Сколько в среднем компьютер потребляет энергии. Как узнать сколько потребляет ватт компьютер

Сколько конкретно электроэнергии в час потребляет наш компьютер? Этот вопрос мы редко когда задаем в момент покупки нового системного блока. Нас обычно гораздо больше волнуют такие показатели, как размер памяти и мощность процессора. О сжигаемом им ежедневно свете мы задумываемся, лишь получив очередную квитанцию.

В целом следует признать очевидную истину – современные производители делают все от них зависящее, чтобы снизить энергоемкость компьютеров. Результаты их работы видны невооруженным глазом – современные агрегаты, в сравнении со старыми машинами, выходившими в продажу еще какое-то десятилетие назад, потребляют электричества в разы меньше. Здесь целесообразно сделать первый логичный вывод – чем современнее ПК, тем он экономичнее.

Сколько точно электроэнергии потребляет ваш компьютер

Общеизвестно, что компьютер сейчас нетрудно заказать под потребности конкретного пользователя. Именно его конфигурация определяет энергоемкость. Поскольку вариантов существует огромное количество, мы рассмотрим несколько наиболее типичных случаев.

Расход электроэнергии для средней по мощности машины, используемой периодически и не слишком
активно – до шести часов за сутки, не очень велик. Его владельцы в основном:

  • общаются в мессенджерах;
  • бродят по просторам Интернета;
  • развлекаются в незамысловатых онлайн-играх.

Здесь системник вместе с монитором (разумеется, жидкокристаллическим) будет брать до 220 ватт за час. При указном выше периоде работы, выйдет: 220 × 6 = 1,32 киловатта.

Имейте в виду, компьютер тратит электричество даже после выключения, разумеется, при условии, что его шнур остается в розетке. Средний расход здесь получается в пределах 4 Ватт.

  • от 24 часов отнимаем 6 рабочих;
  • результат (18 ч.) умножаем на 4;
  • выходит 72 ватта;
  • 0,072 + 1,32 = 1,392 кВт.

Остается выяснить, сколько машина потребит в месяц: 1,392 × 30 = 41,76.

Теперь рассмотрим другой случай: комп, рассчитанный на серьезные онлайн-игры (его именуют «геймерским»). Для таких машин используют мощные процессоры и видеокарты.

Объем его потребления составит до 0,4 кВт (± 40 ватт). Будем считать по максимуму, а значит, часовая работа компьютера сожжет 440 Вт. Если предположить, что пользователь эксплуатирует машину лишь 8 часов в сутки, то получится 440 × 8 = 3,52 киловатта. Добавим время, когда машина стоит выключенной (16 часов на 4 Вт), и выйдет 3,584 кВт. Соответственно, за месяц ПК израсходует 107,52.

Потребление электроэнергии компьютером, функционирующим в режиме сервера, не слишком высокое, хотя он и остается включенным круглые сутки. В то же время монитор здесь практически всегда остается незадействованным, но энергию забирает мощный винчестер.

Итак, берем за основу, что ПК-сервер нуждается в 40 ваттах каждый час и получим объем за сутки – 960 Вт. Соответственно в месяц выйдет 29 кВт.

Как узнать, сколько точно потребляет ваш ПК

Приобретая обычную лампу, мы четко знаем, какова ее мощность, ведь она указывается и на коробке, и на колбе. В случае с персональным компьютером, дела обстоят гораздо сложнее, поскольку на общее потребление электричества влияют:

  • выбранная конфигурация;
  • график использования;
  • вид решаемых задач.

Это утверждение верно и для стандартной машины, купленной в электронном супермаркете и для ПК собранного на заказ. Таким образом, определение мощности сопряжено с рядом вполне объективных трудностей. Единственное, что может дать общее представление об энергоемкости, это мощность блока питания, беда в том, что последний спрятан в системнике. Но есть несколько способов позволяющих определить «прожорливость» техники.

Для максимально точной проверки потребления целесообразно использовать специальный измерительный прибор – ваттметр. Сейчас их продают и на китайских площадках, и на российских. Самый простенький вам обойдется примерно в 1 000 рублей, более крутые модели стоят раза в два-три дороже. Чтобы снять показания, достаточно ваттметр подключит к розетке, расположенной поблизости от той, что питает ваш компьютер. Данные вам начнут поступать буквально мгновенно.

Если особого желания тратить деньги нет, а знать, насколько много ваш компьютер сжигает света, хочется, то поступаем следующим образом:

  • отключаем все установки-потребители в доме;
  • зажигаем одну лампочку мощностью в 100 ватт;
  • определяем по счетчику количество оборотов в течение половины минуты;
  • выключаем ее и подсоединяем к сети компьютер;
  • когда он прогрузится, запускаем на нем любую программу или игру, «жрущую» ресурс по максимуму;
  • снова производим подсчет оборотов;
  • далее сравниваем результаты.

Сколько киловатт потребляет спящий компьютер

Даже в спящем режиме ваш ПК будет расходовать электроэнергию, хотя и в несоизмеримо меньших объемах. В данной ситуации машина:

  • отключает от сети винчестер;
  • все работающие программы сберегаются на уровне оперативной памяти;
  • при активации ПК возобновляет работу почти мгновенно.

Здесь электричество тратится в пределах 10 процентов от максимальной мощности.

Есть на любом компе и режим гибернации. В данной ситуации:

  • машина отключается полностью;
  • все запущенные приложения сберегаются в отдельном файле;
  • на запуск требуется больше времени.

В итоге системник энергию расходует очень экономно – потребление тут лишь вдвое превышает показатель для выключенного (4 Вт).

Как добиться того, чтобы компьютер расходовал меньше электричества

Как нетрудно убедиться, в любой ситуации компьютер будет расходовать определенный объем электроэнергии. Единственный способ избежать этого – всегда выключать его из розетки, что в ряде случаев крайне неудобно. Облегчит задачу приобретение удлинителя с отдельной кнопкой – его достаточно разместить в пределах досягаемости, и тогда после работы обесточивание производить будет гораздо удобнее.

  • выбирая новую машину, всегда отдавайте предпочтение той, что менее прожорлива;
  • снижайте яркость монитора;
  • переходите на ноутбуки;
  • старайтесь выделить определенные часы для работы и игр;
  • активизируйте такую функцию как энергосбережение.

