Как проверить датчики на телефон Android, чтобы найти проблемы. Магнитный датчик в смартфоне: что это и как работает

Современные мобильные телефоны оборудованы вспомогательными датчиками, которые нужны для правильной работы устройства. Помимо этого, они увеличивают его многофункциональность. На некоторых моделях установлен датчик Холла в телефоне. Что это такое, зачем он нужен и как работает, описано ниже.

Что это?

Датчик Холла – это прибор, фиксирующий магнитное поле и его напряженность. В смартфонах используется упрощенный аналог устройства, который определяет только наличие магнитного поля без считывания его напряженности по осям.

Работа прибора основана на эффекте Холла, открытом в 1879 году. Если проводник, по которому течет электрический ток, поместить в постоянное магнитное поле, под его действием электроны отклоняются к одной из граней пластины. В этой части накапливается отрицательный заряд, в то время, когда на противоположной грани собирается положительный заряд. Процесс продолжается до того момента, пока образовавшееся электрическое поле не скомпенсирует магнитную составляющую силы Лоренца. Образованная разность потенциалов на краях пластины фиксируется датчиком Холла.

В смартфонах он представлен микросхемой, которая на выходе создает информационный сигнал в двух состояниях:

  • единица (сигнал подается);
  • ноль (сигнал отсутствует).

Мобильный телефон его считывает и в зависимости от состояния сигнала выполняет то или иное действие.

Важно! Датчик можно устанавливать рядом с микроконтроллерами или логическими элементами – он не влияет на их работу.

Узнать, есть ли датчик Холла в вашем гаджете, можно, прочитав инструкцию к смартфону, в которой это должно быть указано. Или сделайте так, как показано на видео.

Зачем нужен?

Этот прибор имеет широкий спектр возможностей в зависимости от системы, в которой используется. Но в смартфонах раскрыть его потенциал полноценно невозможно по нескольким причинам:

  • компактные размеры мобильного телефона;
  • сокращение потребления заряда аккумулятора;
  • нет необходимости.

В смартфонах датчик Холла используется в двух случаях:

  • в цифровом компасе и для улучшения геопозиционирования, обеспечивая быстрый «холодный» старт GPS-навигатора;
  • взаимодействие с магнитным чехлом для смартфона.

Принцип взаимодействия с магнитным чехлом

Магнитные чехлы блокируют/разблокируют экран гаджета при закрытии/открытии защитной крышки. Работу этой функции обеспечивает датчик Холла, встроенный в устройство: он реагирует на приближение/удаление магнита на флипе, в результате чего магнитное поле меняется. Это регистрируется датчиком, который подает смартфону команду на разблокировку/блокировку экрана.

В некоторых чехлах сделано окошко для отображения определенного участка экрана, на котором видны часы, сообщения, пропущенные вызовы и проч. Этот тоже эффект обеспечивается датчиком Холла, который определяет, нужно полностью заблокировать экран или оставить часть активной.

При этом сам магнит, встроенный в флип чехла, не вредит смартфону, что наглядно показано на видео.

В смартфонах и планшетах могут применяться сразу несколько датчиков, которые помогают устройству считывать дополнительную информацию. Некоторое время назад мы рассказывали об . Сегодня поговорим о другом датчике, а именно — о датчике Холла.

Что это такое?

Датчик Холла, использующийся в современных мобильных устройствах, представляет из себя измерительный элемент, который способен определять наличие, интенсивность и изменение интенсивности магнитного поля. Датчик назван по имени американского физика Эдвина Холла, в честь которого был назван открытый в 1879 году «эффект Холла» — явление возникновения поперечной разности потенциалов при помещении проводника с постоянным током в магнитное поле.

Суть в следующем: если в магнитное поле поместить пластину под напряжением, электроны в пластине начнут отклоняться перпендикулярно направлению магнитного потока. Плотность электронов на разных сторонах пластины будет различаться, что в свою очередь приводит к разности потенциалов, которую улавливает датчик Холла.

Вот как выглядит датчик:

Для чего нужен датчик Холла в планшете или смартфоне?

Сам по себе датчик обладает достаточно широкими возможностями, хотя обычно его применяют по своему прямому назначению, измеряя напряженность магнитного поля. В частности, датчик используется в ракетных двигателях, в системе зажигания ДВС, для измерения уровня жидкости и т.п.

