Как технология распознавания лица помогает бизнесу и спецслужбам

Открыл новую эпоху. Технология распознавания лиц - основная его «фишка». И никто не сомневается в том, что такой способ разблокировки будет внедряться и во многие другие смартфоны.

Ещё в 1960-ых годах проводились специальные опыты, в ходе которых компьютер должен был научиться распознавать лицо человека. Тогда это ни к чему не привело, так как любая эмоция приводила к сбою. Также изобретенная система боялась изменения условий освещения.

Лишь в самом конце XX века появились системы, которые научились определять лица людей по фотографиям, запоминая их. При этом они перестали сбоить при появлении усов, бороды, очков и прочих «помех». Активнее всего подобные системы начали внедряться в цифровые фотоаппараты. Также они нашли себе место в охранном секторе.

У систем распознавания лиц долгое время был один существенный недостаток. Они сильно зависели от освещения и ракурса. Впрочем, в охранных сканерах эта проблема не была заметна. К ним лицо прикладывалось почти вплотную, освещаясь затем лампами. Избавиться же от вышеупомянутого недостатка помогло внедрение стереосъемки. Две камеры понимают глубину сцены, в связи с чем точность показаний вырастает в несколько раз.

Как работает технология распознавания лиц?

Постепенно новая функция начала появляться в смартфонах. Здесь биометрическая идентификация пользователя внедряется для того, чтобы разблокировать устройство не мог посторонний человек. В идеале получить доступ к персональной информации может только близнец. Переживать по этому поводу не стоит. Вряд ли кто-то будет всерьез скрывать что-то от родного брата или сестры. Да и никто не мешает установить для чтения каких-то особо секретных данных дополнительный пароль.

Работу системы распознавания лиц в смартфонах можно условно разделить на четыре этапа:

  1. Сканирование лица. Оно осуществляется при помощи фронтальной камеры или, как в случае с iPhone X, специального сенсора. Сканирование является трехмерным, поэтому фокус с показом фотографии срабатывать не будет.
  2. Извлечение уникальных данных. Система ориентируется на набор особенностей сканируемого лица. Чаще всего это контуры глазниц, форма скул и ширина носа. В продвинутых системах также могут «замечаться» шрамы.
  3. Извлечение из памяти шаблона с ранее полученными данными.
  4. Поиск соответствий. Финальный этап, на котором система решает, разблокировать ли дисплей. Мощности современных процессоров позволяют тратить на «размышление» всего доли секунды.

Функция распознавания лиц может быть реализована даже при помощи фронтальной камеры - лишь бы она имела два объектива. Однако в таком случае работа данной функции окажется нестабильной. Дело в том, что лишь специальные датчики обеспечат сканирование лица даже в темноте, тогда как «фронталке» требуется яркое освещение. Также особые датчики виртуально выводят на лицо большее количество точек, поэтому они срабатывают даже при появлении бороды, очков и других помех. Словом, в каком-нибудь DOOGEE Mix 2 система точно будет работать заметно хуже, чем в iPhone X. Другое дело - юбилейный продукт Apple стоит гораздо дороже, чем все остальные смартфоны с функцией распознавания лица.

За технологией будущее?

Нужные для сканирования лица датчики требуют идеальной установки. Сдвиг на сотые доли миллиметра приведет к тому, что работа функции перестанет быть идеальной - поэтому при производстве смартфона может наблюдаться повышенный выход брака, а это приводит к росту его стоимости. Да и сами датчики стоят весьма дорого, неспроста их использует только компания Apple, хотя никаких патентов на них у неё нет.

Одним словом, пока функцию распознавания лиц производители «андроидов» будут реализовывать посредством фронтальной камеры. Уже сейчас её можно встретить в Samsung Galaxy S8 и Note 8. Но владельцы этих устройств подтвердят вам, что работает она не лучшим образом - легче использовать сканер отпечатков пальцев . Поэтому пока о будущем функции ничего сказать нельзя. Нужно ждать, будет ли Apple внедрять соответствующие датчики в более доступные смартфоны, а также появятся ли они в устройствах на базе Android.

Заключение

Переживать по поводу сохранения ваших идентификационных данных не стоит. Созданный при сканировании лица шаблон находится в отдельном разделе памяти - чтение этого сектора компьютером или сторонними программами невозможно. Впрочем, это касается и отпечатков пальцев. А каким видом идентификации пользоваться удобнее - это выбирать только вам.