Если машина в основном используется в ночное время – задумайтесь об установке многотарифного электросчетчика.

Вы наверняка уже слышали о новом законе, который должен вступить в силу в ближайшие несколько лет. Смысл его таков — до определенного порога стоимость электроэнергии составляет несколько ниже, чем мы обычно платим, а все, что выше этого порога, оплачивается вдвойне. В следующем году эксперимент начнется в нескольких российских городах и если он закончится удачно, то его применят по всей России. Смысл идеи в том, что бы люди наконец-то начали экономить электричество и это по-своему правильно. Однако большинство наших соотечественников восприняло это нововведение в штыки.

На фоне этой новости пользователи домашних ПК начали задумываться над тем, сколько же электроэнергии потребляют их компьютеры. К тому же многие несведущие утверждают, что ПК расходует огромное количество энергии, в связи с чем за электричество приходится платить невероятные суммы. Так ли это на самом деле?

В первую очередь вы должны понять, что потребление энергии напрямую зависит от мощности ПК, а также от того, как он загружен на данный момент. Объясняется это достаточно просто. Рассмотрим пример на основе блока питания — это вообще одна из самых важных его составляющих. может быть самой различной и чем она выше, тем лучше, ведь тогда к нему вы можете подключить различные компоненты даже очень высокой мощности. Это позволяет не только играть в самые последние игры, но и запускать требовательные к ресурсам программы, например, для дизайнеров или проектировщиков. Однако важно понимать, что в случае простоя или простого серфинга по страничкам во всемирной паутине такой ПК будет расходовать в разы меньше энергии, нежели когда он используется на «полную катушку». Иными словами, чем меньше процессов загружено, тем меньше вы платите за электричество.

Теперь давайте попробуем посчитать затраты. Допустим, используется блок питания мощностью 500 Вт, хотя в современном мире это не так уж много, но вполне достаточно даже для геймера. Допустим, что во время игры используется 300 Вт + около еще 60 Вт «добавляет» монитор. Складываем эти две цифры и получаем 360 Вт в час. Таким образом получается, что один час игры обходится в среднем чуть более одного рубля в день.

Однако во всей этой истории есть одно большое НО — нельзя судить о расходах исключительно исходя из мощности БП. Сюда же необходимо добавить данные по потреблению энергии других составляющих системного блока, включая процессор, видеокарту, жесткие диски и так далее. Только после этого вы можете полученные вами цифры умножить на часы работы и тогда получите оплачиваемые киловатты.

Согласно различным исследованиям, средний офисный компьютер потребляет обычно не более 100 Вт, домашний — около 200 Вт, мощный игровой может затрачивает в среднем от 300 до 600 Вт. И запомните — чем меньше вы загружаете ПК, тем меньше платите за электричество.

Сколько электроэнергии потребляет компьютер? Старые ЭВМ были экономичными, и тогда настолько серьезно этот вопрос не стоял. Сейчас ситуация кардинально изменилась. Вычислительная мощность современных ПК значительно возросла. Обратной стороной медали такого процесса стал неограниченный рост расхода электрической энергии. В результате высокопроизводительные системные блоки способны потреблять в режиме пиковой нагрузки 1-2кВт. Серверы расходуют еще больше. Западная Европа и северная Америка уже давно обращают внимание на этот показатель. У нас пока еще не особо озабочены тем, сколько потребляет энергии компьютер. Но можно с большой уверенностью говорить о том, что эта проблема обязательно возникнет в скором времени, в связи со значительным ростом цены 1 киловатта энергии.

Сколько она составляет?

Для системного блока этот показатель определить не составит особого труда. Достаточно только посмотреть мощность блока питания. Это и будет мощность, которую он потребляет в режиме пиковой нагрузки. В базовой конфигурации данный показатель на сегодняшний день составляет 450 ватт. Для среднего уровня это значение увеличится и составит уже 500 Вт. А вот в ультимативный игровой ПК уже придется поставить с мощностью 650 Вт минимум. Но это все теория, и подобный расход электричества будет только в пиковом режиме. Так что вопрос «сколько электроэнергии потребляет компьютер» остается открытым.

Как определить расход энергии для системного блока?

На практике ПК не всегда работает в режиме пиковой загрузки. Поэтому определить реальное значение можно только с помощью непосредственного замера. Тут есть два возможных варианта. В первом случае можно использовать ваттметр. Широкого распространения такие средства измерения не получили. Они очень дорогие, и их достаточно проблематично достать. Поэтому большинство пользователей с целью определения того, сколько электроэнергии потребляет компьютер, применяют второй метод. Он состоит в поочередном замере силы тока и напряжения. Оба параметра можно измерить с помощью мультиметра. Только важно помнить о том, что в первом случае замер делается последовательно с потребителем, а во втором - параллельно. Определив два параметра, можно узнать необходимое значение. Для этого достаточно их перемножить. Если сделать поэтапно несколько замеров, то можно узнать, сколько электроэнергии потребляет компьютер при различных режимах нагрузки.

Другие компоненты

До недавних пор наше внимание было приковано к системному блоку. Но в состав ЭВМ также входят такие потребители, как монитор, принтер и роутер. Все это оборудование также расходует электрическую энергию. Для определения ее значения с позиции теории достаточно посмотреть документацию на это оборудование: там обязательно будет указано значение данного параметра. Для более точного определения мощности можно использовать метод, который был указан в предыдущем разделе.

Заключение

Для того чтобы определить полностью, сколько компьютер тратит энергии, необходимо просуммировать все значения, которые были получены ранее. Теоретические числа должны добавляться к теоретическим значениям. А вот результаты практических замеров должны между собой суммироваться. Но при этом необходимо учитывать то, при каком режиме работы был получен результат. Например, пиковая нагрузка системного блока, монитора и прочих компонентов позволит получить максимальную мощность, которую тратит ПК при наибольшей нагрузке. Аналогичным образом должен быть получен результат и для других режимов.

Работая на дому, не приходится платить за пользование общественным транспортом, можно частично уклоняться от налогов и экономить на многом другом.


Однако обязательные расходы за электричество придется нести в любом случае. Многие даже не задумываются об этом, а если подсчитать всё, выходит немаленькая сумма.

Сколько энергии потребляет компьютер? Невозможно назвать точную цифру, так как всё зависит от мощности системы.