Встречается датчик и в современных мобильных устройствах, однако его возможности реализованы не в полной мере. Датчик фактически используется только в двух задачах.

  • Первая — это ставший уже привычным для обладателей смартфонов цифровой компас, который в том числе применяется для улучшения позиционирования.
  • Вторая задача, куда более актуальная, — это взаимодействие с популярными чехлами для смартфонов и планшетов.

Магнитные чехлы

Вы наверняка видели так называемые магнитные чехлы как для смартфонов, так и для планшетов. Они позволяют блокировать и разблокировать устройство при открытии/закрытии чехла. При этом в некоторых случаях на чехле есть окошко, где выводится определенная информация, например, время или уведомления.

Как это возможно? Установленный в устройстве датчик Холла реагирует на магнит, который расположен в самом чехле. Когда магнит расположен близко к устройству, датчик регистрирует усиление излучения, в результате чего блокирует дисплей. Когда пользователь открывает флип-чехол (чехол-книжка), датчик фиксирует уменьшение интенсивности излучения и разблокирует экран.

Современный смартфон — это не просто звонки и SMS, а намного большее. Но сегодня мы поговорим не о том, как выходить с этих устройств в интернет, не о их гиперкоммуникационных возможностях и не о преимуществах той или иной мобильной операционной системы. Статья будет посвящена датчикам и сенсорам, которыми разработчики оснащают современные устройства, чтобы их функциональность стала еще более разнообразной. Итак, что такое датчики и сенсоры? Это микроустройства в самом смартфоне (плеере, планшете, навигаторе, ноутбуке, цифровой фотокамере, игровой консоли и т.д.), которые делают его умным, а также связывают с внешним миром. Без них смартфон не будет столь интересен и востребован, так как гаджет окажется без связи с окружающей средой. Именно с помощью датчиков и сенсоров появляется связь с миром вокруг, а значит, появляются новые удивительные функции.

Из основных датчиков и сенсоров, известных многим, и без которых сегодня не обходятся разве что совсем уж бюджетные мобильные телефоны, можно выделить следующие:

1. Proximity Sensor

2. Accelerometer

3. Light Sensor

4. Gyroscope Sensor

5. Magnetic Field Sensor (магнитный компас обычно не считают датчиком, но мы все-таки включили его в перечень)

Proximity Sensor (Датчик приближения)

Датчик приближения позволяет определить приближение объекта без физического контакта с ним. Например, датчик приближения, установленный на мобильном телефоне, позволяет отключать подсветку экрана при приближении телефона к уху пользователя во время разговора. То есть, его основная задача заключается в блокировании смартфона, чтобы пользователь не нажал случайно, скажем, щекой на отбой. Кстати, в данном случае экономится и заряд аккумуляторной батареи. Естественно, производители всячески пытаются расширить возможности этой функции. Например, год назад в Samsung Galaxy S3 появилась функция «Прямой вызов», которая при поднесении устройства к лицу позволяет звонить контакту, чьи сведения, журнал вызовов или данные о сообщениях отображаются на экране. Так же телефон с этим датчиком можно спокойно класть в карман или чехол, не боясь случайно совершить ненужный звонок.

Вообще, управление движениями — это следующий этап в общении между человеком и техникой, над чем сегодня работает масса производителей. Например, в прошлом году компания Pioneer представила модельный ряд автомобильных мультимедийно-навигационных GPS-систем, управлять которыми можно с помощью жестов. Pioneer назвала свою разработку «Air Gesture». Если пользователь подносит свою руку к передней части экрана мультимедийно-навигационной системы, она выводит окно с названием воспроизводимой в данный момент композиции и часто используемые команды управления: «Установить в качестве пункта назначения» и «Установить любимое место в качестве пункта назначения». Как только пользователь уберет руку от экрана, эти команды исчезнут, а навигационная карта снова отобразится на всем экране. Кроме того, путем перемещения рук по горизонтали, определенные функции, заданные пользователем, могут быть вызваны без нажатия кнопки. Можно установить одну из 10 функций, включая «Переключение между навигацией и AV-функциями» и «Пропуск воспроизводимой композиции / Воспроизведение предыдущей композиции». Датчик, который определяет движения руки, состоит из двух инфракрасных излучающих частей и одной приемной между ними. Когда рука движется к передней части экрана, приемный ИК-датчик обнаруживает отражения инфракрасного света. При горизонтально движущейся руке ИК-датчик определяет изменение таймингов инфракрасного излучения с правой и левой излучающих частей так, что становится понятным, в какую из сторон производится движение рукой. Кстати, производство моделей с пользовательским интерфейсом управления жестами Air Gesture уже началось.

