Сетевой фильтр для аудио — своими руками. Подавитель импульсных помех для Р399А


Шевкопляс Б.В. «Микропроцессорные структуры. Инженерные решения.» Москва, издательство «Радио», 1990 год. Глава 4

4.1. Подавление помех по первичной питающей сети

Форма сигнала переменного напряжения промышленной питающей сети (~"220 В, 50 Гц) в течение коротких промежутков времени может сильно отличаться от синусоидальной — возможны выбросы или «врезки», снижение амплитуды одной или нескольких полуволн и т. д. Причины возникновения таких искажений связаны обычно с резким изменением сетевой нагрузки, например при включении мощного электродвигателя, печи, сварочного аппарата. Поэтому следует по возможности осуществлять развязку от таких источников помех по сети (рис. 4.1).

Рис. 4.1 Варианты подключения цифрового устройства к первичной питающей сети

Помимо указанной меры, возможно, потребуется введение сетевого фильтра на вводе питания устройства с целью подавления кратковременных помех. Резонансная частота фильтра может лежать в пределах 0,1,5—300 МГц; широкополосные фильтры обеспечивают подавление помех во всем указанном диапазоне.

На рис 4.2 приведен пример схемы сетевого фильтра Этот фильтр имеет габариты 30 XЗОХ20 мм и смонтирован непосредственно на колодке ввода сети в устройство. В фильтрах должны использоваться высокочастотные конденсаторы и индуктивности либо без сердечников, либо с высокочастотными сердечниками.

В некоторых случаях обязательным является введение электростатического экрана (обычной водопроводной трубы, соединенной с заземленным корпусом щита питания) для прокладки внутри него проводов первичной питающей сети. Как отмечается в , коротковолновый передатчик таксомоторного парка, расположенный на противоположной стороне улицы, способен при определенной взаимной ориентации наводить на отрезке провода сигналы амплитудой несколько сотен вольт. Этот же провод, помещенный в электростатический экран, будет надежно защищен от такого рода наводок.


Рис. 4.2. Пример схемы сетевого фильтра

Рассмотрим методы подавления сетевых помех непосредственно в блоке питания устройства. Если первичная и вторичная обмотки силового трансформатора расположены на одной и юй же катушке (рис. 4.3, а), то за счет емкостной связи между обмотками импульсные помехи могут проходить из первичной цепи во вторичную. Согласно рекомендуются четыре способа подавления таких помех (в порядке возрастания эффективности).

  1. Первичная и вторичная обмотки силового трансформатора выполняются на разных катушках (рис. 4.3, б). Проходная емкость С уменьшается, однако снижается КПД, так как не весь магнитный поток из области первичной обмотки попадает в область вторичной обмотки из-за рассеяния через окружающее пространство.
  2. Первичная и вторичная обмотки выполняются на одной и тон же катушке, но разделяются экраном из медной фольги толщиной не менее 0,2 мм. Экран не должен представлять собой короткозамкнутый виток. Он соединяется с корпусной землей устройства (рис. 4.3, в)
  3. Первичная обмотка полностью заключается в экран, не являющийся короткозамкнутым витком. Экран заземляется (рис. 4.3, г).
  4. Первичная и вторичная обмотки заключаются в индивидуальные экраны, между которыми прокладывается разделительный экран. Весь трансформатор заключается в металлический корпус (рис. 4.3,<Э). Экраны и корпус заземляются. Этот тип трансформатора в силу предельной защищенности от прохождения помех получил название «ультраизолятор».

При всех перечисленных способах подавления помех разводку сетевых проводов внутри устройства следует выполнять экранированным проводом, соединив экран с корпусной землей. Недопустима ук
ладка в один жгут сетевых и прочих (питающих платы, сигнальных и т. п.) проводов" даже в случае экранирования тех и других.

Рекомендуется параллельно первичной обмотке силового трансформатора в непосредственной близости от выводов обмотки установить конденсатор емкостью примерно 0,1 мкФ и последовательно с ним — токоограничивающий резистор сопротивлением порядка 100 Ом. Это позволяет «замыкать» энергию, накопленную в сердечнике силового трансформатора, в момент размыкания сетевого выключателя.


Рис. 4.3. Варианты защиты силового трансформатора от передачи импульсных помех из сети во вторичную цепь (и обратно):
а—защита отсутствует; б — разнесение первичной и вторичной обмоток; в— прокладка экрана между обмотками; г — полная экранировка первичной обмотки; д — полная экранировка всех элементов трансформатора


Рис. 4.4. Упрощенная схема блока питания (а) и диаграммы (б, в), поясняющие работу двухполупериодного выпрямителя.

Блок питания является тем большим источником импульсных помех по сети, чем больше емкость конденсатора С

Отметим, что с увеличением емкости С фильтра (рис. 4.4, а) блока питания нашего устройства увеличивается вероятность сбоев соседних устройств, так как потребление энергии от сети нашим устройством все в большей степени приобретает характер ударов. Действительно, напряжение и на выходе выпрямителя растет в те интервалы времени, когда энергия отбирается от сети (рис. 4.4, б). Эти интервалы на рис. 4.4 заштрихованы.

С увеличением емкости конденсатора С периоды его заряда становятся все меньшими (рис. 4.4, в), а ток, отбираемый в импульсе от сети,—все большим. Таким образом, внешне «безобидное» устройство может создавать в сети помехи, «не уступающие» помехам от сварочного аппарата.

4.2. Правила заземления, обеспечивающие защиту от помех по «земле»

В устройствах, выполненных в виде конструктивно-законченных блоков, существуют по крайней мере два типа шин «земли»—корпусная и схемная. Корпусная шина согласно требованиям техники безопасности в обязательном порядке подключается к шине заземления, проложенной в помещении. Схемная шина (относительно которой отсчитываются уровни напряжения сигналов) не должна быть соединена с корпусной внутри блока—для нее должен быть выведен отдельный зажим, изолированный от корпуса.


Рис. 4.5. Неправильное и правильное заземление цифровых устройств. Показана шина земли, которая обычно имеется в помещении

На рис. 4.5 показаны варианты неправильного и правильного заземления группы устройств, которые связаны между собой информационными линиями. (эти линии не показаны). Схемные шины «земли» объединяются индивидуальными проводами в точке А, а корпусные—в точке В, по возможности приближенной к точке А. Точка А может не подключаться к шине заземления в помещения, однако это создает неудобства, например при работе с осциллографом, у которого «земля» пробника соединена с корпусом.

При неправильном заземлении (см. рис. 4.5) импульсные напряжения, порождаемые уравнивающими токами по земляной шине, будут фактически приложены к входам приемных магистральных элементов, что может вызвать их ложное срабатывание. Следует отметить, что выбор наилучшего варианта заземления зависит от конкретных «местных» условий и зачастую проводится после серии тщательных экспериментов. Однако общее правило (см. рис. 4.5) всегда остается в силе.

4.3. Подавление помех по цепям вторичного электропитания

Из-за конечной индуктивности шин питания и земли импульсные токи вызывают появление импульсных напряжений как положительной, так и отрицательной полярности, которые приложены между выводами питания и земли микросхем. Если шины питания и земли выполнены тонкими печатными или иными проводниками, а высокочастотные развязывающие конденсаторы либо вовсе отсутствуют, либо их число недостаточно, то при одновременном переключении нескольких ТТЛ-микросхем на «дальнем» конце печатной платы амплитуда импульсных помех по питанию (выбросов напряжения, действующих между выводом питания и земли микросхемы) может составить 2 В и более. Поэтому при проектировании печатной платы необходимо выполнять следующие рекомендации.