Каждый ПК потребляет разное количество Ватт, к тому же у каждого человека выходит разное время пользования компьютером. Поэтому, расчеты необходимо производить индивидуально.

Потребление электричества компьютером

В зависимости от составляющих ПК, данные сильно меняются. Время идет, технологии совершенствуются и потребляют всё больше энергии. Давайте предположим, что установлен обычный ПК со средними комплектующими, с потреблением в 300 Вт.

Для расчета суммы, затрачиваемой на электроэнергию необходимо выяснить расценки в своем регионе. В 2016 году жители Москвы платят не меньше 5 рублей за кВт/ч.

Отталкиваться будем от этого. Теперь нужно определить, сколько времени ПК остается включенным. Есть люди, которые превратили свою систему в сервер и вообще не выключают компьютер.

Собрав все необходимые данные можно произвести расчеты. Компьютер потребляет 300 Вт, оплата за эл. энергию 5 рублей кВт/ч, компьютер работает круглый год, 7 дней в неделю без перебоев. Выходит 13 000 рублей за год и чуть больше 1000 рублей в месяц. Провайдеры интернета берут меньше.

Расчеты грубые и не точные, если вы хотите выяснить, сколько ваш ПК «съедает» денег, определяйте потребление электричества и проверьте, какие тарифы за энергию в вашем регионе.

Сколько энергии потребляет компьютер в час?

Провести расчеты потребления ещё точнее позволяет расчет отдельных составляющих. Каждый компонент системы обладает своими расходами. Поэтому многое зависит от мощности компьютера.

Такие компоненты как материнка или блок питания не учитываются, так как они лишь проводят энергию:

  • процессор 55-150 Вт;
  • видеокарта 25-350 Вт;
  • дисковод 15-27 Вт;
  • винчестер 1-9 Вт;
  • ОЗУ 2-6 Вт;
  • система охлаждения 0.5-6 Вт;
  • SSD 0.5-3 Вт.

Также необходимо учитывать разные периферийные устройства и дополнительные компоненты. Монитор, клавиатура, веб-камера, всё это питается от сети и потребляет дополнительную энергию.

Помимо мощности составляющих компьютера, потребление зависит и от нагрузки . К примеру, мощная игровая видеокарта способна потреблять минимум энергии (40-50 Вт) в режиме простоя.

Аналогичная история с процессорами, где ещё и играет важную роль количество ядер. Проще говоря, если ПК не используется, то расходы на электричество снижаются.

Сколько эл. энергии потребляет компьютер в сравнении

Как говорится, всё познается в сравнении. Многим людям ни о чем не говорят ватты и всевозможные расчеты. В наших домах есть ещё много разной бытовой техники, которая нагружает эл. сеть.

К примеру, современные телевизоры потребляют 80-400 Вт, показатель зависит от технологии и размера матрицы. Плазменные телевизоры в разы больше потребляют по сравнению с ЖК.

Чтобы вы понимали, насколько это весомые расходы, давайте предположим, что телевизор работает по 7 часов в день (ежедневно). Возьмем среднее значение потребления 200 Вт, выходит почти 2000 рублей в год .

Теперь вы знаете, почему экономные люди стараются выбирать бытовые приборы в магазинах, которые сделаны по современным технологиям и не потребляют слишком много энергии. По этой же причине старое поколение постоянно повторяет, что нужно выключать свет и разные приборы.

Как снизить потребление энергии компьютером?

Отказаться от использования розеток в доме – слишком радикальный метод. Можно экономить на электроэнергии не жертвуя чем-то важным.

  • выключайте его, когда система простаивает без дела;
  • если нельзя выключать ПК, то хотя бы отключите монитор;
  • поменяйте старые винчестеры на современные твердые накопители;
  • используйте новое оборудование, старое потребляет больше;
  • через BIOS найдите функцию ACPI Suspend Type и поставьте S3 (тогда процессор не будет расходовать энергию в режиме сна);
  • в панели управления есть раздел Электропитание, настройте там параметры для экономии;
  • если вся мощь компьютера не используется, то лучше сесть за менее мощную систему.

Попробуйте воспользоваться этими советами на протяжении месяца и когда в очередной раз пойдете в ЖЭК для оплаты счета, сравните данные. Желательно умножить разницу на 12 и рассчитать расходы на год вперед.

В каждом доме есть компьютер, иногда их даже несколько. Многие люди и думать не хотят о копейках, затрачиваемых на электроэнергию. Однако, если сложить расходы воедино и всё рассчитать, выходит солидная экономия.

Советую посетить следующие страницы:


ВведениеВопрос выбора блока питания для конкретной конфигурации вечен - особенно когда конфигурация предполагается мощной, и становится понятно, что типовым 300- или 400-ваттником, поставляемым вместе с корпусом, можно и не обойтись. При этом и купить, не думая, что-нибудь ватт так на тысячу, не вариант - мало кому хочется впустую потратить несколько тысяч рублей. К сожалению, внятных данных по потребной для тех или иных компонентов мощности зачастую просто нет: производители видеокарт и процессоров перестраховываются, указывая в рекомендациях заведомо завышенные значения, всевозможные калькуляторы оперируют непонятно как полученными числами, а процесс измерения реального энергопотребления, хоть и освоен уже большинством околокомпьютерных изданий, зачастую оставляет желать лучшего.

Как правило, открыв раздел «Энергопотребление» в какой-либо статье, вы увидите результаты замера энергопотребления «от розетки» - то есть, какую мощность от сети 220 В (или 110 В, если дело происходит не в Европе) потребляет блок питания, в качестве нагрузки на который выступает тестируемый компьютер. Провести такие измерения очень просто: бытовые ваттметры, представляющие собой небольшой приборчик с одной розеткой, стоят буквально копейки - в Москве такой можно найти за 1200-1300 рублей, что на фоне серьёзных измерительных приборов очень мало.

Точность измерения у подобных приборчиков сравнительно неплоха, особенно если речь идёт о мощностях порядка сотен ватт, не пасуют они и перед нелинейной нагрузкой (а любой компьютерный блок питания является таковой, особенно если в нём нет активного PFC): внутри ваттметра стоит специализированный микроконтроллер, честно проводящий интегрирование тока и напряжения по времени, что позволяет рассчитывать активную мощность, потребляемую нагрузкой.

В результате, приборчики такие есть практически во всех редакциях околокомпьютерных изданий, занимающихся тестированием «железа».