Эта же функция реализована в новом флагмане Samsung Electronics — Galaxy S4. Кроме датчика приближения, рядом с фронтальной камерой расположен еще один датчик, который используется для распознавания жестов. Он распознает движения руки, принимая инфракрасные лучи, которые отражаются от ладони пользователя, и работает в паре с функцией Air Gesture, предоставляя пользователям возможность принять вызов, сменить музыкальную композицию или прокрутить web-страницу вверх или вниз буквально одним взмахом руки.

Accelerometer (Акселерометр)

Пожалуй, это самый распространенный датчик. G-сенсор, как его называют многие производители, сегодня можно встретить практически в каждом современном устройстве. Задача акселерометра проста — отслеживать ускорение, которое придается устройству. Вроде бы напрашивается вопрос, а зачем измерять ускорение смартфона? Но давайте задумаемся, в тот момент, когда мы переворачиваем телефон, происходит движения с ускорением. Акселерометр регистрирует его и, на основе полученных от него данных, запускает процесс, например, смены ориентации экрана. Датчик также используется для масштабирования страниц браузера при наклоне смартфона, обновление списка Bluetooth-устройств при встряске, в специфических приложениях, ну и, конечно же, в играх, особенно в симуляторах. Кроме этого, акселерометр используется в качестве карманного шагомера для подсчета количества шагов, сделанных пользователем.

В фотоаппаратах акселерометр используется для поворота отснятого кадра, а в ноутбуках — для срочной парковки головок жесткого диска, если вдруг компьютер падает. А в автомобилях он служит для срабатывания подушек безопасности при ударе. Проще говоря, акселерометр имеет дело с положением устройства в пространстве и наклоном корпуса, опираясь при этом на его ускорения при смене этого положения.

Light Sensor (Датчик освещенности)

Задачи этого датчика предельно просты и заключаются в том, чтобы определить степень наружного освещения и соответственно настроить яркость экрана. Благодаря такой автонастройке яркости, стала возможной экономия электроэнергии, особенно если вы хотите оптимизировать расход вашего аккумулятора. Пожалуй, это самый старый датчик в мобильном мире, и даже при том, что в работе этого датчика вроде бы нет никаких возможностей по улучшению функциональности, производители и в этом случае стараются сделать работу со смартфоном еще более комфортной.

Например, в мобильной операционной системе iOS 6 от Apple появилась возможность регулировки автояркости. Ранее датчик освещенности был полностью автоматизированным и регулировал яркость экрана на свое усмотрение. Теперь же пользователь получил возможность контролировать работу этого датчика. Вы можете легко определить уровень яркости, который комфортен для вас, и iOS принимает этот выбор во внимание при расчете уровня яркости для новых условий освещения. Однако для того чтобы датчик корректно функционировал, необходимо произвести небольшую настройку устройства.

Gyroscope Sensor (Гироскоп)

Если возможности акселерометра по большому счету исчерпаны, а сферы его применения четко ограничены, то устройство еще одного инерционного датчика, которым является гироскоп, в смартфонах освоены еще не до конца. История использования гироскопов берет свое начало еще в конце XIX века. Инерционные датчики на тот момент были распространены во флоте, так как с помощью гироскопа наиболее точно можно определить расположение сторон света. Позже, благодаря столь уникальной функции, гироскоп получил широкое распространение и в авиации. По своей конструкции гироскоп в мобильных телефонах напоминает классические роторные, представляющие собой быстро вращающийся диск, закрепленный на подвижных рамах. Даже при смене положения рам в пространстве ось вращения диска не изменится. Благодаря постоянному вращению диска, например, с помощью электромотора, и существует возможность постоянно определять положение объекта (в котором есть гироскоп) в пространстве, его наклоны либо крены.