  1. Шины питания и земли должны обладать минимальной индуктивностью. Для этого они выполняются в виде решетчатых структур, покрывающих всю площадь печатной платы. Недопустимо подключение микросхем ТТЛ к шине, представляющей собой «отросток», поскольку по мере приближения к его концу индуктивность цепей подвода питания накапливается. Шины питания и земли должны по возможности покрывать всю свободную площадь печатной платы. С особым вниманием следует подходить к проектированию накопительных матриц динамической памяти на микросхемах К565РУ5, РУ7 и др. Матрица должна представлять собой квадрат, чтобы адресные и управляющие линии имели минимальную длину. Каждая микросхема должна находиться в индивидуальной ячейке решетчатой структуры, образованной шинами питания и земли (две независимые решетки). Шины питания и земли накопительной матрицы не должны нагружаться «чужими» токами, текущими от адресных формирователей, усилителей сигналов управления и т, п.
  2. Подключение внешних шин питания и земли к плате через разъем должно производиться через несколько контактов, равномерно расположенных по длине разъема, для того чтобы вход в решетчатые структуры шин питания и земли производился сразу из нескольких точек.
  3. Подавление помех по питанию должно осуществляться вблизи мест их возникновения. Поэтому вблизи выводов питания каждой микросхемы ТТЛ должен быть расположен высокочастотный конденсатор емкостью не менее 0,02 мкФ. Это также в особой степени относится к упомянутым микросхемам динамической памяти. Для фильтрации низкочастотных помех необходимо использовать электролитические конденсаторы, например, емкостью 100 мкФ, При использовании микросхем динамической памяти электролитические конденсаторы устанавливаются, например, по углам накопительной матрицы или в другом месте, но вблизи этих микросхем.

Согласно вместо высокочастотных конденсаторов применяют специальные шины питания BUS-BAR, САР-BUS, которые прокладывают под линейками микросхем или между ними, не нарушая обычной автоматизированной технологии установки элементов на плату с последующей пайкой «волной». Эти шины представляют собой распределенные конденсаторы с погонной емкостью примерно 0,02 мкФ/см. При той же суммарной емкости, что и при использовании дискретных конденсаторов, шины обеспечивают значительно лучшее подавление помех при более высокой плотности монтажа.



Рис. 4.6. Варианты подключения плат П1—ПЗ к блоку питания

На рис. 4.6 приведены рекомендации по подключению устройств, выполненных на печатных платах П1—ПЗ, к выходу блока питания. Сильноточное устройство, выполненное на плате ПЗ, создает на шинах питания и земли больше помех, поэтому его следует физически приблизить к блоку питания, а еще лучше обеспечить его питание с помощью индивидуальных шин.

4.4. Правила работы с согласованными линиями связи

На рис. 4.7 показана форма сигналов, передаваемых по кабелю, в зависимости от соотношения сопротивления нагрузочного резистора R и волнового сопротивления кабеля р. Сигналы передаются без искажений при R=р. Волновое сопротивление конкретного типа коаксиального кабеля известно (например, 50, 75, 100 Ом). Волновое сопротивление плоских кабелей и витых пар обычно близко 110— 130 Ом; точное его значение может быть получено экспериментально подбором резистора К, при подключении которого искажения минимальны (см. рис. 4.7). При проведении эксперимента не следует использовать, проволочные переменные сопротивления, так как они имеют большую индуктивность и могут внести искажения формы сигнала.

Линия связи типа «открытый коллектор» (рис. 4.8). Для передачи каждого магистрального сигнала с длительностью фронта около 10 нс при расстояниях, превышающих 30 см, используется отдельная витая пара или выделяется одна пара жил в плоском кабеле. В пассивном состоянии все передатчики выключены. При срабатывании любого передатчика или группы передатчиков напряжение на линии снижается от уровня, превышающего 3 В, примерно до 0,4 В.

При длине линии 15м и при правильном ее согласовании длительность переходных процессов в ней не превышает 75нс. Линия реализует функцию Монтажное ИЛИ по отношению к сигналам, представленным низкими уровнями напряжения.


Рис. 4.7. Передача сигналов по кабелю. О—генератор импульсов напряжения

Линия связи типа «открытый эмиттер» (рис. 4,9"). В данном примере показан вариант линии, использующей плоский кабель. Сигнальные провода чередуются с земляными. В идеальном случае каждый сигнальный провод окаймляется с обеих сторон «своими» земляными проводами, однако в этом, как правило, нет особой необходимости. На рис, 4.9 с каждым сигнальным проводом соседствует «своя» и «чужая» земля, что обычно вполне допустимо. Плоский кабель и набор витых пар—по сути почти одно и то же, и все-таки второе предпочтительно в условиях повышенного уровня внешних помех. Линия типа «открытый эмиттер» реализует функцию Монтажное ИЛИ по отношению к сигналам, представленным высокими уровнями напряжения. Временные характеристики приблизительно соответствуют характеристикам линии с «открытым коллектором».

Линия связи типа «дифференциальная пара» (рис. 4.10). Линия применяется для однонаправленной передачи сигналов и характеризуется повышенной помехоустойчивостью, так как приемник реагирует на разность сигналов, а наводимая извне помеха действует на оба провода примерно одинаково. Длина линии практически ограничивается омическим сопротивлением проводов и может достигать нескольких сотен метров.


Рис, 4.8. Линия связи типа «открытый коллектор»

Рис. 4.9. Линия связи типа «открытый эмиттер»

Рис. 4.10. Линия связи типа «дифференциальная пара»

Во всех рассмотренных линиях должны использоваться приемники с высоким входным сопротивлением, малой входной емкостью и предпочтительно с гистерезисной передаточной характеристикой для увеличения помехозащищенности.

Физическая реализация магистрали (рис. 4. II), Каждое устройство, подключаемое к магистрали, содержит два разъема. Схема, подобная приведенной на рис. 4.11, рассматривалась ранее (см. рис. 3.3), поэтому остановимся лишь на правилах, которые нужно соблюдать при проектировании согласующих блоков (СБ).

Передача магистральных сигналов через разъемы. Наилучшие варианты распайки разъемов показаны на рис. .4.12. Фронт бегущего по магистрали импульса в этих случаях почти «не чувствует» разъема, так как вносимая в кабельную линию неоднородность незначительна. При этом, однако, требуется занять 50 % используемых контактов под земли.

Если это условие по каким-либо причинам невыполнимо, то можно в ущерб помехозащищенности принять второй, более экономичный но числу контактов вариант распайки разъемов, показанный на рис. 4.13. Этот вариант часто используется на практике. Земли витых пар (или земли плоского кабеля) собираются на металлические планки по возможности большего сечения, например 5 мм2.

Распайка этих земель ведется равномерно по длине планки, по мере распайки соответствующих сигнальных проводов. Обе планки объединяются через разъем с помощью ряда перемычек минимальной длины и максимального сечения, причем перемычки располагаются равномерно по длине планок. Каждая земляная перемычка должна соответствовать не более чем четырем сигнальным линиям, но общее число перемычек не должно быть меньше трех (одна в центре и две по краям).