У нас такой, как вы видите по фотографии, тоже есть - и, тем не менее, мы решили оставить его лишь для случаев, когда надо быстро прикинуть энергопотребление компьютера или иного устройства (в такой ситуации бытовой ваттметр крайне удобен, потому что не требует вообще никакой предварительной подготовки), но не для серьёзного тестирования.

Дело в том, что замер потребления от розетки, конечно, прост, но вот результат даёт очень для практического применения неудобный:


Не учитывается КПД блока питания: скажем, блок с КПД 80 % при нагрузке 500 Вт будет потреблять от розетки 500/0,8 = 625 Вт. Соответственно, если вы получаете в измерениях «от розетки» результат 625 Вт, не надо бежать за 650-Вт блоком питания - на самом деле 550-ваттный тоже справится. Конечно, эту поправку можно держать в уме, а то и, предварительно протестировав блок и измерив его КПД в зависимости от нагрузки, пересчитывать полученные ватты, но это неудобно, да и на точность результата влияет не лучшим образом.
Полученный в таких измерениях результат - среднее, а не максимальное значение. Современные процессоры и видеокарты могут очень быстро менять своё энергопотребление, однако отдельные короткие выбросы будут сглажены за счёт ёмкости конденсаторов блока питания, поэтому, измеряя потребляемый ток между блоком и розеткой, вы этих выбросов не увидите.
Измеряя потребление блока питания от розетки, мы не получаем ровным счётом никакой информации о распределении нагрузки по его шинам - сколько приходится на 5 В, сколько на 12 В, сколько на 3,3 В... А эта информация и важна, и интересна.
Наконец (и это самый главный пункт), при измерениях «от розетки» мы точно так же не можем узнать, сколько потребляет видеокарта, а сколько - процессор, мы видим только общее потребление системы. Тоже, конечно, информация полезная, но, тестируя процессоры или видеокарты, хотелось бы получать конкретную информацию именно о них.

Очевидная - хоть технически и более сложная - альтернатива заключается в измерении тока, потребляемого собственно нагрузкой от блока питания. Ничего невозможного в этом нет, например, мы даже тестировали блок питания Gigabyte Odin GT , в который такой измеритель был изначально встроен.

В принципе, в качестве законченной измерительной системы подошёл бы и Odin GT - кстати, трудно понять, почему другие издания не пользуются такими блоками именно для проведения измерений, а компания Gigabyte не пользуется такой возможностью порекламироваться - но мы решили сделать систему более универсальную и более гибкую с точки зрения возможных вариантов подключения нагрузки.

Измерительная система

Самый простейший способ - вставить в провода, идущие от блока, токоизмерительные шунты (низкоомные резисторы) - был отвергнут сразу: шунты, рассчитанные на большие токи, довольно громоздки, а падение напряжения на них составляет десятки милливольт, что, скажем, для 3,3-вольтовой шины является довольно чувствительной величиной.

К счастью для нас, компания Allegro Microsystems выпускает крайне удачные линейные датчики тока на эффекте Холла: в них измеряется и преобразуется в выходное напряжение магнитное поле, создаваемое текущим по проводнику током. Подобные датчики имеют сразу несколько преимуществ:

Сопротивление проводника, по которому протекает измеряемый ток, не превышает 1,2 мОм, таким образом, даже при токе 30 А падение напряжения на нём - всего лишь 36 мВ.
Датчик имеет линейную характеристику, то есть, его выходное напряжение пропорционально протекающему в цепи току - не требуется каких-либо сложных алгоритмов пересчёта.
Токоизмерительный проводник электрически изолирован от самого датчика, поэтому датчики могут использоваться для измерения тока в цепях с различными напряжениями, не требуя вообще никакого согласования.
Датчики выпускаются в компактных корпусах типа SOIC8, размером всего лишь около 5 мм.
Датчики могут подключаться напрямую на вход АЦП, ни согласования по уровням напряжений, ни гальванической развязки при этом не требуется.

Итак, в качестве токовых датчиков мы выбрали Allegro ACS713-30T , рассчитанные на ток до 30 А.

Выходное напряжение датчика прямо пропорционально протекающему через него току - соответственно, измерив это напряжение и умножив его на масштабный коэффициент, мы получим искомое число. Измерять напряжения можно мультиметром, но это не слишком удобно - во-первых, ручная фактически работа, во-вторых, распространённые мультиметры не отличаются высоким быстродействием, в-третьих, либо нам потребуются несколько мультиметров одновременно, либо измерять ток в разных каналах придётся по очереди.

Немного подумав, мы решили идти до конца - и сделать законченную систему сбора данных, добавив к токовым датчикам микроконтроллер и АЦП. В качестве последнего был выбран 8-битный Atmel ATmega168 , ресурсов которого нам более чем достаточно. Самый же важный для нас его ресурс - 8-канальный 10-битный аналогово-цифровой преобразователь, позволяющий без каких-либо дополнительных ухищрений подключить к одному микроконтроллеру до восьми токовых датчиков.

Что мы и сделали:


Кроме микроконтроллера и восьми ACS713, на плате также видна крупная (ладно, сравнительно крупная...) микросхема FTDI FT232RL - это контроллер USB-интерфейса, через который результаты измерений загружаются в компьютер.



Система получилась достаточно компактной - примерно 80x100 мм, если не считать USB-разъёма - для монтажа непосредственно на блок питания, более того, такой блок можно устанавливать в стандартные ATX-корпуса. Выше на снимке вы видите плату, подключённую к блоку питания PC Power & Cooling Turbo-Cool 1KW-SR .

После изготовления система калибруется - через каждый канал пропускается ток известной величины, после чего рассчитывается коэффициент пересчёта тока в выходное напряжение датчиков ACS713. Коэффициенты хранятся в ПЗУ микроконтроллера, так что они жёстко привязаны к конкретной плате. При необходимости плату можно в любой момент откалибровать заново, также записав новые коэффициенты в ПЗУ.

Плата по интерфейсу USB подключается к компьютеру, причём в роли такового может выступать та же система, измерение потребления которой проводится - никаких ограничений в этом вопросе нет. Впрочем, в некоторых случаях измерения лучше проводить на отдельном компьютере - тогда можно построить график энергопотребления прямо с момента нажатия кнопки питания.



