Фотодиоды принцип работы основные характеристики. Фотодиоды. Виды и устройство. Работа и характеристики

В электротехнике широко используются различные приборы и устройства, связанные с особенностями и физическими свойствами материалов. Среди них особое место занимают фотодиоды, принцип работы которых основан на воздействии оптического излучения. В результате, материал изменяет свои качества, что позволяет ему выполнять различные функции в электрических цепях.

Принцип действия фотодиода

Простой фотодиод является обыкновенным полупроводниковым диодом с р-п-переходом, на который оказывает действие оптическое излучение. При полном отсутствии светового потока, диод находится в состоянии равновесия и обладает обычными свойствами.

Действие излучения направлено перпендикулярно относительно плоскости, где расположен р-п-переход. Энергия, с которой поглощаются фотоны, превышает ширину запрещенной зоны, что приводит к возникновению электронно-дырочных пар. Данные пары, состоящие из электронов и дырок, получили наименование фотоносителей.

Когда фотоносители проникают внутрь п-области, электроны и дырки, в основной массе не успевают распадаться на составляющие и подходят непосредственно к границе р-п-перехода. В этом месте происходит разделение фотоносителей с помощью электрического поля. В результате, дырки попадают в р-область. Электроны же не в состоянии пройти через поле, окружающее переход, поэтому начинается их скапливание возле п-области и у границы перехода. Таким образом, прохождение тока через переход полностью зависит от движения дырок. Данный вид тока с участием фотоносителей получил название фототока.

Под воздействием фотоносителей-дырок в р-области по отношению к п-области возникает положительный заряд. Таким же образом, п-область заряжается отрицательно относительно р-области. Происходит возникновение разности потенциалов, именуемой фото-ЭДС. Ток, сгенерированный в фотодиоде, имеет обратное значение и направление от катода к аноду. Величина этого тока возрастает в зависимости от увеличения степени освещенности. Работа фотодиодов может осуществляться в двух режимах. В первом случае используется фотогенераторный режим, не предусматривающий внешний источник электроэнергии. В режиме фотопреобразователя необходимо использование внешнего источника электроэнергии.

Режим фотогенератора позволяет использовать фотодиоды как источники питания, преобразующие солнечное излучение в электрическую энергию. Они используются в качестве . Коэффициент полезного действия элементов на основе кремния составляет примерно 20%. КПД у пленочных конструкций может быть значительно выше.

В работе фотодиодом нередко используется свойство обратимого электрического пробоя. В результате, количество носителей заряда умножается лавинообразно, по аналогии с полупроводниковыми стабилитронами. Происходит значительный рост фототока и чувствительности фотодиодов. Данное значение превышает обычные параметры в сотни раз.

Частота лавинных фотодиодов достигает величины до 10 ГГц, что позволяет использовать их в качестве быстродействующих фотоэлектрических приборов. Единственным недостатком этих устройств является повышенный уровень шума. Фотодиоды очень часто используются в паре со светодиодами. Они размещаются в общем корпусе, при этом, расположение светочувствительной площадки фотодиода наиболее оптимально к излучающей светодиодной площадке. Данные приборы получили название оптронов. Электрические связи совершенно не касаются входных и выходных цепей, поскольку сигналы передаются путем оптического излучения.

Характеристики фотодиодов

Если рассматривать в целом непосредственно фотодиоды, принцип действия и другие параметры этих устройств, следует отметить то, как выходная мощность соотносится с общей массой и площадью солнечной батареи. Максимальное значение этих параметров может достигать соответственно 200 ватт на 1 кг и 1 киловатт на 1 м2.

Кроме того, значение имеет вольт-амперная характеристика, в которой выходное напряжение зависит от выходного тока. Значение спектральных характеристик показывает соотношение фототока и величины световых волн, падающих на фотодиод. Максимальное значение данного параметра находится в прямой зависимости от того, насколько возрастает коэффициент поглощения.

Фототок и освещенность определяют световую характеристику фотодиода. Обе величины имеют между собой прямую пропорциональную зависимость. Эта величина представляет временной отрезок, на протяжении которого происходят изменения после того как фотодиод освещен или затемнен. Показатель соотносится с установленным значением. Фотодиод также характеризуется в соответствии с сопротивлением при отсутствии освещения и другими параметрами, определяющими его работоспособность и область практического применения.