Рис. 4.13. Допустимый вариант передачи сигналов через разъем. Н-=5 мм2—сечение планки, 5^0,5 мм2—сечение земляного провода

Рис. 4.14. Варианты выполнения ответвлений от магистрали

Выполнение ответвлений от магистрали. На рис. 4.14 показаны варианты неправильного и правильного выполнения ответвления от магистрали. Прослежен путь одной линии, земляной провод показан условно. Первый вариант (типичная ошибка начинающих схемотехников!) характеризуется расщеплением на две части энергии волны,

Рис. 4.15. Варианты подключения приемников к магистрали
приходящей с линии А. Одна часть идет на заряд линии В, другая— на заряд линии С. После заряда линии С «полноценная» волна начинает распространяться по линии В, пытаясь догнать ушедшую ранее волну с половинной энергией. Фронт сигнала, таким образом, имеет ступенчатую форму.

При правильном выполнении ответвления отрезки линий А, С и В оказываются включенными последовательно, поэтому волна практически не расщепляется и фронты сигналов не искажаются. Передатчики и приемники, расположенные на плате, должны быть максимально приближены к ее краю для уменьшения неоднородности, вносимой в точку объединения отрезков линий В и С.

Для развязки пучков приемников от магистрали можно использовать одно или двунаправленные приемопередатчики (см. рис. 3.18. 3.19). При разветвлении линии на несколько направлений для каждого следует выделить отдельный передатчик (рис. 4.15, в).

Для передачи по линии лучше использовать не прямоугольные, а трапецеидальные импульсы . Сигналы с пологими фронтами, как отмечалось, распространяются вдоль линии с меньшими искажениями. В принципе в отсутствие внешних помех для любой сколь угодно длинной и даже несогласованной линии можно подобрать настолько медленную скорость нарастания сигнала, что передаваемый и принимаемый сигналы будут отличаться на сколь угодно малую величину.

Для получения трапецеидальных импульсов передатчик выполняется в виде дифференциального усилителя с интегрирующей цепью обратной связи. На входе магистрального приемника, выполненного также в виде дифференциального усилителя, устанавливается интегрирующая цепь для фильтрации высокочастотных помех.

При передаче сигналов в пределах платы, когда число приемников велико,часто используют «последовательное согласование». Оно состоит в том, что последовательно с выходом передатчика, в непосредственной близости от этого выхода, включается резистор сопротивлением 20—50 Ом. Это позволяет погасить колебательные процессы на фронтах сигналов. Такой прием часто используют при передаче сигналов управления (КА5, САЗ, \УЕ) от усилителей к БИС динамической памяти.

4.5. О защитных свойствах кабелей

На рис. 4.16,а показана простейшая схема передачи сигналов по коаксиальному кабелю, которая в ряде случаев может считаться вполне удовлетворительной. Ее основной недостаток состоит в том, что при наличии импульсных уравнивающих токов между корпусными землями (уравнивание потенциалов — основная функция системы корпусных земель) часть этих токов 1 может течь по оплетке кабеля и вызывать падение напряжения (в основном из-за индуктивности оплетки), которое в конечном счете действует на нагрузку К.

Более того, в этом смысле схема, приведенная на рис. 4.16, а, оказывается предпочтительной, и с увеличением числа точек соприкосновения оплетки кабеля с корпусной землей улучшаются возможности отекания наведенных зарядов с оплетки. Использование кабеля с дополнительной оплеткой (рис. 4.16, в) позволяет защититься как от емкостных наводок, так и от уравнивающих токов, которые в этом случае текут по внешней оплетке и практически не влияют на сигнальную цепь.

Включение кабеля с дополнительной оплеткой по схеме, показанной на рис. 4.16, г, позволяет улучшить частотные свойства линии путем уменьшения ее погонной емкости. В идеальном случае потенциал любого элементарного участка центральной жилы совпадает с потенциалом элементарного цилиндра внутренней оплетки, окружающего этот участок.

Линии такого типа используются в локальных сетях ЭВМ для повышения скорости передачи информации. Внешняя оплетка кабеля является частью сигнальной цепи, и поэтому данная схема с точки зрения защищенности от внешних помех эквивалентна схеме, показанной на рис. 4.16,6.


Рис. 4.16. Варианты использования кабелей

Ни медная, ни алюминиевая оплетка простого коаксиального кабеля не защищает его от воздействия низкочастотных магнитных полей. Эти поля наводят ЭДС как на отрезке оплетки, так и на соответствующем отрезке центральной жилы.

Хотя эти ЭДС и одноименны по знаку, они не компенсируют друг друга по величине из-за разной геометрии соответствующих проводников — центральной жилы и оплетки. Разностная ЭДС в конечном счете прикладывается к нагрузке К. Дополнительная оплетка (рис. 4.16, в, г) также не способна предотвратить проникновение магнитного поля низкой частоты в ее внутреннюю область

Защиту от низкочастотных магнитных полей обеспечивает кабель, содержащий витую пару проводов, заключенную в оплетку (рис. 4.16, д). В этом случае ЭДС, наводимые внешним магнитным полем на составляющих витую пару проводах, полностью компенсируют друг друга как по знаку, так и по абсолютной величине.

Это тем более справедливо, чем меньше шаг свивания проводов по сравнению с зоной действия поля и чем более тщательно (симметрично) выполнена скрутка. Недостатком такой линии является ее сравнительно низкий частотный «потолок»—порядка 15 МГц — из-за больших потерь энергии полезного сигнала на более высоких частотах.

Схема, представленная на рис. 4.16, е, обеспечивает наилучшую защиту от всех видов помех (емкостные наводки, уравнивающие токи, низкочастотные магнитные поля, высокочастотные электромагнитные поля).

Внутреннюю оплетку рекомендуется соединять с «радиотехнической» или «истинной» (в прямом смысле—заземленной) землей, а внешнюю — с «системной» (схемной или корпусной) землей. При отсутствии «истинной» земли можно воспользоваться схемой включения, показанной на рис. 4.16, ж.

Внешняя оплетка соединяется с системной землей на обоих концах, а внутренняя — только со стороны источника. В тех случаях, когда нет необходимости в защите от низкочастотных магнитных полей и есть возможность передавать информацию без использования парафазных сигналов, один из проводов витой пары может служить сигнальным проводом, а второй —экраном. В этих случаях схемы, приведенные на рис. 4.16, в,ж, можно рассматривать как коаксиальные кабели с тремя экранами — земляным проводом витой пары, внутренней и внешней оплетками кабеля.

4.6. Использование оптронных развязок для подавления помех

Если устройства системы разнесены на значительное расстояние, например на 500 м, то трудно рассчитывать на то, что их земли всегда имеют один и тот же потенциал. Как отмечалось, уравнивающие токи по земляным проводникам создают импульсные помехи на этих проводниках за счет их индуктивности. Эти помехи в конечном счете прикладываются к входам приемников и могут вызвать их ложное срабатывание.

Использование линий типа «дифференциальная пара» (см. § 4.4) позволяет подавлять лишь синфазные помехи и поэтому не всегда лает положительные результаты. На рис. 4.17 показаны схемы оптронных развязок между двумя удаленными друг от друга устройствами.


Рис. 4.17. Схемы оптронных развязок между удаленными друг от друга устройствами:
а — с активным приемником, б — с активным передатчиком

Схема с «активным приемником» (рис. 4.17, а) содержит передающий оптрон VI и приемный оптрон V2. При подаче импульсных сигналов на вход Х светодиод оптрона VI периодически излучает свет, в результате выходной транзистор этого оптрона периодически насыщается и сопротивление между точками а и b падает от нескольких сотен килоом до нескольких десятков ом.

При включении выходного транзистора передающего оптрона ток от положительного полюса источника U2 проходит через светодиод оптрона V2, линию (точки а и b) и возвращается к отрицательному полюсу этого источника. Источник U2 выполняется изолированным от источника U3.