Для работы с платой была написана специальная программа, позволяющая получать данные в реальном времени и отображать их на графике, а впоследствии - сохранять график в виде картинки или текстового файла. Программа позволяет выбирать название и цвет для каждого из восьми каналов, а по ходу измерений указывает минимальное, максимальное, среднее (за всё время измерений) и текущее значения. Подсчитывается также сумма токов в каналах с одинаковыми напряжениями и общая мощность - правда, так как собственно напряжения установка не измеряет, то мощность считается в предположении, что они точно равны 12,0 В, 5,0 В и 3,3 В.

В подсчёте максимальных нагрузок, кстати, есть один тонкий момент. Недостаточно измерить максимум потребления по каждой шине в отдельности, а потом сложить их - просто потому, что эти максимумы могли быть в разные моменты времени. Например, винчестер потреблял 3 А через 5 секунд после включения, при раскрутке шпинделя, а видеокарта - 10 А после запуска FurMark. Правильно ли будет сказать, что их суммарное максимальное потребление равно 13 А? Разумеется, нет. Поэтому программа считает мгновенное потребление для каждого момента времени, в течение которого проводятся измерения, а уже из этих данных выбирает максимальное значение.

Периодичность опроса измерительной платы равна 10 раз в секунду - хотя при необходимости это значение можно увеличить ещё раз в десять, как показала практика, существенной нужды в этом нет: данных становится очень много, а итоговый результат меняется незначительно.

Таким образом, мы получили очень удобную, гибкую (платы, предназначенные для разных наших авторов, будут иметь разную схему подключения к блоку питания), простую в подключении и использовании, достаточно высокоточную измерительную систему, позволяющую детально изучить энергопотребление как компьютера в целом, так и любых его компонентов в частности.

Что же, самое время перейти к практическим результатам. Чтобы не только продемонстрировать возможности новой измерительной системы, но и получить практическую пользу, мы взяли пять различных компьютеров - от недорогой «пищущей машинки» до мощнейшего игрового компьютера - и протестировали их все.

P.S. Кстати, если вас заинтересовала наша измерительная система, мы готовы обсудить возможность её продажи - пишите на адрес [email protected] .

Офисный компьютер

Первый компьютер: Flextron Optima Pro 2B , весьма недорогой, но при этом неплохой системный блок для офисной работы.

Конфигурация:

Процессор Intel Pentium Dual-Core E2220 (2,4 ГГц)
Кулер для процессора GlacialTech Igloo 5063 Silent (E) PP
Вентилятор
Материнская плата Gigabyte GA-73PVM-S2 (чипсет nForce 7100)
Модуль оперативной памяти
Жёсткий диск 160 ГБ Hitachi Deskstar 7K1000.B HDT721016SLA380

Картовод Sony MRW620
Корпус IN-WIN EMR-018 (350 Вт)



Начнём, собственно, с включения компьютера: загрузка Windows. Энергопотребление измерялось от включения компьютера и до окончания загрузки «рабочего стола».



Как вы видите, аппетиты у такой конфигурации крайне скромные: ни по одной из линий ток не достиг и трёх ампер. Занятно ведёт себя процессор: первые примерно 20 секунд (горизонтальная ось графика - в десятых долях секунды) его энергопотребление стабильно велико, а дальше внезапно снижается. Это загрузился драйвер ACPI, а с ним включились встроенные в процессор системы энергосбережения. В дальнейшем потребляемая процессором мощность увеличивается свыше 12-15 Вт только при какой-либо нагрузке на него.



3DMark’06


3DMark"06 явно «упирается» в видеокарту и не может полностью загрузить процессор - последний значительную часть времени пребывает в состоянии пониженного энергопотребления. В остальном немного вырастает потребление по +3,3 В и совсем чуть-чуть - по +5 В.



FurMark


Тяжелейший 3D-тест FurMark интегрированной в чипсет видеокарте даётся с лёгкостью - правда, только с точки зрения энергопотребления. Интересно, что потребление всех компонентов очень стабильно, хотя процессор нагружен явно не на максимум - в начале графика, что соответствует запуску теста, он показывает более высокое потребление, чем в середине.



Prime"95


Под Prime"95 («In-place large FFTs», самый тяжёлый тест в нём) процессор в некоторые моменты достигает рекордного энергопотребления - целых 3 ампера! Да, если в наших словах вам сейчас почудилась ирония - это неслучайно...



FurMark + Prime"95


Одновременный запуск FurMark и Prime"95 ничего не меняет: процессор загружен «до упора», а интегрированная видеокарта практически ничего и не потребляет.

Что ж, итоговый результат:



Очевидно, что для такого компьютера хватит любого блока питания - даже 120-ваттные блоки из mini-ITX корпусов обеспечивают двукратный запас мощности. Тип нагрузки на энергопотреблении сказывается слабо, так как в любом случае самым «прожорливым» компонентом оказывается процессор. Если бы мы поменяли 65-нм Pentium Dual Core E2220 на более новый 45-нм E5200, энергопотребление наверняка упало бы ещё ватт на десять.

Энергопотребление в «спячке» в режиме Suspend-to-RAM составляет всего 0,5 А (для сравнения, обычно источники +5Vsb на блоках питания обеспечивают до 2,5-3 А).

Домашний компьютер

Следующим у нас идёт Flextron Junior 3C , претендующий на роль сравнительно недорогого домашнего компьютера, на котором уже можно и в игры поиграть - правда, в игры нетребовательные, из-за слабой видеокарты.

Процессор

Вентилятор GlacialTech SilentBlade II GT9225-HDLA1
Материнская плата ASUS M3A78 (чипсет AMD 770)
Оперативная память 2x1 ГБ Samsung (PC6400, 800МГц, CL6)
Жёсткий диск
Видеокарта
Привод DVD±RW Optiarc AD-7201S
Корпус IN-WIN EAR-003 (400 Вт)

На компьютер устанавливалась операционная система Microsoft Windows Vista Home Premium SP1 (32-битная) и все необходимые драйвера.



Вот они, системы энергосбережения в действии: в максимуме потребление процессора превышает 50 Вт, в минимуме проваливается ниже 10 Вт... Довольно заметно меняется и потребление по шине +5 В - на плюс-минус один ампер.

Обратите внимание также на голубую линию, показывающую потребление материнской платы и накопителей от +12 В: примерно в середине загрузки она заметно снижается. Это включаются системы энергосбережения видеокарты, которая в данной конфигурации запитывается через разъём PCI-E, то есть, от материнской платы.