Держали ли вы когда-нибудь в руках смартфон, умеющий распознавать лицо? И ждете ли вы массового внедрения данной функции? Поделитесь своим мнением в комментариях, мы будем этому рады!

Биометрическую систему распознавания лиц планируется включить в стандарт «смарт-сити» для российских городов, который начал разрабатывать Минстрой. Об этом рассказал «Известиям» замглавы ведомства Андрей Чибис. Он отметил, что такую технологию было бы удобно использовать в общественном транспорте: пассажир заходит в автобус, программа его узнает и списывает за проезд деньги с банковского счета. Министерство намерено ознакомиться с опытом китайских городов и распространить подобные технологии в России.

Министерство планирует привлечь китайские компании, в том числе Huawei, к внедрению совместно с «Ростелекомом» технологии биометрии и анализа событий в российских городах. Об этом сообщил «Известиям» заместитель министра строительства и ЖКХ Андрей Чибис. По его словам, в случае успеха эта система ляжет в основу стандарта «смарт-сити» - минимального набора решений для повышения комфортности городов. К разработке стандарта ведомство уже приступило.

Представители министерства планируют посетить Китай, чтобы оценить, как современные технологии, включая биометрию, работают там.

Насколько я знаю, сейчас идет дискуссия по поводу внедрения такой технологии в Москве. Очевидно, что из-за необходимости использовать карточки, время посадки пассажиров затягивается. А алгоритм распознавания лиц работает так: пассажир заходит в метро или автобус, программа его распознает и списывает за проезд деньги с банковского счета, - привел пример Андрей Чибис.

Во многих городах уже установлено значительное количество камер, то есть инфраструктура в целом создана, подчеркнул чиновник. Вопрос в нормативном регулировании и реализации пилотных проектов - в случае их успеха дальнейший процесс будет стремителен: «как в свое время быстро ушли от жетонов в метро, так можем уйти и от турникетов».

В пресс-службе «Ростелекома» отметили, что идентификация пассажиров в городском транспорте, в том числе для оплаты проезда, - это одна из самых очевидных возможностей использования системы.

В мире есть реальные примеры, и в России создание такого рода решений ожидается уже в скором времени, - подтвердили «Известиям» в компании.

Проект «Умный город», в рамках которого планируется развивать новую технологию, рассчитан на шесть лет. По словам Андрея Чибиса, никто не говорит, что в течение этого срока везде обязательно появится система распознавания лиц, но нужно двигаться в этом направлении. «Это же не только вопрос безопасности, но и комфорта. Мы изучим эту технологию и в ближайшее время определимся с возможностью внедрения - конечно, в первую очередь, с точки зрения ее стоимости», - указал он.

Генеральный директор компании VisionLabs, специализирующейся на компьютерном зрении, Александр Ханин отмечает, что процесс установки камер и серверов технически несложный, поэтому в ближайшем будущем подобные системы могут быть внедрены повсеместно. Их можно использовать в том числе для поиска пропавших, считает он. Стоимость подключения к каждой камере зависит от сценария использования и типа камеры: от 200 рублей до нескольких тысяч.

Заведующий кафедрой телекоммуникационных систем Московского института электронной техники Александр Бахтин отметил, что сети городов готовы к передаче таких данных. Однако на начальном этапе внедрения новых технологий всегда есть риск нарушения конфиденциальности. Существует достаточно много точек, в которых сведения могут быть перехвачены. Но после тестовых испытаний система выстраивается и эффективно работает.

Томограф в поликлинике генерирует гораздо больше информации, чем видеопоток из какого-нибудь автобуса. Вопрос в том, кто ее анализирует и в каких целях. Хотелось бы, чтобы законодательство защищало нас от тех сотрудников, которые используют персональные данные неправомочно, - сказал «Известиям» Александр Бахтин.

В «Ростелекоме» признают, что оборот таких данных - очень чувствительная тема, поэтому, как и в других странах, в России единая биометрическая система создается под контролем государства. На первом этапе в сотрудничестве с Центробанком она внедряется в интересах банковской сферы. Уже проводились эксперименты по распознаванию лиц для бесконтактного прохода в музеи, и в дальнейшем система будет развиваться, уверены в компании.