Гироскопы в современных устройствах основаны на микроэлектромеханическом датчике, но принцип действия инерционного датчика остается тем же. В это же семейство входят акселерометры, магнитометрические и прочие узкоспециализированные датчики. Рынок этих миниатюрнейших элементов, также известных как MEMS, получил серьезный толчок для развития в тот момент, когда Apple начала устанавливать гироскоп в iPhone 4, а затем и в iPod Touch. Успешные продажи мобильных устройств привели к тому, что производители элементов MEMS успешно обосновались на мобильном рынке. Apple iPhone 4, где впервые был использован гироскоп и два MEMS-микрофона для подавления шума, произвел огромный эффект на индустрию телефонов. Например, в конце 2010 года менее пяти телефонов, выпущенных на рынок, могли похвастаться наличием гироскопа, а в 2011 году уже было представлено более 50 моделей телефонов и планшетов с гироскопом.

Гироскопы, встроенные в мобильные телефоны, делают качество игр наиболее высоким. С помощью данного датчика для управления игрой можно пользоваться не только обычным поворотом устройства, но и скоростью поворота, что обеспечивает более реалистичное управление. Кроме игр гироскоп используется в браузерах дополненной реальности для более точного позиционирования устройства в пространстве, а также в управляемых при помощи смартфонов на платформах iOS и Android радиомоделях летательных аппаратов.

Magnetic Field Sensor (Магнитный компас )

После прихода в наш мир GPS-приемников, появились и цифровые компасы, правда, в эпоху развития навигационных технологий от них не так много пользы. Магнитометр, как и привычный магнитный компас, отслеживает ориентацию устройства в пространстве относительно магнитных полюсов Земли.

Информация, полученная от компаса, используется в картографических и навигационных приложениях. На практике это устройство показало себя довольно хорошо и сегодня незаменимо в ряде игр и приложений, например, в браузере дополненной реальности Layar.

Прочие датчики и сенсоры

Барометр

Помогает с позиционированием и этот сенсор. Барометр стал появляться в смартфонах совсем недавно, с выходом Samsung Galaxy Nexus, и может уменьшить время подключения к сигналу GPS. Встроенный барометр измеряет атмосферное давление в текущем местоположении владельца смартфона и определяет высоту над уровнем моря. Многие флагманские смартфоны сегодня оснащаются не только приемниками GPS и ГЛОНАСС, но и барометром, благодаря чему захват сигнала от спутника и определение первоначального местоположения происходит мгновенно. Эта функция пригодится и в случае, когда пользователь передвигается по наклонным плоскостям, будь то холм или гора, потому что в зависимости от атмосферного давления и высоты, может подсчитать точное количество калорий, которые сжигаются во время прогулки. Ну и, соответственно, для определения давления и погодных условий прямо со своего смартфона.

Рассмотрим принцип работы этого датчика на примере смартфона Samsung Galaxy S III, где определение разницы давления может быть пересчитано около 25 раз в секунду. Такая скорость позволяет четко определять движение человека вверх и вниз, то есть использовать навигацию не только в горизонтальной плоскости, но и в вертикальной. Таким образом, мы получаем объемную навигацию, которая полностью соответствует действительности. Например, при навигации в торговом центре вам будет недостаточно обычного GPS-навигатора, так как он укажет точку на плоскости земли, а не то, на какой высоте находится ваш маршрут. А автомобильные навигаторы могут ориентироваться в многоэтажных парковках и многоярусных дорогах.

Датчик давления позволяет это осуществить, и вы получите не только точные координаты заданного места, но и информацию, на каком этаже или высоте пролегает ваш маршрут. Обычно подобные датчики включают в себя и систему обработки данные, а их размеры находятся в пределах 3х3х1 мм. Крошечный сенсор реагирует на изменения по высоте с точностью до 50 см. Методика реализована путем сравнения внешнего атмосферного давления по отношению к вакуумной камере внутри датчика. Помимо вакуумной камеры и сенсоров, в миниатюрном корпусе устройства поместились встроенный микропроцессор, аналоговый усилитель, цифровой со-процессор и элемент энергонезависимой памяти.

Датчик температуры/влажности

Такой датчик стал новым дополнением к Samsung Galaxy S4. Он определяет уровни температуры и влажности окружающей среды через небольшое отверстие, расположенное в основании смартфона. А потом датчик определяет оптимальный уровень комфорта и отображает эту информацию на экране приложения S Health. Кроме этого, температурный датчик позволяет откорректировать погрешности давления, вызванные изменением температуры воздуха. Те же, кто хочет незамедлительно воспользоваться возможностями температурного датчика, могут обратить внимание на разработку ученых компании Robocat.