Если выходной транзистор передающего оптрона выключен, то ток по цепи источника U2 не протекает. Сигнал X" на выходе оптрона V2 близок нулю, если его светодиод включен, и близок +4 В, если этот светодиод выключен. Таким образом, при Х==0 светодиоды передающего и приемного оптронов включены и, следовательно, Х"==0. При Х==1 оба светодиода выключены и Х"==1.

Оптронная развязка позволяет значительно повысить помехоустойчивость канала связи и обеспечить передачу информации на расстояния порядка сотен метров. Диоды, подключенные к передающему и приемному оптронам, служат для их защиты от обратных выбросов напряжения. Резисторная цепь, связанная с источником U2, служит для задания тока в линии и ограничения тока через светодиод приемного оптрона.

Ток в линии согласно интерфейсу ИРПС может быть выбран равным 20 или 40 мА. При выборе номиналов резисторов нужно учитывать омическое сопротивление линии связи. Схема с «активным передатчиком» (рис. 4.17, б) отличается от предыдущей тем, что источник питания линии U2 расположен на стороне передатчика. Это не дает никаких преимуществ — обе схемы по сути одинаковы и являются так называемыми «токовыми петлями».

Рекомендации, приведенные в этой главе, могут показаться начинающему схемотехнику слишком жесткими. Борьба с помехами представляется ему «сражением с ветряной мельницей», а отсутствие опыта работы по проектированию устройств повышенной сложности создает иллюзию того, что можно создать работоспособное устройство, не выполнив ни одной из приведенных рекомендаций.

Действительно, иногда возможно и такое. Известны даже случаи серийного выпуска таких устройств. Однако в неофициальных отзывах об их работе можно услышать много интересных нетехнических выражений, таких, как визит-эффект и некоторых других, более простых и понятных.

Специальность 221600

Cанкт-Петербург

1. ЦЕЛЬ РАБОТЫ

Целью настоящей работы является изучение принципа работы и опре­деление эффективности подавителя импульсных широкоспектральных помех.

2. КРАТКИЕ СВЕДЕНИЯ ИЗ ТЕОРИИ

Основными методами защиты радиоприемных устройств от импульс­ных широкоспектральных помех являются:

а) внеприемные - применение узконаправленных антенн, вынесение ан­тенны из зоны действия импульсных помех и подавление помех в месте их возникновения;

б) схемные - различные способы обработки смеси полезный сигнал - импульсная помеха с целью ослабления мешающего воздействия.

Одним из эффективных схемных способов борьбы с импульсными по­мехами является применение схемы широкая полоса - амплитудный ограни­читель - узкая полоса (схема ШОУ). Такая схема часто используется в радио­связи.

В настоящей работе исследуется схема ШОУ для двух случаев:

а) полезный сигнал представляет собой видеоимпульсы;

б) полезный сигнал является непрерывным радиосигналом с амплитуд­ной модуляцией.

Структурные схемы для этих случаев представлены на рис. 1 а и 1б со­ответственно. В первом случае схема ШОУ расположена после амплитудного детектора АД, во втором - в тракте радиочастоты до АД.

Схема ШОУ, представленная на рис. 1а, включает последовательно со­единенные широкополосный видеоусилитель, амплитудный ограничитель и узкополосный видеоусилитель. На вход схемы: с детектора поступает смесь сигнал - помеха (рис.2а), причем длительность сигнала намного превышает длительность помехи (tc>>tп), а амплитуда помехи существенно больше ам­плитуды сигнала (Uп>>Uc). Широкополосный усилитель предназначен для усиления входной смеси до уровня, обеспечивающего нормальную работу ограничителя. Полоса пропускания усилительного тракта до ограничителя выбирается такой, чтобы избежать существенного увеличения длительности импульса помехи (рис.2б). Порог ограничения немного выше уровня полез­ного сигнала, поэтому после ограничения уровни сигнала и помехи становят­ся почти равными (рис. 2в). Узкополосный видеоусилитель (или фильтр) вы­полняет роль интегратора, постоянная времени которого согласована с дли­тельностью сигнала и намного превышает длительность помехи. Ввиду того, что tc>>tп, сигнал на выходе фильтра успевает вырасти до своего амплитуд­ного значения, а помеха - нет (рис. 2г). Таким образом, отношение сиг­нал/помеха на выходе схемы ШОУ резко возрастает.

Оценим выигрыш в соотношении сигнал/помеха при использовании схемы ШОУ. На входе схемы присутствуют сигнал с амплитудой Uc и дли­тельностью tc и помеха с прямоугольной огибающей (Uп, tп). Роль интегри­рующей выполняет RC - цепь первого порядка с переходной характеристикой вида

h (t )=1- exp (- t п / t RC ) (1)

где tRC = RC - постоянная времени фильтра.

Из теории известно, что длительность нарастания сигнала до уровня 0.9 Uc для такой цепи определяется соотношением

tн =2.3 t RC (2)

Уровень помехи на выходе амплитудного ограничителя Uп = Uогр, где Uогр - порог ограничения, а уровень полезного сигнала и помехи на выходе схемы соответственно

Uc вых =0,9 UcK (3)

U пвых = U огр К (4)

где К - коэффициент усиления схемы. Отношение сигнал/помеха по напряжению на выходе схемы ШОУ

h вых =(Uc / U п )вых=0,9* U с /(U огр ) (5)

Выигрыш от использования схемы определяется соотношением

(6)

или, с учетом (5),

q 1 =0.9* U п /(U огр (1/)) (7)

Так как t п << t RC и t с =2,3 t RC , то

q 1 =(0.9* U п / U огр )*( t с /2,3 t п ) » 0.4( U п / U огр )*( t с / t п ) (8)

При выключенной схеме ШОУ (ограничитель отключен) уровень по­мехи на выходе

U пвых = U п K (9)

При этом отношение сигнал/помеха на выходе

h вых =(Uc / U п )вых=0,9* U с /(U п ) (10)

а выигрыш, получаемый за счет "узкополосности" выходного фильтра, согласованного по полосе с полезным сигналом, равен

q 2=[ h вых / h вх ]ШОУвыкл=0,9/ (11)

Относительный выигрыш, получаемый при использовании схемы ШОУ, определяется как соотношение

n = q 1/ q 2 (12)

После подстановки (7) и (11) в (12) и, учитывая соотношения

n << t RC и t с =2,3 t RC , , имеем

n = q 1/ q 2 = U п / U огр (13)

В схеме ШОУ (рис. 16) широкополосным усилителем являются резо­нансные каскады усилителя промежуточной частоты (УПЧ) с полосой про­пускания много шире ширины спектра полезного сигнала. УПЧ расположен до ограничителя. В качестве интегратора используется каскад УПЧ после ог­раничителя, причем полоса пропускания этого каскада согласована с шири­ной спектра полезного сигнала. Чтобы избежать ухудшения помехоустойчи­вости приемника из-за расширения полосы пропускания каскадов УПЧ до ог­раничителя, схему ШОУ располагают как можно ближе ко входу приемника.

3. ОПИСАНИЕ ЛАБОРАТОРНОЙ УСТАНОВКИ

Структурная схема лабораторной установки для исследования подави­теля помех представлена на рис. 3. В состав лабораторной установки входят:

1. Генератор стандартных сигналов (ГСС);

2. Осциллограф;

3. Лабораторный макет подавителя помех.

