перехода количества в качество по-прежнему нет.

Как и здесь, где даже режим низкого разрешения может «вытянуть» только процессор с GT3e. У остальных - весомый, но все еще недостаточный даже для таких «подвигов» прогресс.

Минимальный режим настроек в этой игре относится очень щадящим образом ко всем слабосильным GPU, хотя HDG 4000 еще «хватало» лишь на HD, но не FHD.

И снова тяжелый случай. Менее «тяжелый», чем Thief, но достаточный для того, чтобы продемонстрировать наглядно, что никакая интегрированная графика не может считаться игровым решением.

Хотя в некоторые игры может позволить поиграть и с относительным комфортом. Впрочем, ощутимым только если усложнять IGP и количественно наращивать все функциональные блоки. Собственно, как раз в легких режимах прогресс в области GPU Intel наиболее заметен - примерно два раза за три года (более старые-то разработки вообще уже нет смысла рассматривать серьезно). Но из этого не следует, что со временем интегрированная графика сможет легко и непринужденно догнать дискретную сравнимого возраста. Скорее всего, «паритет» будет установлен с другой стороны - имея в виду огромную базу инсталлированных решений невысокой производительности, производители тех же игр на нее и будут ориентироваться. Почему раньше этого не делали? Вообще говоря, делали - если рассматривать не только 3D-игры, а вообще рынок, огромное количество весьма популярных игровых проектов было предназначено как раз для того, чтобы нормально работать и на достаточно архаичных платформах. Но определенный сегмент программ, «двигавших рынок» был всегда, причем именно он и привлекал максимум внимания со стороны прессы и не только. Сейчас же процесс явно близок к точке насыщения, поскольку, во-первых, парк разнообразной компьютерной техники уже очень велик, и желающих заниматься перманентным апгрейдом все меньше. А во-вторых, «мультиплатформенность» нынче подразумевает под собой не только специализированные игровые консоли, но и разнообразные планшеты-смартфоны, где, очевидно, с производительностью все еще хуже, чем у «взрослых» компьютеров, независимо от степени интегрированности платформ последних. Но для того, чтобы данная тенденция стала преобладающей, нужно, все же, как нам кажется достигнуть определенного уровня гарантированной производительности. Чего пока нет. Но над проблемой все производители работают более чем активно и Intel тут исключением не является.

Итого

Что же мы видим в конечном итоге? В принципе, как не раз было сказано, последнее существенное изменение в процессорных ядрах семейства Core состоялось почти пять лет назад. На этом этапе уже удалось достичь такого уровня, «атаковать» который напрямую никто из конкурентов не может. Поэтому основной задачей Intel является улучшение положения в, скажем так, сопутствующих областях, а также наращивание количественных (но не качественных) показателей там, где это имеет смысл. Тем более, что серьезное влияние на массовый рынок оказывает растущая популярность портативных компьютеров, давно обогнавших по этому показателю настольные и становящихся все более портативными (несколько лет назад, например, ноутбук массой 2 кг еще считался «условно легким», а сейчас активно растут продажи трансформеров, в случае которых большая масса убивает весь смысл их существования). В общем, разработка компьютерных платформ давно идет не по пути наилучшего удовлетворения потребностей покупателей больших настольных компьютеров. В лучшем случае - не в ущерб им. Поэтому то, что в целом в этом сегменте производительность систем не снижается, а даже немного растет, уже повод для радости - могло быть и хуже:) Плохо только то, что из-за изменений в периферийной функциональности приходится постоянно менять и сами платформы: это сильно подкашивает такое традиционное преимущество модульных компьютеров, как ремонтопригодность, но здесь ничего не попишешь - попытки сохранять совместимость любой ценой до добра тем более не доводят (сомневающиеся могут посмотреть на, к примеру, AMD AM3+).