Они создали крошечный электрический термометр Thermodo, который подключается к телефону через порт наушников. Thermodo состоит из пассивных датчиков температуры, встроенных в стандартное 4-полюсное гнездо для наушников в прочном корпусе. Никакого подключения к сети не требуется, устройство получает питание от телефона и потребляет мало энергии. Когда измерение температуры не требуется, Thermodo можно повесить на ключи в виде брелока. С помощью Thermodo можно измерить температуру как в помещении, так и на открытом воздухе.

3D-сенсор

Сенсор, который постоянно сканирует окружающее пространство и создает компьютерную виртуальную модель с высокой точностью. Что-то подобное представляет из себя Kinect, но новая версия планшета Google Nexus 10 получила сенсор намного компактнее и уже есть готовые приложения, которые могут работать на планшете и продемонстрировать возможности не только самых современных игр.

Помимо прочего, сенсор Capri 3D, который был представлен в рамках конференции Google I/O 2013 компанией PrimeSense, умеет регистрировать движения и получать метрические параметры предметов. Кстати, эта развитие этой технологии доказывает предположение IBM, что в середине этого десятилетия общения с помощью приложений для видеоконференций начнут напоминать 3D-голограммы.

Безопасность

Недавно профессор Суортмор колледжа (штат Пенсильвания, США) Адам Дж. Авив продемонстрировал возможность осуществления атак, используя данные, полученные акселерометром смартфона. Оказалось, что данные, полученные сенсорами смартфона, могут помочь злоумышленникам получить доступ к кодам разблокировки устройства. Они могут узнать Pin-коды и пароли пользователя. Получать информацию через сенсоры гораздо легче, чем через приложения, загружаемые на смартфон, утверждает профессор. Исследователи провели анализ данных, полученных акселерометром, и составили своеобразный «словарь» движений смартфона при введении пароля, после чего разработали программное обеспечение, позволяющее расшифровывать Pin-коды при помощи данных, полученных с акселерометра. В ходе исследований ученым удалось правильно определить Pin-код в 43% случаев, а пароль — в 73%. Система дает сбои, когда пользователь находится в движении во время использования устройства, так как движения создают дополнительные помехи, и получить от акселерометра точные данные весьма трудно.

Эксперты, занимающиеся мобильной безопасностью, также считают, что чем больше у смартфона сенсоров, тем больше данных они могут зафиксировать, а это значит, что проблема защиты устройства становится более острой. Сейчас исследователи разрабатывают методы для предотвращения утечки данных, собранных гироскопами, акселерометрами или другими сенсорами. Так что можно предположить, что с развитием технологий и расширением функционала датчиков ситуация в сфере безопасности будет только накаляться.

Перспективы

Недавно американский изобретатель Джейкоб Фрэйден основал компанию Fraden Corporation и запатентовал систему бесконтактного измерения температуры для мобильных устройств. На тыльной стороне смартфона размещается небольшой инфракрасный датчик, который всего за секунду может снять показания температуры тела пользователя. Таким образом, в будущем смартфоны вполне могут превратиться в наших персональных медицинских помощников. Фрэйден собирается создать также средства измерения ультрафиолетового излучения и электромагнитного загрязнения. А вот сотрудники из лаборатории Next Lab Массачусетского технологического института утверждают, что скоро датчики в смартфонах смогут обнаруживать аритмию и тахиакардию, что заставит пользователей своевременно обращаться за помощью к врачам.

По мнению специалистов из IBM, к 2017 году смартфоны получат обоняние. Крошечные датчики запаха могут быть встроены в смартфоны и другие мобильные устройства. Обнаруженные следы химических соединений будут передаваться на мощное облачное приложение, способное проанализировать все, начиная от угарного газа до вируса гриппа. В результате, если вы чихнули, телефон сможет рассказать вам о вашей болезни.

Все самое интересное только начинается, и сегодня работы идут по массе направлений. Например, не исключено, что в ближайшем будущем ваш смартфон с помощью определенного рода датчиков научится имитировать тактильные ощущения. Вы сможете различать ткани, текстуры и переплетения. А звуковые датчики в сочетании массивными облачными вычислительными системами получат сверхчеловеческие слуховые возможности. Эх, чего только нельзя предположить, тем более, что масса предположений, расчетов и даже фантазий в последние годы стала сбываться с удивительной скоростью.