Структурная схема установки приведена на рис. 4. Схема содержит имитатор смеси сигналов и помех и схему ШОУ. Амплитудно-модулированное колебание (АМК) от ГСС подается на вход имитатора смеси сигнала и импульсной помехи. АМК имеет следующие параметры:

а) амплитуда Um = 100 мВ;

б) несущая частота fo == 100КГц;

в) частота модуляции fm = 1 КГц. Имитатор вырабатывает следующие сигналы:

Sam - полезное АМК;

Sи - импульсный полезный сигнал;

Sп - импульсная помеха прямоугольной формы;

Spп - радиоимпульсная помеха с прямоугольной формой огибающей.

СИНХР - синхроимпульс осциллографа. На передней панели лабораторного макета предусмотрена возможность включения имитируемых сигналов и помех тумблерами "Сигнал вкл" и "По­меха вкл" соответственно. Полезный импульсный сигнал смешивается с им­пульсной помехой в сумматоре å1, а непрерывный полезный сигнал с AM и радиоимпульсная помеха - в сумматоре å2. Смесь полезного сигнала с поме­хой поступает на две схемы ШОУ, предназначенных для работы, как на ви­деочастоте, так и на радиочастоте. Переключение схем осуществляется пере­ключателем "Saм-Sи", расположенном на передней панели макета. Первая схема содержит широкополосный видеоусилитель (ШВУ), ограничитель, на диодах VD1, VD2 и узкополосный фильтр (УФ1), реализованный RC-цепочкой. Вторая схема содержит широкополосный усилитель, ограничи­тель, узкополосный фильтр (УФ2) и детектор АМК. УФ2 представляет собой колебательный контур L1 Ск1 Ск2, полоса пропускания которого согласована с

шириной спектра АМК. Ограничитель включается тумблером "ВКЛ ПП". Переключатель контрольных точек на три положения (1, 2, 3) позволяет при помощи осциллографа наблюдать сигналы на входе схемы ШОУ, на входе ограничителя и на выходе схемы.

4. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

3.1. Ознакомиться с принципом работы подавителя помех и составом ис­пользуемой аппаратуры.

3.2. Исследование подавителя помех при наличии импульсного полезного сигнала.

3.2.1. Подготовка к работе:

Установить на выходе ГСС сигнал со следующими параметрами:

а) амплитуда - 100 мВ;

б) частота - 100 КГц;

в) глубина модуляции - 30 %.

Включить макет, установить переключатель "Sам-Sи" в положение Sи, переключатели "Помеха вкл", "Сигнал вкл" - в положение включено, переключатель контрольных точек - в положение 1.

3.2.2. Измерения:

Измерить при помощи осциллографа параметры сигнала и помехи на входе схемы (амплитуды сигнала Uc и помехи Uп; длительность сигна­ла tс и помехи tп);

Вычислить отношение сигнал/помеха по напряжению на входе схемы;

Наблюдать сигнал в контрольных точках схемы при включенном и вы­ключенном подавителе помех, отключая ограничитель тумблером "Вкл ПП";

Измерить отношение сигнал/помеха на выходе схемы при включенном и выключенном подавителе помех;

По результатам измерений определить относительный выигрыш и сравнить с расчетным;

Зарисовать осциллограммы в контрольных точках схемы при включен­ном и выключенном подавителе.

3.3.Исследование подавителя помех при приеме непрерывного сигнала сAM.

3.3.1. Подготовка к работе:

Установить переключатели в следующие положения:

a)"Sам-Sи"-Sам

б) "Сигнал вкл" - включено;

в) "Помеха вкл" - выключено;

г) контрольных точек - 3;

изменяя частоту генератора в пределах 100кГц, добиться мак­симального сигнала на выходе детектора. Наблюдение вести по экра­ну осциллографа.

3.3.2 Измерения:

Наблюдать сигнал в контрольных точках схемы при включенном и вы­ключенном подавителе помех, отключая ограничитель тумблером "Вкл ПП",

Измерить отношение сигнал/помеха на входе схемы (контрольная точка 1);

Измерить отношение сигнал/помеха на выходе схемы (контрольная точка 3) при включенном и выключенном подавителе;

Примечание, уровни полезного сигнала и помех на входе и выходе схемы измеря­ются раздельно (включение сигнала и помехи осуществляется тумблерами "сигнал вкл" и "помеха вкл");

По результатам измерений определить выигрыш в отношении сиг­нал помеха при использовании схемы ШОУ и относительный выиг­рыш.

структурная схема исследуемого подавителя помех;

осциллограммы сигналов в контрольных точках схемы;

расчет ожидаемого выигрыша в отношении сигнал/помеха при приеме видеосигналов;

экспериментальные данные об эффективности подавителя помех для видео и радиосигналов.

ЛИТЕРАТУРА

Защита от радиопомех. , и др.; Под ред. М.: Сов. радио, 1976

Немецкая фирма Epcos (бывшее подразделение Siemens по производству пассивных компонентов) располагает широким спектром изделий для решения вопросов обеспечения электромагнитной совместимости (ЭМС) электрических или электронных устройств.

Значительную подгруппу ЭМС компонентов Epcos составляют фильтры, предназначенные для защиты устройств от высокочастотных электромагнитных помех (радиопомех).

Электромагнитные помехи (ЭМП) возникают в результате функционирования устройств, предназначенных для генерации или преобразования электроэнергии. Они представляют собой электромагнитные поля в пространстве, окружающем такие технические средства (ТС).

Основными источниками высокочастотных помех являются импульсные блока питания (бытовая электронная техника, промышленные и медицинские аппараты и др.), цепи нелинейных

Для борьбы с помехами в цепях соседних ТС, а также узлов и блоков в пределах отдельных ТС используют фильтры ЭМП. В общем случае, обычно фильтры ЭМП представляют собой ФНЧ и могут устанавливаться как непосредственно у источника помех, так и перед приемником помех (рецептором). Фильтры ЭМП Epcos (сетевые фильтры) рассчитаны на подавление помех, поступающих по проводам двух- или трехфазной сети на вход защищаемого устройства, то есть это фильтры «приемной стороны». Настоящая статья посвящена сетевым фильтрам Epcos, каждый из которых представляет собой отдельный законченный узел, устанавливаемый перед приемным устройством. Все рассматриваемые фильтры пропускают беспрепятственно напряжение частоты сети 50/60 Гц.

Напряжение синфазной помехи возникает как разность потенциалов между фазным (сигнальным) проводом, обратным проводом (так называемая масса или нейтральный провод) и землей (корпус прибора, радиатор и т. п.). Ток синфазной помехи имеет одинаковое направление в прямом и обратном проводах сети.

В симметричных электрических цепях (незаземленные цепи и цепи с заземленной средней точкой) противофазная помеха проявляется в виде симметричных напряжений (на нагрузке) и называется симметричной, в иностранной литературе она именуется помехой дифференциального типа (differential mode interference). Синфазная помеха в симметричной цепи называется асимметричной или помехой общего типа (common mode interference).

Симметричные помехи в линии обычно преобладают на частотах до нескольких сотен килогерц. На частотах же выше 1 МГц преобладают асимметричные помехи.

Помехи, возникающие в несимметричных цепях, называются несимметричными. Для противофазной помехи несимметричной является цепь с разделенной (симметричной относительно земли) нагрузкой.

Для силовых цепей более характерна несимметричная нагрузка, но, например, сами источники высокочастотных помех (преобразователи на IGBT транзисторах и т. п.) могут генерировать асимметричные (синфазные) помехи. С другой стороны, синфазные помехи при определенных условиях преобразуются в противофазные.