3DMark’06


Ох, какой частокол - графики потребления видеокарты и процессора закрывают собой всё остальное. Оба устройства загружены не полностью (то видеокарта ждёт новой порции данных от процессора, то процессор ждёт, пока карта отрендерит очередной кадр), поэтому их энергопотребление постоянно меняется.

Измерение энергопотребления «от розетки» в таком случае показало бы только среднюю величину, сгладив все пики, мы же наблюдаем полную картину.



FurMark


FurMark очень ровно загружает и видеокарту, и процессор, но последний работает не на максимуме - его энергопотребление лишь изредка превышает 3 А.



Prime"95


Prime’95, наоборот, сильно нагружает процессор, но не трогает видеокарту - в результате энергопотребление процессора превышает 60 Вт. Также возрастает и потребление по +5 В.



FurMark + Prime"95


Одновременный запуск Prime"95 и FurMark позволяет равномерно нагрузить все компоненты, и самым «прожорливым» из них оказывается всё же процессор.



Впрочем, прожорливость эта весьма условна - на весь компьютер надо около 137 Вт в самом тяжёлом режиме.

Файловый сервер

Вечный вопрос, регулярно поднимаемый в форумах: ну ладно, с видеокартами всё понятно, а какой блок питания нужен, чтобы собрать RAID-массив? Чтобы ответить на него, мы взяли компьютер из предыдущего раздела и добавили к нему три диска Western Digital Raptor WD740GD, не слишком новых и не слишком экономичных. Диски были подключены к чипсетному контроллеру и объединены в RAID0.

Процессор AMD Athlon 64 X2 5000+ (2,60 ГГц)
Кулер для процессора TITAN DC-K8M925B/R
Вентилятор GlacialTech SilentBlade II GT9225-HDLA1
Материнская плата ASUS M3A78 (чипсет AMD 770)
Оперативная память 2x1 ГБ Samsung (PC6400, 800МГц, CL6)
Жёсткий диск 250 ГБ Seagate Barracuda 7200.10 ST3250410AS
Видеокарта 512 МБ Sapphire Radeon HD 4650
Привод DVD±RW Optiarc AD-7201S
Корпус IN-WIN EAR-003 (400 Вт)
Жёсткие диски 3x74 ГБ Western Digital Raptor WD740GD

На компьютер устанавливалась операционная система Microsoft Windows Vista Home Premium SP1 (32-битная) и все необходимые драйвера.

Для создания нагрузки на диски использовалась утилита нашей собственной разработки - впрочем, написанная несколькими месяцами ранее и совершенно для других целей:


FC-Verify при работе занимается созданием и чтением заданного набора файлов, причём делает это в два совершенно независимых потока, в результате чего в один и тот же момент один поток может читать файлы, а другой - писать, что создаёт достаточно серьёзную нагрузку на диск. Для работы с файлами используются стандартные функции Windows API, кэширование файлов отключено, размер блока данных - 64 кбайта. Кроме того, утилита проверяет корректность чтения и записи файлов, но в данном случае нам это неважно. В каждом потоке между записью и чтением делается 10-секундная пауза, после каждого цикла «запись-чтение» файлы стираются - и цикл повторяется с начала.

В качестве нагрузки мы выбрали тысячу файлов по 256 кбайт в одном потоке и сто файлов по 10 Мбайт - в другом, как и показано на скриншоте. Измерение энергопотребления проводилось непрерывно в течение нескольких циклов записи-чтения.



Включение компьютера, 1 диск


Впрочем, начнём мы с загрузки компьютера и с одного диска - системного, отключив пока Raptor"ы. Ничего необычного мы на графике не видим, кроме очень длинного этапа до включения энергосбережения процессора - связано это с тем, что чипсетный RAID-контроллер долго раздумывал над обнаруженным диском и не обнаруженным массивом.



Включение компьютера, RAID-массив


Та же загрузка, но уже с RAID0-массивом на трёх Raptor WD740GD. Самый интересный момент - высокий пик в начале графика, соответствующий раскрутке шпинделей дисков. Суммарное потребление от шины +12 В (процессор, плата и диски) в этот момент превышает 11 А.



Работа с файлами, 1 диск


Занятно, что наиболее заметный рост потребления - по шине +5 В. Очевидно, свой вклад тут вносит как электроника винчестера, так и южный мост чипсета, в котором расположен RAID-контроллер.



Ещё занятнее, что на RAID-массиве также самая заметная нагрузка приходится на +5 В! В принципе, это можно понять - перемещение головки диска порождает узкий импульс тока по шине +12 В, но так как головками все три диска массива двигают не синхронно, на итоговом результате этим импульсы сказываются слабо - но куда нагляднее всё же увидеть на графике.



Итог исследования лишь отчасти неожиданный: самый тяжёлый для файлового сервера момент - включение, когда шпиндели всех дисков массива раскручиваются одновременно. При работе же хорошо заметна нагрузка на шину +5 В, создаваемая электроникой дисков, а вот на +12 В ничего особенного не происходит.

Тем не менее, на наш скромный трёхдисковый массив с не очень скромными винчестерами в нём более чем достаточно обычного 300-ваттного блока питания - включение компьютера он «вытянет» без проблем, а при работе и вовсе обеспечит трёхкратный запас мощности.

Если же обобщать результат, то можно сказать, что на один быстрый винчестер при старте требуются дополнительные 3,5 А по шине +12 В. В больших массивах, собираемых из подобных WD Raptor дисков, желателен «умный» RAID-контроллер, позволяющий при включении запускать винчестеры поочерёдно.

Игровой компьютер

Следующая система - игровой компьютер средней стоимости, весьма популярная среди покупателей модель. Такая система позволяет играть в большинство современных игр на неплохих настройках и стоит при этом вполне разумную сумму.

В качестве такого мы выбрали одну из несерийных конфигураций Flextron 3C :

Процессор Intel Core 2 Duo E8600 (3,33 ГГц)
Кулер для процессора GlacialTech Igloo 5063 PWM (E) PP
Материнская плата ASUS P5Q (чипсет iP45)
Оперативная память 2x2ГБ DDR2 SDRAM Kingston ValueRAM (PC6400, 800МГц, CL6)
Жёсткий диск 500 ГБ Seagate Barracuda 7200.12
Видеокарта PCI-E 512МБ Sapphire Radeon HD 4850
Привод DVD±RW Optiarc AD-5200S
Картовод Sony MRW620
Корпус IN-WIN IW-S627TAC

На компьютер устанавливалась операционная система Microsoft Windows Vista Home Premium SP1 (32-битная) и все необходимые драйвера.