ХАРАКТЕРИСТИКИ ФОТОДИОДА

Основными характеристиками фотодиода являются: ВАХ, световая и спектральная.

Вольт-амперная характеристика . В общем случае (при любой полярности U) ток фотодиода описывается выражением (1). Это выражение представляет собой зависимость тока фотодиода I ф от напряжения на фотодиоде U при разных значениях потока излучения Ф, т.е. является уравнением семейства вольт-амперных характеристик фотодиода. Графики вольт-амперных характеристик приведены на рис. 1.7.

Рис. 1.7 ВАХ фотодиода.

Семейство вольт-амперных характеристик фотодиода расположено в квадрантах I, III и IV. Квадрант I – это нерабочая область для фотодиода: в этом квадранте к p-n переходу прикладывается прямое напряжение и диффузионная составляющая тока полностью подавляет фототок (I p - n >> I ф). Фотоуправление через диод становится невозможным.

Квадрант III – это фотодиодная область работы фотодиода. К p-n переходу прикладывается обратное напряжение. Следует подчеркнуть, что в рабочем диапазоне обратных напряжений фототок практически не зависит от обратного напряжения и сопротивления нагрузки. Вольт-амперная характеристика нагрузочного резистора R представляет собой прямую линию, уравнение которой имеет вид:

E обр - I ф · R = U,

где U обр – напряжение источника обратного напряжения; U – обратное напряжение на фотодиоде; I ф – фототок (ток нагрузки).

Фотодиод и нагрузочный фоторезистор соединены последовательно, т.е. через них протекает один и тот же ток I ф. Этот ток I ф можно определить по точке пересечения вольт-амперных характеристик фотодиода и нагрузочного резистора (рис 1.7 квадрант III) Таким образом, в фотодиодном режиме при заданном потоке излучения фотодиод является источником тока I ф по отношению к внешней цепи. Значение тока I ф от параметров внешней цепи (U обр, R) практически не зависит (Рис 1.7.).

Квадрант IV семейства вольт-амперных характеристик фотодиода соответствует фотогальваническому режиму работы фотодиода. Точки пересечения вольт-амперных характеристик с осью напряжения соответствуют значениям фото-ЭДС E ф или напряжениям холостого хода U хх (R н = ∞) при разных потоках Ф. У кремниевых фотодиодов фото-ЭДС 0,5-0,55 В. Точки пересечения вольт-амперных характеристик с осью токов соответствуют значениям токов короткого замыкания I кз (R н = 0). Промежуточные значения сопротивления нагрузки определяются линиями нагрузки, которые для разных значений R н выходят из начала координат под разным углом. При заданном значении тока по вольт-амперным характеристикам фотодиода можно выбрать оптимальный режим работы фотодиода в фотогальваническом режиме (Рис. 1.8). Под оптимальным режимом в данном случае понимают выбор такого сопротивления нагрузки, при котором в R н будет передаваться наибольшая электрическая мощность.

Рис.1.8. ВАХ фотодиода в фотогальваническом режиме.

Отимальному режиму соответствует для потока Ф1 линия нагрузки R 1 (площадь заштрихованногопрямоугольника с вершиной в точке А, где пересекаются линии Ф 1 и R 1 , будет наибольшей – рис.1.8). Для кремниевых фотодиодов при оптимальной нагрузке напряжение на фотодиоде U=0,35-0,4 В.

Световые (энергетические) характеристики фотодиода – это зависимость тока от светового потока I = f(Ф):

Рис. 1.9. Световая характеристика ФД.

В фотодиодном режиме энергетическая характеристика в рабочем диапазоне потоков излучений линейна.

Это говорит о том, что практически все фотоносители доходят до p-n перехода и принимают участие в образовании фототока, потери неосновных носителей на рекомбинацию не зависят от потока излучения.

В фотогальваническом режиме энергетические характеристики представляются зависимостями либо тока короткого замыкания I кз, либо фото-ЭДС E ф от потока излучения Ф. При больших потоках Ф закон изменения этих зависимостей существенно отклоняется от линейного (рис. 1.10).