Компания Intel чётко следует своему известному “тик-так” принципу и 23 апреля 2012 представила новое поколение микропроцессоров. Для тех наших читателей, кому “часовая” метафора показалась не совсем понятной, раскроем её смысл. Intel в своём производственном процессе руководствуется чередующимся двухтактовым циклом: сначала отлаживает технологический процесс с передовыми нормами, а затем разрабатывает под него новую микроархитектуру. Каждый такт сопровождается выходом очередного семейства микропроцессоров.

Поколение Sandy Bridge привнесло существенные микроархитектурные изменения, подняло уровень производительности на новый уровень и завершило цикл разработки для норм 32 нм. Пришло время нового “тика”. И 23 апреля 2012 компания представила процессоры Ivy Bridge, в основе которых уже проверенная логика работы, перенесенная на более тонкий технологический процесс. Однако это не значит, что в процессорах нет ничего нового. Напротив, новинки содержат некоторые весьма существенные улучшения, которых многие ждали.

В нашу редакцию прислали тестовый экземпляр нового процессора Intel Core i7-3770K. Заблаговременный выход материнских плат на чипсетах седьмой серии, в том числе предназначенных для использования с Ivy Bridge, позволил нам подготовить передовую тестовую платформу. Мы рады представить вам сегодня обзор процессоров Ivy Bridge и результаты тестирования самого производительного из них.

Микроархитектура и особенности

Новинки получили несколько новых функций, которые, несмотря на отсутствие коренных изменений в архитектуре, являются важными и долгожданными. Но начать, на наш взгляд, стоит с базового и знакового — переход на новый технологический процесс. Каждый новый рубеж в уменьшении норм изготовления микроэлектроники даётся всё с большим трудом по объективным причинам. И тут надо отдать должное компании Intel, которая старается сохранить темпы внедрения все более “тонких” техпроцессов — примерно каждые два года происходит смена технологии.

Переход на 22-х нанометровые нормы потребовал внедрения нового типа транзисторов — так называемых 3D-транзисторов. Их особенности, наряду с общим стандартным снижением потерь при уменьшении норм, обеспечивают большую эффективность энергопотребления. Тепловой пакет (TDP) новых процессоров заявлен на ровне 77 Вт, даже у старших моделей. Правда по сети ходит слух о возможном повышении теплового пакета самой старшей модели, Core i7-3770K, до 95 Вт. Но подтверждение этой информации нам только предстоит получить.

Рассмотрим кристалл подробнее. Несмотря на внешнюю схожесть компоновки блоков с процессорами Sandy Bridge, общее количество транзисторов увеличилось более чем на 200 тысяч (1,16 млрд в SB и 1,4 млрд в IVB). При этом, площадь кристалла существенно уменьшилась — с 216 мм 2 до 160 мм 2 .

Кристалл Sandy Bridge

Кристалл Ivy Bridge

Слева направо: Core i7-3930K, Core i5-2500K, Core i7-3770K

и обратная сторона

На что же ушли дополнительные транзисторы? Основные изменения на кристалле коснулись встроенного графического ядра. Если в процессорах предыдущего поколения мы видели 12 вычислительных блоков (потоковых процессоров), то в новых их 16. Появилась аппаратная поддержка современного графического API — DX11, OpenCL 1.1, OpenGL 3.1. Вывод теперь возможен сразу на три монитора (в SB поддерживались лишь два). Компания также обещает существенный прирост производительности аппаратного декодера Quick Sync.

Наиболее важным с точки зрения перспектив является появление контроллера PCI Express 3.0. Процессоры в исполнении под сокет LGA 2011 им уже обзавелись, да и видеокарты уже вовсю продаются. Вот теперь и на платформах общего назначения этот передовой интерфейс стал доступен.

Контроллер оперативной памяти научился теперь в штатном режиме работать с памятью DDR3 1600 МГц. А для целей разгона в процессорах K-серии множители памяти позволяют получать внушительные 2667. Да и потолок множителя процессорных ядер был поднят до 63.