Как обычно, мы наблюдаем включение систем энергосбережения процессора (5-я секунда) и видеокарты (12-я секунда - компьютер хороший, грузится быстро). Таким образом, отсутствие нагрузки само по себе не означает тишину и экономичность - и видеокарта, и процессор зависят в этом вопросе от драйверов.

По сравнению с предыдущими конфигурациями, на графике добавилась ещё одна линия - это разъём дополнительного питания видеокарты.



3DMark’06


Энергопотребление видеокарты меняется очень быстро и очень сильно: ток через разъём дополнительного питания то падает ниже 4 А, то вырастает выше 7 А. Работа же процессора крайне проста - судя по графику энергопотребления, большую часть времени ему просто нечего делать.



FurMark


Занятно, что FurMark обеспечивает очень высокую среднюю нагрузку на видеокарту, но вот таких 7-амперных пиков, как под 3DMark, с ним не видно. Однако благодаря достаточно высокой загрузке процессора, суммарное потребление от шины +12 В под FurMark получается выше, чем под 3DMark"06.



Prime"95


Под Prime"95 видеокарта отдыхает - ток через дополнительный разъём питания падает ниже 1 А. Энергопотребление процессора, впрочем, тоже сравнительно невелико - даже в пиках оно не достигает и 50 Вт, а ведь в это число входят и потери на VRM (стабилизаторе питания процессора).



FurMark + Prime"95


При одновременном запуске FurMark и Prime"95 мы получаем максимальное энергопотребление - и при этом видеокарта заметно опережает процессор (особенно если учесть, что и от голубой линии графика пара ампер приходится на видеокарту: она питается и через разъём PCI-E материнской платы).



Тем не менее, общее энергопотребление сравнительно невелико: 189 Вт. Даже 300-ваттный блок питания обеспечит полуторакратный запас мощности, а уж брать под такой компьютер что-то больше 400 Вт просто нет никакого смысла.

Мощный игровой компьютер

Предпоследний компьютер в нашей сегодняшней статье - Flextron Quattro G2 , очень мощная и дорогая игровая система на представителе новейшего поколения процессоров Intel - Core i7.

Процессор Intel Core i7-920 (2,66 ГГц)
Материнская плата
Оперативная память 3x
Жёсткий диск
Видеокарта PCI-E 896МБ Leadtek WinFast GTX 260 Extreme+ W02G0686
Привод DVD±RW Optiarc AD-7201S
Корпус IN-WIN IW-J614TA F430 (550 Вт)

Если спросить в каком-нибудь форуме о потребностях такой конфигурации, значительная часть отвечающих будет советовать блок питания хотя бы на 750 Вт. А здесь - всего 550... Хватит ли? Сейчас увидим.

На компьютер устанавливалась операционная система Microsoft Windows Vista Home Premium SP1 (32-битная) и все необходимые драйвера.



Ничего особенного здесь мы не видим, кроме того, что у Core i7 и GeForce GTX 260 тоже есть механизмы энергосбережния - но это трудно назвать неожиданным открытием.



3DMark’06


Какой бы процессор вы ни купили, а добротная видеокарта по энергопотреблению легко заткнёт его за пояс - что мы и наблюдаем. Энергопотребление и процессора, и видеокарты под 3DMark"06 сильно колеблется, скачки могут достигать нескольких ампер.



FurMark


Довольно занятно выглядит энергопотребление видеокарты под FurMark: оно меняется с периодом около 6-7 секунд. Мы затрудняемся объяснить этот эффект, вероятно, но он вызван особенностями теста. Процессор загружен равномерно, но не очень сильно: его потребление почти на всей протяжённости графика не превышает 3 А (36 Вт).



Prime"95


Совсем другое дело - Prime"95. Видеокарта тут отдыхает, зато потребление процессора вырастает с 20 Вт в простое до почти 120 Вт под нагрузкой! Мда, надо сказать большое спасибо инженерам Intel за столь эффективное управление питанием у современных процессоров - и одновременно высказать надежду, что грядущие 32-нм модели под нагрузкой будут более энергоэффективны, чем нынешние 45-нм.



FurMark + Prime"95


Одновременный запуск Prime"95 и FurMark приводит к неожиданному эффекту: процессор перегружен (Prime"95 запускался аж в 8 потоков - четыре физических ядра процессора плюс технология HyperThreading, обеспечивающая ещё четыре «виртуальных» ядра) и не успевает «кормить» данными видеокарту, из-за чего она, отрендерив один кадр, некоторое время простаивает - и сильно сбрасывает своё энергопотребление.

Здесь мы очень ярко наблюдаем эффект, когда измерение энергопотребления «от розетки» даст среднее значение, сильно отличающееся от полученного нами максимального. Конечно, можно подбирать число потоков Prime"95 с тем, чтобы обеспечить оптимальную работу FurMark и видеокарты, но всё-таки надёжнее и удобнее пользоваться правильными измерительными системами, дающими сразу и максимальные, и минимальные, и средние значения - и всё это на красивом разноцветном графике (напоминаем, что, обзаведясь такой же системой, цвета вы сможете выбирать по своему вкусу!).



Тем не менее, в целом аппетиты столь мощного компьютера относительно скромны - 371 Вт в максимуме. Даже выбирая блок питания с 50-% запасом, можно спокойно остановиться на 550-Вт моделях.

Занятно, что потребление от дежурного источника при включённом компьютере было практически равно нулю - в отличие от предыдущих систем. Зато в «спячке» при хранении данных в памяти (режим S3, он же Suspend-to-RAM) потребление от «дежурки» достигало 0,7 А.

Очень мощный игровой компьютер

И, наконец, самая серьёзная игровая система - в описанной в предыдущем разделе конфигурации меняем видеокарту на двухчипового монстра ASUS ENGTX295 (как нетрудно догадаться, GeForce GTX 295). Всё прочее остаётся прежним.