Фотодиодный режим

Рис.1.10.Световые характеристики ФД

Для функции I кз = f(Ф) появление нелинейности связанно с ростом падения напряжения на объемном сопротивлении базы полупроводника. Снижение фото-ЭДС объясняется уменьшением высоты потенциального барьера при накоплении избыточного заряда электронов в n-области и дырок p-области.

Диодный режим имеет по сравнению с генераторным следующие преимущества:

· выходной ток в фотодиодном режиме не зависит от сопротивления нагрузки, в генераторном режиме максимальный входной ток может быть получен только при коротком замыкании в нагрузке.

· фотодиодный режим характеризуется высокой чувствительностью, большим динамическим диапазоном преобразования оптического излучения, высоким быстродействием (барьерная емкость p-n перехода уменьшается).

Недостатком фотодиодного режима работы является зависимость темнового тока (обратного тока p-n перехода) от температуры.

Основными параметрами являются:

· темновой ток I т.

· рабочее напряжение U раб – напряжение, прикладываемое к диоду в фотопреобразовательном режиме.

· Интегральная чувствительность K ф.

Фотодиод может работать в фотодиодном и гальваническом режиме.

В фотодиодном режиме p-n переход смещается обратным напряжением величина которого зависит от конкретного фотодиода от единиц до сотни вольт, чем больше смещение тем быстрее он будет работать, и больше токи через него будут течь.

Недостаток фотодиодного режима в том, что с ростом обратного тока, в последствии увеличения напряжения или освещения, увеличивается уровень шумов, а уровень полезного сигнала в целом остается постоянным, считается, что в этом режиме диод имеет меньшую постоянную времени.

В фотогальваническом режиме к диоду не прикладывается ни какое напряжение, он сам становится источником ЭДС с большим внутренним сопротивлением.

Фотодиодная схема включения.

Приведенная схема (рис.1.) включения фотодиода является универсальной и подходит для тестирования и выбора, применительно к окончательной схеме своей конструкции.


Изменяя положение подстроечного резистора, в приведенной схеме, можно протестировать и выбрать оптимальный режим работы фотодиода.

Изменяя сопротивление резистора от минимального до максимального, можно подобрать наилучший режим смещения на фотодиоде.

Вывернув резистор на минимум, замкнув подвижный контакт на землю, мы переведем схему в фотогальванический режим.

Можно попробовать работу фотодиода и в прямом смещении (он все равно будет реагировать на свет), для этого надо поменять схему включения, перевернув диод.

Сопротивление в 50 Ком, не должно дать повредить фотодиод, а по переменной составляющей оно оказывается включенным параллельно с нагрузкой (меньше 5 КОм), и полезный сигнал практически не ослабляет. Конденсатор избавляет нас от постоянной составляющей. Если мы принимаеи импульсный сигнал то от постоянной составляющей, которая меняется в зависимости от фоновой засветки, лучше избавится сразу, смысла ее усиливать нет.

Еще одна стандартная схема включения фотодиода показана на рис.2.


В данной установке для уменьшения влияния шумов и наводок в схему добавлены буферные конденсаторы в цепи питания, накопительный конденсатор С3 и интегрирующая цепочка R2С4 на выходе.

C1- электролитический конденсатор большой ёмкости С = 100 мкФ, С2 - быстрый керамический 0,1 мкФ, С3, С4 - керамические по 100 пФ, R1 - 8 кОм, R2- 5,6 кОм.

Нагрузкой для достижения максимального быстродействия должен быть или каскад с общей базой (рис.3.) или быстродействующий операционник (рис.4.) включенный по схеме преобразователя ток-напряжение. Эти усилители имеют минимальное входное сопротивление.



Практическая схемотехника включения фотодиода со смещением (рис.5.).



Величина R фильтра подбирается в зависимости от засвечивания фотодиода в рабочем варианте с установленной оптикой, учитывается направление по азимуту (юг,запад и т.д.) в разных направлениях разные засветки от солнца.

Ёмкость Сф=0.1мкФ ещё и замыкает цепь фотодиода по высокой частоте на землю.