Что особенно должно порадовать потребителя, так это практически полная обратная совместимость на уровне процессоров и системной логики. То есть новые процессоры можно вставить в материнские платы с чипсетами шестой серии после обновления BIOS. Слово “практически” выражает исключение этой возможности для чипсетов Q65, Q67, B65.

Новый лидер производительности Core i7-3770K

Нам на тесты достался лакомый кусочек — топовый "камень" из новой линейки, Core i7-3770K. По большинству базовых характеристик модель идентична предыдущему топовому микропроцессору для платформы LGA 1155 — Core i7-2700K. Обратите внимание на данные в сравнительной таблице.

Характеристика Core i7-3770K Core i7-2700K
Количество ядер/потоков 4/8 4/8
Номинальная частота, ГГц 3,5 3,5
Частота в режиме Turbo, ГГц 3,9 3,9
Максимальный множитель 63 59
Объём кэш-памяти L3, Мбайт 8 8
Штатная частота работы оперативной памяти, МГц 1600 1333
Максимальная частота работы оперативной памяти (в режиме разгона), МГц 2667 2133
Линии PCI Express rev. 3.0, 16 rev. 2.0, 16
Частоты работы графического ядра, МГц 650-1150 850-1350
Количество вычислительных блоков GPU 16 12
Поддержка графического API DX 11, OpenGL 3.1, OpenCL 1.1 DX 10.1, OpenGL 3.0
Количество поддерживаемых дисплеев, шт. 3 2
Множитель графического ядра 57 60

Те же самые частоты, тот же объём кэш-памяти. Количественные показатели, касающиеся штатного режима работы, изменились лишь у графического ядра — 16 вычислительных блоков, вместо 12, чуть сниженные частоты работы.

В простое новый процессор снижает частоту до 1600 МГц

Кэш-память

Теперь посмотрим на новинку в деле.

Тестовый стенд

Наиболее интересным будет сравнение Core i7-3770K со своим младшим “братом” из второго поколения. На первый взгляд, прирост вычислительной производительности должен практически отсутствовать, ведь в основе новых процессоров всё та же микроархитектура Sandy Bridge. Разве что какие-нибудь косметические изменения могут принести несущественный прирост. Разница двух процессоров должна проявиться в графических бенчмарках, так как в Core i7-3770K больше вычислительных блоков.

Также к сравнению мы решили добавить младший процессор платформы LGA 2011, Core i7-3820. То, что эта модель будет проигрывать, — ясно. Однако нам важна разница: рациональность приобретения модели 3820 и раньше можно было подвергнуть сомнению, а сейчас это и вовсе может оказаться бессмысленным.

В таблице представлено оборудование, использованное нами в тестировании.

Наименование Ivy Bridge Sandy Bridge Sandy Bridge-E
Материнская плата Asus P8Z77-V Pro ASRock Z68 Extreme 4 ASUS P9X79 Deluxe
Процессор Core i7-3770K Core i7-2700K Core i7-3820
Память ADATA XPG Gaming v2.0, 2000 МГц, 4 х 2 Гбайт ADATA XPG Gaming v2.0, 2000 МГц, 4 х 2 Гбайт
SSD Intel SSD 520 Series, 60 Гбайт Intel SSD 520 Series, 60 Гбайт
Видеокарта Intel HD Graphics 4000 Intel HD Graphics 3000 Palit GeForce GT430, 2 Гбайт
Кулер NZXT Havik 120 NZXT Havik 120 NZXT Havik 120
БП Huntkey Jumper 450B, 450 Вт Huntkey Jumper 450B, 450 Вт Huntkey Jumper 450B, 450 Вт

Ввиду того, что процессоры Sandy Bridge-E лишены встроенного видеоядра, мы использовали маломощное дискретное решение из закромов нашей лаборатории при тестировании платформы LGA 2011.