Фильтры ЭМП характеризуются комплексом параметров. Остановимся на параметрах, характеризующих фильтры ЭМП Epcos:

  1. Число проводов сети: 2, 3 (4).
  2. Номинальное (сетевое) напряжение: 250 (220), 440 (380) В и др.
  3. диапазон подавления помех (полоса частот заграждения);
  4. уровень подавления помех (стандартный; с усиленным подавлением и т.п.);
  5. номинальный ток, А;
  6. тип помех, подавляемых фильтром:
    • общего типа;
    • дифференциального типа;
    • несимметричные помехи;
  7. тип разъема;
  8. тип корпуса;
  9. климатическая категория (диапазон температур, в котором фильтр удовлетворяет требованиям (стандартам) по остальным техническим характеристикам).

Конструкции фильтров различаются в зависимости от типа помех. Так, для компенсации симметричной помехи, когда искажения напряжения возникают между фазными проводами сети, используют так называемый du/dt-фильтр НЧ, содержащий помехоподавляющие X-конденсаторы. Заметим, что X-конденсаторами называют такие конденсаторы, которые шунтируют провода линии между собой на высокой частоте.

Ввиду того, что при малом внутреннем сопротивлении источника помехи, ее устранение потребовало бы чрезмерно больших емкостей, необходимых для обеспечения заданного деления напряжения, на практике последовательно конденсатору включают дроссели, что увеличивает сопротивление по последовательной схеме. В результате образуется так называемый Т-образный (или П-образный) фильтр НЧ.

На высоких частотах, с целью ограничения собственной емкости, дроссель нередко исполняют в виде набора отдельных индуктивностей (секций или так называемых «бусин», английское название - beads), соединяемых последовательно. На высоких частотах могут применяться ферритовые дроссели, например, для частот 30, 50 и 100 МГц Epcos серийно выпускает дроссели/бусины серии B8248x в чип исполнении типоразмеров 0603…1806, рассчитанные на ток 0,05…4 А. У Epcos также широко представлены аналогичные дроссели в выводном исполнении. На более высоких частотах достаточное реактивное сопротивление можно обеспечить малой индуктивностью. При этом для получения дросселя силовой кабель достаточно пропустить через группу ферритовых колец.

На рис. 1 представлена эквивалентная схема du/dt-фильтра ЭМП. Он выполняет процедуру вычитания дифференцированного сигнала из исходного. В результате фильтр сглаживает пики и исключает выбросы напряжения, обусловленные симметричной помехой. Однако он почти не влияет на напряжение помехи, существующее между проводами сети и заземлением, а также и на ток утечки.

Рис. 1

Наряду с Х-конденсаторами и обычными дросселями в фильтрах ЭМП Epcos применяют связанные (с общим сердечником) катушки индуктивности двух типов.

Тококомпенсированные дроссели подавления ЭМП Epcos обычно выполняются на кольцевом ферритовом сердечнике. В них используются две катушки (два провода) для двухпроводной сети, три - для трехпроводной и т. п. При этом встречная намотка проводов геометрически может быть реализована их сонаправленной намоткой на две половины ферритового кольца.

Z-образный дроссель фирмы Epcos выполняется намоткой двух проводов на кольцевом сердечнике, изготовленном из металлического порошка и имеющем высокий порог насыщения, что линеаризует ВАХ катушек и уменьшает опасность искажений, связанных с их нелинейностью.

Ниже приводится ряд конкретных примеров фильтров ЭМП Epcos с принципиальными схемами и пояснением особенностей.

Пример A1: du/dt-фильтр ЭМП Epcos серии B84110-B c подавлением синфазной помехи (без Y-конденсаторов).

Данный фильтр используется для защиты импульсных блоков питания, телевизоров, компьютеров, промышленного и портативного оборудования. Применение фильтров асимметричных помех, в частности, значительно снимает ограничения по длине кабеля, подводимого к двигателю от преобразователя при промышленном применении.

Пример А2: фильтр ЭМП Epcos серии SIFI-D (номер B84114-D) c подавлением синфазной помехи и Y-конденсаторами6 (в дополнение к Х-конденсаторам фильтра B84110-B). Резистор на входе (рис. 3), установленный параллельно Х-конденсатору, предназначен для его разряда (конденсатора большой емкости).

Для компенсации нескольких видов помех ставится комбинация дросселей (последовательная и т. п.).

Пример А3: фильтр ЭМП Epcos серии SIFI-E (номер B84115-E). Он отличается от предыдущего дополнительно подключенным Z-образным дросселем для дополнительного ослабления симметричной помехи (рис. 4).

На рис. 5 приведены сравнительные характеристики вносимого затухания (по симметричным помехам) для двух серий фильтров. Из него видно, что первый фильтр имеет значительно меньший уровень подавления частот в полосе до нескольких сотен килогерц.


Рис. 5

Кроме связанных катушек в составе фильтров ЭМП Epcos часто присутствует многозвенный (проходной) конденсатор. Собственная индуктивность такого конденсатора весьма мала. При этом он может компенсировать как противофазную, так и синфазную помехи.

Фирма Epcos предлагает фильтры ЭМП, рассчитанные на подавление помех в широком диапазоне высоких и сверхвысоких частот, начиная от частоты примерно 10 кГц вплоть до 40 ГГц и выше. При этом средняя ширина полосы частот подавления всех фильтров составляет около 1 МГц. Среди различных моделей фильтров ЭМП Epcos можно выделить, в частности, специальные, с заданным током утечки.

Параметры фильтра накладывают отпечаток на возможные области его применения. Область применения конкретного фильтра Epcos более точно можно определить из фирменного каталога и на сайте www.epcos.com в Интернете. Ниже перечислен ряд сфер (но не все возможные), где целесообразно применение фильтров ЭМП Epcos.

1. Модульные системы автоматизированного (плавного) пуска приводов электродвигателей («Активный терминал»/AFE) с помощью мощных полупроводниковых ключей (IGBT-транзисторов), управляемых постоянным напряжением. Ключи коммутируются постоянным напряжением с выхода преобразователей напряжения (переменное/постоянное). Например:

  • станки с ЧПУ;
  • лифты и т. п.

2. Преобразователи напряжения электрогенераторов (ветряных электростанций и т. п.).

3. Транспорт, например:

  • конверторные приводы современных городских рельсовых средств, в частности, трамваи;
  • метро, электропоезда и т. п.;
  • транспортные средства, требующие малого тока утечки (при сложной процедуре заземления), в частности троллейбусы и т. п.;
  • скоростные поезда (дальние).

4. Приводы сталепрокатных станов (помехи при мощной коммутации, а также регулировке скорости вращения приводов подачи листа).

5. Конвейерные (лентопротяжные) линии.

6. Фильтры для импульсных блоков питания и UPS.

7. Насосы.

8. Системы нагрева, вентиляции и кондиционирования (HVAC-системы).

9. Фильтры для подавления наводок сигналов в установках/шкафах с большой концентраций блоков электронного оборудования (при малом объеме пространства).

10. При использовании силовых кабелей в качестве проводников для связных коммуникаций (домашний Интернет, а также охранные системы с ограниченным числом проводов в кабеле ввода).

11. Фильтры для передачи данных и телефонных линий (ISDN и т. п.).

Примеры применения фильтров ЭМП

Домашний Интернет: передача данных внутри дома и между домом и силовой подстанцией (рис. 6). Подавление помех при использовании силовых кабелей в качестве проводников связных коммуникаций. В отсутствии фильтра ЭМП, радиоэлектронное оборудование абонента зашумлено наводками от сетевого напряжения.