Вместо Rн можно поставить дроссель, либо трансформатор, надо смотреть, не будет ли искажений или затяжек импульсов или прочих подводных камней.

Включение фотодиода в каскад с общей базой.

Схема включения фотодиода ФД 263 в каскад с общей базой (рис.6.).



В схеме с ОБ - база разделяет входную и выходную цепи, и практически исключает влияние выходного напряжения на вход схемы (подобно экранной сетке в пентоде) по-этому имеется возможность увеличить нагрузочное сопротивление и получить больший размах напряжения на выходе схемы без ущерба для скорости.

Простейший фотодиод представляет собой обычный полупроводниковый диод, в котором обеспечивается возможность воздействия оптического излучения на р–n-переход.

В равновесном состоянии, когда поток излучения полностью отсутствует, концентрация носителей, распределение потенциала и энергетическая зонная диаграмма фотодиода полностью соответствуют обычной p-n-структуре.

При воздействии излучения в направлении, перпендикулярном плоскости p-n-перехода, в результате поглощения фотонов с энергией, большей, чем ширина запрещенной зоны, в n-области возникают электронно-дырочные пары. Эти электроны и дырки называют фотоносителями .

При диффузии фотоносителей в глубь n-области основная доля электронов и дырок не успевает рекомбинировать и доходит до границы p–n-перехода. Здесь фотоносители разделяются электрическим полем p–n-перехода, причем дырки переходят в p-область, а электроны не могут преодолеть поле перехода и скапливаются у границы p–n-перехода и n-области.

Таким образом, ток через p–n-переход обусловлен дрейфом неосновных носителей – дырок. Дрейфовый ток фотоносителей называется фототоком .

Фотоносители – дырки заряжают p-область положительно относительно n-области, а фотоносители – электроны – n-область отрицательно по отношению к p-области. Возникающая разность потенциалов называется фотоЭДС Eф. Генерируемый ток в фотодиоде – обратный, он направлен от катода к аноду, причем его величина тем больше, чем больше освещенность.

Фотодиоды могут работать в одном из двух режимов – без внешнего источника электрической энергии (режим фотогенератора) либо с внешним источником электрической энергии (режим фотопреобразователя).

Фотодиоды, работающие в режиме фотогенератора, часто применяют в качестве источников питания, преобразующих энергию солнечного излучения в электрическую. Они называются солнечными элементами и входят в состав солнечных батарей, используемых на космических кораблях.

КПД кремниевых солнечных элементов составляет около 20 %, а у пленочных солнечных элементов он может иметь значительно большее значение. Важными техническими параметрами солнечных батарей являются отношения их выходной мощности к массе и площади, занимаемой солнечной батареей. Эти параметры достигают значений 200 Вт/кг и 1 кВт/м2, соответственно.

При работе фотодиода в фотопреобразовательном режиме источник питания Е включается в цепь в запирающем направлении (рис. 1, а). Используются обратные ветви ВАХ фотодиода при различных освещенностях (рис. 1,б).

Рис. 1. Схема включения фотодиода в фотопреобразовательном режиме: а - схема включения, б - ВАХ фотодиода

Ток и напряжение на нагрузочном резисторе Rн могут быть определены графически по точкам пересечения ВАХ фотодиода и линии нагрузки, соответствующей сопротивлению резистора Rн. При отсутствии освещенности фотодиод работает в режиме обычного диода. Темновой ток у германиевых фотодиодов равен 10 - 30 мкА, у кремниевых 1 - 3 мкА.

Если в фотодиодах использовать обратимый электрический пробой, сопровождающийся лавинным умножением носителей заряда, как в полупроводниковых стабилитронах, то фототок, а следовательно, и чувствительность значительно возрастут.

Чувствительность лавинных фотодиодов может быть на несколько порядков больше, чем у обычных фотодиодов (у германиевых – в 200 – 300 раз, у кремниевых – в 104 – 106 раз).

Лавинные фотодиоды являются быстродействующими фотоэлектрическими приборами, их частотный диапазон может достигать 10 ГГц. Недостатком лавинных фотодиодов является более высокий уровень шумов по сравнению с обычными фотодиодами.