Процессор Intel Core i7-920 (2,66 ГГц)
Материнская плата Gigabyte GA-EX58-UD3R (чипсет iX58)
Оперативная память 3x1ГБ Samsung (PC3-10666, 1333МГц, CL9)
Жёсткий диск 1000 ГБ Seagate Barracuda 7200.11 ST31000333AS
Видеокарта PCI-E 1792МБ ASUS ENGTX295/2DI
Привод DVD±RW Optiarc AD-7201S
Корпус IN-WIN IW-J614TA F430

На компьютер устанавливалась операционная система Microsoft Windows Vista Home Premium SP1 (32-битная) и все необходимые драйвера.



Если момент загрузки ACPI-драйвера и включения энергосбережения процессора виден хорошо - примерно на 15-й секунде (отметка «150» по горизонтальной оси), то у видеокарты с этим как-то не сложилось. После 30-й секунды немного упало потребление по одному из разъёмов её питания, но одновременно выросло потребление от шины +3,3 В, и винить в этом можно только GTX 295 - предыдущая система, отличавшаяся только видеокартой, такой ступеньки на графике не имела. На 40-й же секунде увеличилось и энергопотребление по обеим разъёмами дополнительного питания карты. Растёт и энергопотребление материнской платы - и эту прибавку тоже получается списать лишь на видеокарту, подпитывающуюся от разъёма PCI-E.

Таким образом, надеяться, что хотя бы на рабочем столе Windows монстр GTX 295 будет по энергопотреблению сравним с одночиповыми картами, не стоит. Более детальное же рассмотрение этого вопроса мы оставим нашим авторам, занимающимся видеокартами.



3DMark’06


Обеспечить равномерно высокую загрузку современного игрового компьютера 3DMark"06 уже явно неспособен - энергопотребление и видеокарты, и процессора меняется очень сильно.



FurMark


Впрочем, если мы хотим посмотреть на красивый график, у нас всегда есть FurMark. Обратите внимание на рост энергопотребления в ходе теста - он объясняется нагревом GPU.



Prime"95


Prime’95 выводит процессор на привычные по предыдущему компьютеру сто с лишним ватт энергопотребления. Наклон графика опять объясняется нагревом: чем выше температура, тем выше энергопотребление микросхем.

Обратите внимание, что через дополнительные разъёмы видеокарта - которая в этом тесте нагружена только «рабочим столом» - потребляет около 3 А, и ещё около 5 А от шины +12 В потребляют материнская плата и накопители. Для сравнения, в предыдущей конфигурации, отличавшейся только видеокартой, эти числа составляли 2 А и 4 А, соответственно.



FurMark + Prime"95


Одновременно запущенные FurMark и Prime"95 дают знакомую картину: процессор перегружен и не успевает «кормить» видеокарту данными.

Чтобы оценить, насколько это скажется при измерениях «от розетки», мы взяли уже упоминавшийся во введении ваттметр PM-300 - в максимуме он показал 490 Вт, что, с учётом 90-% КПД блока питания, выливается в 441 Вт потребления от БП. Наша же система показала максимальное потребление немногим выше 500 Вт - согласитесь, существенная разница, возникшая из-за того, что при столь неровном энергопотреблении ваттметр показывает среднее, а не максимальное значение.

При этом, разумеется, наша система позволяет подсчитать и среднее значение, характеризующее тепловыделение системы и размер счёта за электричество. А вот чтобы подобрать блок питания - лучше всё-таки знать потребление максимальное.



По-прежнему остаётся неясным, кому и зачем нужны киловаттные блоки питания - даже для настолько мощной игровой системы более чем достаточно 750-Вт блока питания. «Киловаттник» здесь обеспечит уже двукратный запас по мощности, что явно избыточно.

Заключение

Подведение итогов мы начнём со сводной таблички, в которой приведём по два значения для каждого компьютера - максимальное (FurMark + Prime"95) и типичное (3DMark’06):



Что же, даже если брать за ориентир максимально возможное энергопотребление системы, ничего ужасного мы не видим. Конечно, 500 Вт - немаленькая мощность, четверть утюга, но блоки питания, её обеспечивающие, не только уже давно не редкость, но и денег стоят вполне разумных, особенно на фоне стоимости потребляющего столько компьютера. Если брать БП с 50-процентным запасом, то на Core i7-920 и GeForce GTX 295 достаточно 750-ваттной модели.

Остальные компьютеры и того скромнее. Стоит сменить видеокарточку на одночиповую - и потребности снижаются до 500-550 Вт (опять же, с учётом запаса «на всякий случай»), а более распространённые игровые компьютеры среднего класса прекрасно обойдутся недорогим 400-ваттным блоком питания.

И ведь это - энергопотребление под тяжёлыми тестами, а с тем же FurMark по способности нагружать видеокарту не сравнится ни одна реальная игра. Значит же это, что, взяв на самый мощный наш компьютер 750-ваттный блок питания, мы получим даже не полуторакратный, а ещё больший запас мощности.

Если же говорить о нашей новой измерительной системе, то очевидно, что она покрывает практически все наши нужды, позволяя измерять энергопотребление как компьютера в целом, так и любых его компонентов в любой момент, начиная с нажатия кнопки питания и даже до этого нажатия, автоматически регистрировать минимальные и максимальные значения токов, подсчитывать среднюю потребляемую мощность, вычислять максимальные значения мощности (с учётом, что просто сложить максимумы по разным шинам блока питания нельзя - они могли быть в разные моменты времени), смотреть распределение нагрузки по разным шинам блока питания и строить графики зависимости нагрузки от времени...

В ближайшем будущем большая часть тестов на энергопотребление компонентов и систем, производимых в нашей лаборатории, будет переведена на такие измерительные системы, причём у разных авторов системы будут сконфигурированы таким образом, чтобы лучшим образом отвечать именно их целям и задачам: например, если в данной статье потребление материнской платы и накопителей учитывалось вместе, то в статьях про видеокарты будет отдельно считаться не только потребление материнской платы, но и вовсе - ток, потребляемый видеокартой от PCI-E разъёма.

Наконец, чтобы сделать результаты тестирования блоков питания более наглядными, теперь мы будем наносить на графики кросс-нагрузочных характеристик реальные значения энергопотребления разных компьютеров. Подобный эксперимент мы уже однажды проводили , но тогда были сильно ограничены отсутствием удобного средства для быстрого и точного измерения энергопотребления различных систем.