Какие составляющие можно отметить, рассматривая корпус смартфона? Это, прежде всего, довольно большой дисплей, несколько клавиш под ним, микрофон и несколько окошек камеры. Кроме того, на торцах устройства наверняка найдётся порт microUSB, качелька регулировки громкости, выход для наушников и клавиша блокировки. Но заканчиваются ли на этом компоненты устройств? Конечно же, нет. Внутри него нашлось место для нескольких процессоров, многих схем и, что особенно важно, нескольких разнообразных датчиков. Какие из них можно найти в современных девайсах? Давайте узнаем.

Акселерометр

Как сообщают наши коллеги из phonearena , акселерометр является одним из наиболее распространённых датчиков. Согласно классическому определению, его задачей является расчет разности между истинным ускорением объекта и гравитационным ускорением.
О способах его применения вы наверняка наслышаны. Без акселерометра смартфоны вряд ли бы меняли портретную ориентацию на ландшафтную и обходились без нажатий пользователя во всевозможных симуляторах гонок.

Гироскоп

Гироскоп также предоставляет данные о положении устройства в пространстве, однако делает это со значительно большей точностью. Именно благодаря его помощи приложение Photo Sphere узнает, на сколько градусов был повёрнут смартфон, и в каком направлении это было проделано.

Магнитометр

Всё верно, магнитометр создан для определения магнитных полей. Не будь его внутри смартфона – приложению компаса вряд ли бы удалось понять, где находится северный полюс.

Данный сенсор является соединением инфракрасного диода и детектора инфракрасного излучения. Принцип его работы невероятно прост. Диод излучает невидимое для человеческого глаза излучение, а детектор пытается уловить его отражение. Смартфон блокирует дисплей именно тогда, когда луч попадает обратно.

Датчик света

Самостоятельно изменять яркость дисплея – то еще занятие, верно? То ли дело функция автояркости, которая меняет уровень яркости экрана в зависимости от окружающего излучения. Возможно это, как вы уже наверняка догадались, благодаря датчику света.
Стоит отметить, что некоторые представители линейки Galaxy от южнокорейского производителя Samsung используют обновлённый датчик света. Главной его особенностью является умение измерять долю белого, красного, зелёного и синего света для дальнейшей настройки картинки на экране.

Барометр

Нет, это не ошибка. Некоторые смартфоны действительно оснащены встроенным барометром для измерения уровня атмосферного давления. Среди первых девайсов с данной особенностью были XOOM и Samsung Galaxy Nexus.
Барометр также используется для измерения высоты над уровнем моря, что увеличивает точность работы GPS-навигатора.

Термометр

Возможно, вы удивитесь, но термометр находится практически в каждом смартфоне. Единственным отличием является лишь то, что последний предназначен для измерения температуры внутри девайса. Впрочем, случались и исключения. Galaxy S4 располагал термометром для измерения температуры за бортом.

Датчик влажности воздуха

В этом, к слову, также преуспел четвёртый представитель линейки Galaxy S. Благодаря этому датчику четвёртая «Галактика» сообщала об уровне комфорта – соотношении температуры и влажности.

Педометр

Несмотря на довольно не очевидное название, задачей педометра является определение количества пройденных пользователем шагов. Да, совсем как в большинстве умных часов и фитнес-браслетов. Одним из первых устройств с настоящим педометром стал Nexus 5.

Сканер отпечатков пальцев

Об этом вы, конечно же, слышали. Благодаря сканеру отпечатков пальцев можно не только сократить время разблокировки смартфона, но и надёжно защитить свои данные. Среди наиболее популярных девайсов с пресловутым сканером – , HTC One Max и Samsung Galaxy S5.

Датчик сердцебиения

Раз уж мы заговорили о нынешнем южнокорейском флагмане, нельзя не упомянуть и датчик сердцебиения, созданные для измерения пульса. Впрочем, многие пользователи в необходимости его внедрения откровенно сомневаются.

Датчик вредного излучения

Поверить довольно непросто, однако в этом мире действительно есть смартфон со встроенным датчиком вредного излучения. Прихвастнуть его наличием может японский Sharp Pantone 5. После запуска специального приложения последний демонстрирует окружающий уровень радиации. Неожиданно, не так ли?