Рис. 2. Схема включения фоторезистора (а), УГО (б), энергетическая (в) и вольт-амперная (г) характеристики фоторезистора

Кроме фотодиодов, применяются фоторезисторы (рис 2), фототранзисторы и фототиристоры , в которых используется внутренний фотоэффект. Характерным недостатком их является высокая инерционность (граничная рабочая частота fгр

Конструкция фототранзистора подобна обычному транзистору, у которого в корпусе имеется окошко, через которое может освещаться база. УГО фототранзистора – транзистор с двумя стрелками, направленными к нему.

Светодиоды и фотодиоды часто используются в паре. При этом они помещаются в один корпус таким образом, чтобы светочувствительная площадка фотодиода располагалась напротив излучающей площадки светодиода. Полупроводниковые приборы, использующие пары «светодиод – фотодиод», называются (рис. 3).

Рис. 3. Оптрон: 1 – светодиод, 2 – фотодиод

Входные и выходные цепи в таких приборах оказываются электрически никак не связанными, поскольку передача сигнала осуществляется через оптическое излучение.

Потапов Л. А.


При поглощении световых квантов в p-n переходе или в примыкающих к нему областях генерируются новые носители заряда (электроны и дырки), которые проходя через него и вызывают появление напряжение на выводах фотодиода или протекание тока в замкнутой цепи. Величина, на которую возрастает обратный ток протекающий через переход, называют фототоком.

Фотодиод, в зависимости от материала из которого он изготовлен, используется для регистрации светового потока в оптическом инфракрасном, и ультрафиолетовом диапазоне. Эти радиокомпоненты обычно изготавливают из германия, кремния, арсенида галлия, индия и т.п.

В фотодиодном режиме применяется внешний источник питания, который смещает полупроводниковый прибор в обратном направлении. В этом случае через протекает обратный ток, пропорциональный падающему на него световому потоку. В рабочем диапазоне напряжений (то есть до наступления пробоя), этот ток практически не зависит от приложенного обратного напряжения.

В фотогальваническом режиме фотодиод работает в роли датчики или в роли слаботочного элемента питания, так как под воздействием светового потока на выводах фотоэлемента генерируется напряжение, зависящее от потока излучения и нагрузки.

Чтобы лучше разобраться с режимами работы этого компонента, рассмотрим его вольтамперную характеристику.


При отсутствии светового излучения график представляет собой обратную ветвь ВАХ типичного диода. Присутствует небольшой ток обратки, называемый темновым током обратно смещенного.

При наличии излучения, сопротивление фотодиода снижается и обратный ток увеличивается. Чем больший световой поток падает на фотоэлемент, тем больший обратный ток протекает через фотодиод. Зависимость в этом режиме линейная. Как видим из ВАХ обратный ток фотодиода практически не зависит от обратного напряжения.

Фотогальваническому режиму соответствует работа в четвертой четверти графика. И здесь можно выделить два предельных варианта: режим холостого хода и короткого замыкания.

Режим приближенный к холостому ходу применяется для получения энергии от фотодиода, хотя КПД у него невысокий. Но если соединить последовательно и параллельно много таких компонентов, то такой получившейся батареей можно запитать мало-потребляющую схему.

В режиме короткого замыкания, напряжение на фотоэлементе стремится к нулю, а обратный ток прямо пропорционален световому потоку. Этот режим применяется для построения фотодатчиков.

Характеристики фотодиода

Помимо ВАХ, рассмотренной выше существкует еще ряд основных параметров фотоэлемента.

Световая характеристика фотодиода , зависимость фототока от освещенности, которая прямопропорционально генерируемому фототоку от освещенности. Это объясняется тем, что толщина базы фотодиода гораздо меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, появившиеся в базе, учувствуют в образовании фототока.

Спектральная характеристика фотодиода - это зависимость фототока от длины волны светового потока воздействующего на фотоэлемент.

постоянная времени - в течение этого времени фототок фотоэлемента изменяется после освещения или после затемнения фотодиода по отношению к установившемуся значению.

темновое сопротивление - сопротивление радиокомпонента при отсутствии освещения.