Рис. 6

Приведенная на рис. 7 схема используется для преобразователей напряжения электрогенераторов. Сам преобразователь необходим из-за того, что параметры сигнала, например амплитуда напряжения, формируемого на выходе генератора, обычно не соответствуют параметрам сети. Фильтры же ЭМП защищают генератор (к примеру, ветряной электростанции) от проникновения высокочастотных помех из преобразователя напряжения.


Рис. 7

Модульные системы автоматизированного плавного пуска приводов электродвигателей «Активный терминал»/AFE (рис. 8).


Рис. 8

IGBT-транзисторы, активизируемые простым постоянным напряжением с выхода преобразователя, обеспечивают быстрое подключение или отключение приводов двигателей значительной мощности. На входе преобразователя - сетевое трехфазное синусоидальное напряжение, а на выходе - постоянное напряжение. Однако быстрая коммутация силовой цепи является источником высокочастотных помех. В результате проникновения помехи на вход, напряжение между фазами сети искажается (возникает помеха симметричного типа). Уровень асимметричной помехи также может быть значительным из-за протяженного кабеля от преобразователя напряжения до внешней сети. Фильтр8 ЭМП Epcos, установленный на входе преобразователя, компенсирует практически без остатка обе помехи, «развязывая» преобразователь и внешнюю сеть.

Муниципальный рельсовый транспорт (трамваи). Фильтр ЭМП устанавливается между преобразователем напряжения электродвигателя и питающей (контактной) линией (рис. 9).


Рис. 9

В заключение можно констатировать широкие и разнообразные возможности фильтров ЭМП фирмы Epcos для решения задач ЭМС силовых ТС.

В последние годы ваш HiFi или даже High-End аудио комплекс всё меньше радует детальностью, сочностью и прозрачностью звучания? Вы подумываете обновить всю систему? Или вы уже подыскиваете качественный сетевой фильтр ? Если последнее - вы на верном пути 😉

Посчитаем?

В этом веке количество источников электромагнитных помех в наших домах растёт по экспоненте. Оглядитесь, попробуйте посчитать, сколько на вид безобидных лёгких и маленьких зарядных устройств, экономичных ламп, "электронных трансформаторов" для галогенок, компьютеров, принтеров, и прочей электроники с питанием от сети и/или всевозможными "зарядниками" пришло в ваш дом за последнее десятилетие? Пальцев не хватило, даже вместе с ногами, женой и... то-то! 🙂

Сегодня пожалуй 95% источников сетевого питания построены на базе высокочастотного преобразователя и не используют старые громоздкие и тяжёлые, гудящие трансформаторы на 50 (60) Герц. Ура, партия зелёных торжествует: большинство таких преобразователей весьма экономичны, компактны и... каждый такой импульсный блок питания а ) свистит на частоте преобразования и гармониках и б ) создаёт броски зарядного тока во входном выпрямителе (весьма широкополосная помеха - и прямиком в сеть).

В по-настоящему качественных (и дорогих) импульсных источниках питания с помехами борются весьма успешно, но всё равно недостаточно, чтобы весь производимый ими электромусор остался незаметным для чувствительных ушей меломана. Да что там меломаны... У нас в доме старый добрый 39-мегагерцовый радио-телефон. Постепенно он начал гудеть и жужжать так, что я серьёзно собирался сменить аппарат. Но пользуемся мы им относительно редко и проблема однажды решилась сама собою, когда я в погоне за красивым звуком повырубал к чертям все импульсные блоки питания вкупе с компьютерами в доме. После того эксперимента, кстати, и появились у нас вот эти .

Так что же покупить?

В этой статье я не подскажу, какой сетевой фильтр надо покупать. Причины две: за разумные деньги я не встречал адекватных фильтров; а те фильтры, что я мог бы порекомендовать - стоили совершенно несообразно, да и места занимали много больше, чем выполняемая ими функция того требует. Тем не менее решение существует: для умелых рук - собирать фильтры самому, и я постараюсь разъяснить его работу настолько, что любой, кто дружен с паяльником, сможет снабдить свою аппаратуру адекватной защитой от электромагнитных помех, проникающих из питающей сети. Если же вы не имеете возможности, либо желания дышать канифолью - покажите статью товарищу, который сможет вам помочь.

Грамотные производители должны были всё предусмотреть!

Фиг-вам! (изба такая индейская (с) кот Матроскин)

Открываем CD-проигрыватель, купленный в своё время за шесть сотен "зелёных". И что мы видим: рудиментарный сетевой фильтр тут имеется, но увы, лишь нарисованный шелкографией на плате, на дросселе и конденсаторах сэкономили. Вполне допускаю, что в их комнатах прослушивания, с идеальной фильтрацией питания, фильтр тот был и не нужен - не услышали "гуру" разницы от отсутствия фильтра. Ну и внесли "рацуху" - пошёл аппарат в массы голенький и беззащитный супротиву нового поколения электронных домов...

За работу!

В принципе, качественные фильтры промышленность выпускает. Только стОят они опять же дороговато. Этакие полностью экранированные коробочки со схемкой на боку. Катушечки там, конденсаторчики. Давайте же разберёмся, что там для чего, и соберём сами из доступных деталюх. Кстати, в пику аудиоманьякам я утверждаю, что грамотный сетевой фильтр в устройстве, собранный из качественных обычных (не аудиофильских) компонентов - гораздо эффективнее и "звучит" лучше, нежели любые самые эзотерические кабели питания, а так же и большинство "аудиофильских" же фильтров питания. Спорим? 😉

Скажи мне, кто твой враг

1) Дифференциальное напряжение помехи. Это такой "вредный" сигнал, который приходит вместе с "полезным" напряжением питания (или сигналом), его измеряют между двумя соединительными проводниками, "горячим" и "общим" проводами, или проще говоря - между двумя шинами питания.

2) Синфазное напряжение помехи. Этот сигнал измеряется между корпусом прибора (землей) и любым соединительным проводником. Особенность этой помехи в том, что она будет идентична на обоих проводах питания, т.е. в отличие от дифференциальной помехи её не поймать между проводами и она просачивается внутрь в обход обычных фильтров.

Блокировочный конденсатор

Конденсатор шунтирует дифференциальные ВЧ помехи и не пускает их дальше в аппарат. Надо не забыть разрядить его при выключении аппарата, а то взявшись нечаянно за вилку можно получить весьма ощутимую "мотивацию". Для этого ставим резистор, мирно греющийся в нормальном режиме работы. Ох не водить мне дружбы с "зелёными"...

Дроссель

Индуктивность (обыкновенный небольшой дроссель) формирует уже Г-образный LP фильтр с совместно с конденсатором. Конкретная частота среза фильтра нас не очень интересует. Дроссель потолще (лишь бы был рассчитан на _постоянный_ ток в несколько раз выше тока, потребляемого аппаратом), конденсатор побольше на напряжение не менее 310 вольт - и все довольны.

Синфазный трансформатор

Обмотки в таком трансформаторе идентичны и включены встречно, таким образом он беспрепятственно пропускает всё, что приходит как разница потенциалов между L и N. Иначе можно объяснить так: нормальный ток нагрузки создаёт встречные идентичные поля в сердечнике, которые взаимно компенсируются. Тогда зачем это всё - спросите вы?