В сентябре 2017 года о внедрении системы видеонаблюдения с функцией распознавания лиц объявили власти Москвы. Сообщалось, что столичная сеть включает в себя 160 тыс. видеокамер и охватывает 95% подъездов жилых домов. Лица на записях сканируются, чтобы при необходимости можно было сравнить данные с информацией в различных базах - например, правоохранительных органов, когда речь идет о поиске правонарушителя, указано на портале мэра Москвы. Система способна установить личность человека на видео, его пол и возраст.

Госкорпорация «Ростех» применила технологию распознавания лиц во время ЧМ-2018. С ее помощью, например, удалось вычислить фаната, которому по решению суда запрещено посещать спортивные мероприятия. Алгоритм позволяет узнавать лица с точностью до 99%. В госкорпорации отмечали, что поиск конкретного человека среди миллиарда лиц занимает менее полусекунды.

Видеть - значит понимать увиденное. Мы слепы, если в нашем мозгу не работают зрительные зоны неокортекса - своеобразного биокомпьютера, ответственного за распознавание образов. Сейчас подобные анализаторы, способные узнавать лица и понимать их выражение, появляются у искусственных систем.

Итак, вещи обретают зрение, а у зрения есть собственный разум. Сначала мне кажется, что он туповат: только что включенная система распознавания лиц LUNA не торопится войти в штатный режим и запомнить меня. Но вот наконец она рапортует, что запомнила, и просит ввести имя. Пол и возраст LUNA может определить сама. С полом легко: у меня борода, а вот возраст система завысила на пять лет - видимо, из-за той же бороды.

Теперь камера узнает меня, даже если я снимаю очки или поворачиваю голову. Приходится попробовать средство посерьезней - мы направляемся к шкафу с париками и накладными усами. Я выбираю густые кудри, скрывающие к тому же пол-лица, - LUNA все равно узнает меня.

Наигравшись с париками, мы открываем ICQ и начинаем развлекаться с масками для видеозвонков: на мое цифровое лицо в реальном времени накладываются маски - можно неузнанным общаться в видеочате.

Следующий номер нашей программы - Face.DJ. Это приложение строит 3D-модель лица по селфи, а потом "надевает" это лицо на виртуальную голову, чтобы вы могли примерять прически и аксессуары. Другое назначение приложения - анимировать пользователя, создать его мультяшную копию для игр и прочих онлайн-занятий.

Мы готовим такое же приложение для сервиса знакомств: люди при первом контакте часто не хотят раскрываться, - рассказывает Юля, пиарщик компании VisionLabs, разработавшей LUNA. - Некоторые надевают маски, чтобы добавить в романтическое общение элемент игры.

У кросс-платформенной системы LUNA тоже много масок. Есть приложение в мессенджере Telegram, которое распознает пол и возраст по лицу, есть LUNA в облаке и LUNA для браузера. Но главное - эту программу можно внедрять в самые разные технологические продукты, чтобы использовать для распознавания лиц.

Например, одному из наших клиентов нужно выбирать фотографии - так называемый bestshot из видеопотока. Так вот, наша программа справляется с этим сама. Другому клиенту нужно, чтобы система распознавала лицо не только при входе в интернет-банк, но и на протяжении всего сеанса, потому что вы можете отойти, а вашим доступом воспользуется злоумышленник. С этой задачей мы тоже справились.

Главные клиенты VisionLabs - банки. Например, в "Почта Банке" системой LUNA оборудованы 50 тысяч рабочих мест - это самое большое внедрение биометрии в мире. Важно распознавать и лица клиентов, чтобы сравнивать фотографии в паспортах с фото в базе данных. Ведь самое распространенное мошенничество в этой сфере - вклейка своего фото в чужой паспорт для получения кредита.

Как видят машины

К нам подходит Александр Ханин, директор VisionLabs.

Расскажите о компьютерном зрении?

Александр Ханин: Компьютерное зрение - это область прикладной математики, которая по сложности эквивалентна задаче создания искусственного интеллекта в целом. Визуальный канал основной для получения информации об окружающем мире. И доверяем мы увиденному своими глазами больше, чем другим источникам.