В итоге получилось целых 12 датчиков. Какие из них чаще всего используете вы?

Современный смартфон - это мини компьютер, который уже давно стал персональным помощником человека в бытовых и бизнес делах. Чтобы смартфон или любой другой "умный" гаджет обладал столькими функциями, в нем размещено множество датчиков. В рамках этой статьи поговорим про датчик Холла в телефоне. Что это такое, читайте ниже.

Что это за датчик?

Датчик Холла - датчик определения положения который основан на эффекте Эдвина Холла. Используется в смартфоне в роли магнитометра, как основа для работы электронного компаса и не только. Его задача - фиксировать наличие магнитного поля и определять его изменение.

Эффект Холла был открыт еще 1879 году в тонких пластинках золота, но использовать его в технике смогли только через 75 лет, когда наладили производство полупроводниковых пленок с нужными для него свойствами. Ему нашли применение в автомобилях - он помогал делать измерения угла положения распредвала/коленвала.

В смартфоне используется упрощенный аналог устройства, определяющий только наличие магнитного поля без определения напряженности по осям. Реализация довольно проста: помещенный в магнитное поле проводник, по которому проходит электрических ток, способствует тому, что электроны отклоняются к одной из граней пластины. Электроны в этой части накапливают отрицательный заряд, на противоположной грани - положительный. Процесс продолжается до момента, пока образовавшееся электрическое поле не компенсирует магнитную составляющую силы Лоренца. Образованная разность потенциалов (которую именуют холловским напряжением) на краях пластины фиксируется датчиком Холла. В телефоне он реализован микросхемой, на выходе которой создается сигнал в двух состояниях:

  • единица (1 - есть сигнал);
  • ноль (0 - сигнала нет).

В зависимости от считанной информации с датчика смартфон выполняет запрограммированное действие.

Сейчас этот эффект применяется в разных технических реализациях. Кроме современных телефонов, повседневное применение нашлось:

  • в системах электронного зажигания ДВС;
  • в приводах дисководов;
  • двигателях кулеров компьютерной техники;
  • в электроизмерительных приборах для реализации бесконтактного измерения силы тока;
  • в ионных реактивных двигателях.

Для чего он нужен в телефоне?

Несколько лет назад, магнитометр с дюжиной возможностей можно было встретить только во флагманских смартфонах. Сейчас же, он установлен практически в каждый телефон. Смартфон, укомплектованный магнитометром (работающим по принципу датчика Холла) позволял измерять величину электромагнитной индукции различных приборов, управлять бесконтактно некоторыми функциями телефона (например листание фотографий с помощью жестов, без физического контакта) и т.д.

Хотя магнитометр и установлен во множество мобильных устройств, не в каждом его функции реализованы на полную.

Делается это по техническим (например, не хватает места в конструкции телефона или для уменьшения энергопотребления) и финансовым (в бюджетных моделях) причинам. Если убрать все дополнительные функции, задача упомянутого сенсора сводится к двум основным функциям:

  1. Цифровой компас. Используется навигационными программами для ускорения позиционирования и более точного определения направления движения. При помощи датчика, GPS поиск происходит быстрее.
  2. Взаимодействие с аксессуарами. Приобретя магнитный чехол для смартфона, датчик позволит смартфону включать и отключать дисплей в зависимости от удаления/приближения магнита на аксессуаре.

Эффект "выключения дисплея" можно заметить при закрытой крышке в раскладных телефонах.

Взаимодействие датчика и магнитного чехла

Взаимодействие реализовано простым образом: при открытии чехла, магнит расположенный в флипе, удаляется от дисплея. Происходит разрыв проводника с магнитным полем, холловское напряжение снижается и запускается цепочка включения дисплея. После этого дисплей будет разблокирован.

Как вы уже догадались, при закрытии чехла происходит обратное и экран блокируется.


В Некоторых чехлах сделаны окошка, для отображения информации при закрытой крышки чехла. Отображение информации и блокировка экрана происходит по тому же принципу. Датчик холла определяет положение смартфона и "решает", блокировать ли дисплей телефона, или оставить включенным.


Если вы переживаете, что магнит на флипе навредит смартфону, сбросте этот груз с плечь. Магнит не вредит смартфону! Чтобы в этом убедится, посмотрите видео.