Сердечник такого трансформатора остаётся неподмагниченным основной нагрузкой. Если же представить себе провода питания L и N вместе как один провод - то мы имеем немалую индуктивность на пути уже синфазной помехи, т.е. всего того, что наводится на обоих проводах одновременно. Провода же те, будь то обычный кабель питания за доллар, или экзотическое аудиофильское чудо - суть антенна, принимающая и станцию "Маяк", и всё, что излучают домашние электронные вонючки. Внутри же аудио агрегата нам и синфазная помеха ни к чему: через емкостную связь она может проникать в кишочки наших любимцев весьма агрессивно.

Два маленьких компаньона

Два маленьких конденсатора в компанию синфазному трансформатору. Они закорачивают на защитное заземление именно синфазную помеху и создают уже вкупе с синфазным трансформатором тоже своего рода Г-образный фильтр для синфазной помехи, не пускают её дальше в аппарат. Без них синфазная помеха, пусть и встретившая на своём пути немалое сопротивление нашего трансформатора - всё равно пойдёт искать свою жертву внутрь аппарата.

Антизвон

Антизвонная цепочка, или RC-цепь Цобеля. Несколько мистический зверёк, но очень полезный. Тут совместно с первичной обмоткой трансформатора в аппарате мы формируем колебательный контур с низкой добротностью, чтобы "поймать" то, что "выскочит" из первички при отключении питания. Искрогаситель. Защита остального фильтра и самого трансформатора от ЭДС самоиндукции при отключении в неудачный момент (при большом токе через первичку). Он так же вносит свою лепту в перевод ВЧ помех в тепло.

Не было бы конденсатора - такой низкоомный резистор просто взорвался бы от напряжения сети. Не было бы резистора - получили бы относительно высокодобротный контур совместно с первичкой и/или дросселем фильтра.

Другой взгляд: привносим чисто резистивную и весьма низкоомную составляющую импеданса нагрузки на ВЧ... Кто может объяснить лучше - милости прошу, помещу "в книжку" с сохранением авторства 😉

#ground_loop

Разрываем контур заземления

Резистор в параллель со встречно включенными диодами. В другой версии это мог бы быть дроссель. Включено это дело между защитным заземлением и корпусом прибора. Зачем, спросите вы - это, вроде, к фильтрации помех никакого отношения не имеет? Давайте разбираться.

Встречно включенные диоды успешно закоротят любую сильноточную утечку внутри корпуса прибора (коротыш какой, пробой) на защитное заземление. Тем самым мы соблюдаем требования техники безопасности: в случае аварии на корпусе прибора не должно появится опасного для жизни и здоровья человека напряжения. При этом диоды "разрывают" цепь для небольших напряжений.

Резистор создаёт путь для небольших токов. Если бы его не было, а внутренности прибора неплохо отвязаны от земли, то даже небольшие утечки создавали бы избыточный размах напряжения на корпусе относительно земли, и через емкостные связи это всё проникало бы в прибор.

Так для чего же всё-таки "отвязывать" защитную землю от корпуса? Дело в том, что на защитном заземлении могут наводиться напряжения: например той самой синфазной помехой, что мы отфильтровываем. Так же, увы, нередко встречается такая разводка сети, когда защитное заземление одновременно является и возвратным проводом для собственно напряжения сети. В этом случае даже на небольшом сопротивлении проводки немалый ток потребления создаёт ощутимое падение напряжения. Все эти факторы могут "разогнать" в нормальных условиях до десятков и даже сотен милливольт разницы потенциалов между защитными заземлениями разных агрегатов. Теперь, если мы передаём аудио-сигнал через соединения, заведённые одним проводом на корпус (RCA разъёмы "колокольчики", к сожалению так популярные в бытовом HiFi), то эта самая разность потенциалов между корпусами приборов будет напрямую замешана в сигнал.

Итого, отвязывая корпус прибора (а в большинстве случаев это значит - и сигнальную землю оного) от защитного заземления, мы тем самым ощутимо уменьшаем замешивание любых "чудачеств", что могут случиться в розетке - прямиком в сигнал. Конечно же, уважающий себя любитель качественного звуковоспроизведения будет использовать исключительно балансные соединения, иммунные к синфазной помехе. Только, увы, у меня ещё не все аппараты соединены исключительно балансными кабелями. А как с этим дело обстоит у вас, дорогой читатель? 😉

Собираем

Выключатель питания пристроен по принципу - где меньше искра будет. В остальном фильтр не сильно отличается от того, что ставят в дорогих компьютерных блоках питания. Кстати, оттуда же можно и детальками разжиться.

Тот фирменный аппарат, что я упомянул вначале статьи, тоже получил свою дозу фильтрации, подробности .

А ещё лучше - можно?

Можно! Экстремалы включают "встречно" огромные трансформаторы и фильтруют всё в низковольтной части. Результат несколько лучше, бюджет - на порядки выше.

Или возможно, вы захотите подарить своему лучшему другу - меломану недорогой подарок, за который он будет вам искренне благодарен? 😉 Взвесьте все за и против, и примите верное решение! .

This entry was posted in , by . Bookmark the .

Комментарии ВКонтакте

155 thoughts on “Сетевой фильтр для аудио — своими руками

Подавитель импульсных помех для Р399А.

На протяжении последних нескольких месяцев с включением уличного освещения мне практически стало незвоможно работать в эфире из-за наличия сильных помех от ламп типа ДРЛ. Аппарат у меня не импортный, а трансиверизированный Р399А который применяется в качестве базового блока для УКВ (“Гиацинт” используется в качестве опорного генератора в синтезаторах ВЧ подставок для приставок). Пойдя в отпуск, решил как-то побороться с возникшей проблемой и в течение недели был сконструирован предлагаемый вниманию “Подавитель импульсных помех (ПИП)”.

Принципиальная схема устройства представлена на рис.1. ПИП состоит из двух узлов: пикового детектора и узла подавления импульсов. Включается устройство между вторым смесителем и УПЧ (тракт 215 кГц).

Схема пикового детектора с некоторыми доработками была позаимствована из журнала “Ham Radio, 2, 1973, W2EGH”, в частности были добавлены цепочки D1, R6, S1 и D2, R7, S2, а узел подавителя выполнен по схеме управляемого аттенюатора R16, C18, Q4, введение которого, кроме прочего, несколько улучшило динамический диапазон АРУ приёмника. Применение обычных для этих устройств LC линий задержки выявленного преимущества не дало. Вероятно по причине их узкополосности из-за низкой ПЧ и как следствие “растяжки” импульса помехи. Применение на входе пикового детектора широкополосного усилителя на транзисторе КТ610А обусловлено необходимостью получения неискажённого сигнала на выходе с амплитудой до 20в и соответственно минимального воздействия на длительность и форму исходного импульса помехи. Применение дополнительной АРУ в усилителе только ухудшало его работу, а вот введение цепочки D2, R7 автоматически блокирует работу ПИП при наличии мощного полезного сигнала (проверено до +60 дБ по реальному сигналу с эфира при полном усилении R1). S1 – “Глубокое подавление” позволяет устранять даже мелкие помехи только при очень низких уровнях полезного сигнала (проверено при приёме ЕМЕ станций в моде JT65B), при силе сигнала с S2 и более происходит накладка продетектированной огибающей на сигнал. Качество декодирования в режиме FSK441 реально пока не проверялось.

Схема ПИП пока находится в стадии доработок, но, тем не менее, она уже сейчас может оказать хорошую услугу для реальной работы в эфире тем, кто в этом нуждается. Также приветствуется любая доработка и публикация, улучшающая параметры устройства.