Наша задача - научить программу по фотографии или видео делать выводы и понимать картинку так же, как человек. Или даже лучше. Вот когда машина сравняется с человеком в этом умении, можно будет считать, что задача решена. Пока же она решена лишь для некоторых узких прикладных областей. Например, для распознавания дефектов оборудования или распознавания лиц.

Задача распознавания лиц решена?

Александр Ханин: Да, уже сейчас достоверно показано, что машина различает лица лучше нас. И точнее, и быстрее. Человек не очень хорошо определяет возраст, национальность. Тот, кто живет в Европе, хуже различает лица людей с азиатской внешностью, и наоборот. Еще мы забывчивы. В довершение всего машина делает это в десятки миллионов раз быстрее.

Зато человек анализирует не отдельные параметры, а лицо и даже ситуацию в целом. Мы понимаем контекст, в котором лицо собеседника принимает то или иное выражение. Как машина со всем этим справляется?

Александр Ханин: Сочетая лучшие методики компьютерного зрения и машинного обучения. Взять, например, метод глубокого обучения - его особенность в том, что человек не задает параметры лица для распознавания.

Нейросеть программирует сама себя?

Александр Ханин: Нейросети появились еще в 1970-х, а революция в этой области началась примерно в 2013-2014-м. Потому что только к этому времени удалось накопить достаточно большие объемы данных , чтобы учить нейросети, а вычислительные мощности стали относительно дешевыми. Продолжать разрабатывать детерминированные методы распознавания - указывать, какие части лица как сравнивать, - стало бессмысленно.

Прорыв произошел, когда отказались от заданных параметров, например от ключевых точек на лице. Вместо этого машине поставили задачу: "Смотри, вот десять тысяч пар фотографий, каждая пара - один человек. Проанализируй их, чтобы суметь определить на фото, которые ты пока не видишь, где один человек, а где разные". Машина сама находит параметры, которые важны для решения этой задачи.

Вы именно так обучали свою систему?

Александр Ханин: Ну да, это типичная задача идентификации - сравнить фотографию, сделанную сейчас, с фото в паспорте и подтвердить, что это один и тот же человек. Мы давали машине на вход большие данные - миллионы пар фотографий, а на выходе требовали правильного ответа для любых фотопортретов. И система училась - сама настраивала параметры так, чтобы минимизировать ошибки. То есть для глубокого обучения сначала надо найти обучающую выборку - много примеров правильных решений. Потом программа работает уже сама.

Где же вы взяли эти миллионы пар фотографий?

Александр Ханин: Есть доступные обучающие выборки для исследователей - сначала мы использовали их, а дальше уже работали с партнерами и клиентами, которые разрешили продолжить обучение на их данных.

Как преуспеть на рынке

Задача распознавания людей по лицу решена. А как обстоит дело с определением эмоций?

Александр Ханин: Как, например, в африканских странах люди миновали стадию телеграфа и сразу перешли на мобильную сеть, так и мы, не решая задачу распознавания эмоций, сразу перешли на более высокий уровень - к выводам о важных для наших клиентов характеристиках человека. Бизнес показывает: от того, что машина распознает, улыбается человек или нахмурен, пользы никакой. Нужны более серьезные умения.

Распознавать ложь, например?

Александр Ханин: Да. Или определять, соответствует кандидат вашим требованиям или нет. Удовлетворен клиент обслуживанием или нет - улыбка ведь может выражать не только радость, но и насмешку и скрытое недовольство. Поэтому само по себе распознавание эмоций - это подзадача. Мы изучаем лицо в динамике, последовательность реакций на вопросы, обслуживание, обстановку.

Есть ли в мире инновационные продукты, на которые вы ориентируетесь?

Александр Ханин: Мы сами на переднем фланге. Медицинский факт, что наш продукт - первая в мире комплексная система распознавания лиц для банков и ретейла, которая работает и в мобильном телефоне, и на сайте, и в отделениях, и в банкоматах, и в терминалах самообслуживания - везде. Мы не только первые, но пока, насколько я знаю, единственные.

В каких-то терминалах самообслуживания уже установлена система распознавания лиц?

Александр Ханин: Да, например, в банке "Открытие" - в терминалах электронной очереди. И это не пилотные проекты, а такие, которые работают и удовлетворяют заказчиков в реальных условиях.

Чувствуете, как конкуренты дышат в спину?