Разгон

На возможности разгона процессоров Ivy Bridge энтузиасты возлагали большие надежды. Да и возможности моделей с индексом “K” были несколько расширены: пороги множителей стали выше, улучшен контроль частот. Мы принялись за разгон с энтузиазмом и сразу стали нащупывать частоты в районе 5 ГГц. Но были разочарованы: даже при солидном повышении напряжения (20-25% к значениям по умолчанию) нам удалось лишь достичь 4,7 ГГц. Ито, при прогреве с помощью Prime через некоторое время система перезагрузилась.

Температура при этом оставалась в допустимых пределах и не превысила 80 градусов, поэтому перегрев вряд ли является причиной такого невысокого результата. С одной стороны, один процессор не показатель всей линейки. Разгон очень специфичен для каждого экземпляра. С другой — планку в 4,8 ГГц брали ну очень многие процессоры предыдущего поколения. Пока статистика по разгону новых камней не накопилась, можно предположить, что нам достался совсем неудачный экземпляр. Но к сведению этот результат, безусловно, нужно принять.

Успешно работа проходила при множителе 46 на частоте 4,6 ГГц.

Отдельно мы обратили внимание на разгон встроенного графического ядра. Частоты работы его снижены в сравнении с HD Graphics 3000 в процессорах Sandy Bridge. Сначала мы “задрали” максимальную частоту работы до 1600 МГц, но система отказывалась стабильно работать. На 1550 МГц сцены 3DMark 11 пестрили артефактами. Стабильной работы удалось достичь при максимальной частоте работы графического ядра 1500 МГц. Этот результат можно назвать очень неплохим.

Именно результаты производительности стабильного разгона мы представили ниже на графиках.

Результаты тестирования

Мы провели тестирование нового процессора в нескольких основных сценариях отражающих общий уровень производительности. По ходу нашего дальнейшего знакомства с Ivy Bridge мы планируем дополнять этот раздел новыми данными.

В вычислительных задачах общего назначения преимущество новых процессоров над предыдущим поколением небольшое. А вот в обработке графики Ivy Bridge получило существенное преимущество. Core i7-3770K практически везде по вычислительной способности обходит Core i7-3820. Конечно, стоимость процессоров подобрана соответствующим образом — модель Ivy Bridge стоит чуть дороже. Но материнские платы под LGA 2011 стоят, как правило, заметно дороже. И если принимать во внимание стоимость всей платформы, покупка 3820 становится сомнительной.

Заключение

Какой можно сделать вывод из полученных результатов. Ожидать какого-то солидного прироста общесистемной производительности были опрометчиво — всё-таки мы имеем дело всё с той же архитектурой Sandy Bridge. Небольшое преимущество у новых процессоров всё же есть. Положительным моментом в новинках является заметно подросшая графическая производительность и сниженное за счёт нового технологического процесса тепловыделение. Такие “плюшки” как поддержка PCI Express 3.0, более быстрой памяти конечно тоже приятны.

Есть и некоторый отрицательный осадок. Да, все мы хорошо понимаем, что судить о разгонном потенциале новых процессоров по одному экземпляру неправильно. Но долгое предвкушение, подогреваемое повсеместно в Сети, нетерпение сменилось чувством разочарования. И оно отнюдь не беспочвенное: 4,6 ГГц, “+700” МГц к турбо-режиму — это не тот результат, на который мы рассчитывали. Что ж, подождём статистику.

Пока вывод такой: если вы уже обладатель производительной платформы Sandy Bridge, то обновлять её особого смысла не имеет. Если же вы планируете покупку нового компьютера, Ivy Bridge заслуживает право на рассмотрение. И третий вариант, в котором новые процессоры Intel, вероятно, окажутся в самом выгодном положении: если вы планируете покупку ноутбука/ультрабука, стоит дождаться выхода моделей на обновлённой платформе. Именно в сегменте мобильных устройств Ivy Bridge кажется наиболее привлекательным решением за счёт повышенной энергоэффективности.