Александр Ханин: Пилотных проектов в близких к нам областях много. Компаний, которые занимаются распознаванием лиц, только в России десятки, в Китае - около сотни, в мире - больше тысячи. Поэтому я и говорю, что сама по себе задача распознавания лиц решена, - во всяком случае для большинства сегментов и практических задач.

Для успеха на рынке важны не технологии. Большинству клиентов плевать, какая у нас технология и как именно мы решаем задачу, допустим, по ускорению обслуживания в банке или магазине, - с помощью распознавания лиц, прогноза погоды или черной магии. Им важно, чтобы был результат.

Распознать всех!

Какие задачи еще не решены, но будут - в обозримой перспективе? Над чем работают специалисты?

Александр Ханин: Одна из важнейших нерешенных задач - распознавание лиц в полностью неконтролируемой обстановке, например в толпе. Многие говорят, что умеют это делать, но по факту ничего такого пока не внедрили. Видимо, напрасно говорят.

Разве узнавать случайных людей по лицам не запрещено законом? Это ведь использование персональных данных.

Александр Ханин: Бизнесу запрещено, конечно. Это нарушение прав человека и вмешательство в частную жизнь. Вообще, технологии сейчас позволяют сделать гораздо больше, чем разрешает законодательство. Но мы работаем только в белой зоне - в полном соответствии с законом. Для нас важно не нарушать права людей. Мы не имеем права использовать без согласия человека его данные из соцсетей и поэтому не станем делать, например, для магазина систему, которая ищет информацию о клиенте по его фотографии. Но мы можем разработать программу, которая будет приблизительно оценивать пол и возраст покупателей по фото.

Наша компания работает только с бизнесом, а вот у служб национальной безопасности есть системы, которые ищут людей по фотографии.

То есть ФСБ можно, а обычным людям нельзя?

Александр Ханин: Да. Если спецслужба хочет найти террориста в толпе, ей нужно сканировать и распознать всех. А если человек зашел в магазин и программа по фотографии нашла его аккаунт в соцсети, узнала телефон и начала рассылать спам, это очень серьезное нарушение. На Западе за это предусмотрена уголовная ответственность.

В аэропортах уже есть системы распознавания лиц?

Александр Ханин: Да, в основном на паспортном контроле - они проверяют, ваш ли это паспорт, не поддельный ли и не числитесь ли вы в списке заблокированных или в федеральном розыске. За рубежом степень автоматизации значительно выше. В аэропортах Сингапура, Лондона, Парижа паспортный контроль можно проходить автоматически, без участия сотрудников. Вы сканируете свой паспорт, вас фотографируют, происходит сверка - и все, можно идти дальше.

Угадай, что на картинке

Как будет развиваться компьютерное зрение?

Александр Ханин: Есть большая группа задач, именуемых visual question answering: вы показываете компьютеру картинку, и он должен понять, что там изображено. Это очень сложно: если просто учить распознавать объекты по отдельности, ничего не получится - надо понимать контекст и взаимосвязь объектов.

Другая похожая задача - распознавание действий человека, они ведь тоже определяются во многом по контексту. Например, если человек поднял руку, что это значит? Он указывает дорогу или собирается кого-то ударить? Вот сидим, думаем.

То есть вы хотите научить машины распознавать образы, смысл которых зависит от контекста?

Александр Ханин: Научить интерпретировать контекст и таким образом распознавать картинки, действия, сцены.

Когда роботы прозреют

Александр Ханин: Хотелось бы, чтоб разработку компьютерного зрения довели до конца. Тогда у роботов появятся настоящие глаза, а значит, возможность понимать происходящее и адекватно реагировать. Иначе они не станут частью общества, а так и будут игрушками с пультами управления.

Как системы, распознающие лица, изменят нашу жизнь в ближайшие годы?

Александр Ханин: Вы совершенно точно заметите работу таких систем при авторизации - например, когда будете разблокировать телефон. Многие уже привыкли к Touch ID, но скоро самым распространенным способом станет вхождение в систему по лицу. Приходя домой, вы не будете искать ключи, на работе вам не понадобится пропуск. Ускорится обслуживание и самообслуживание в банках, магазинах, во всей сфере услуг: расчеты будут происходить без карточек.

На улицах станет безопаснее, потому что появится видеонаблюдение с функциями отслеживания. Города и страны получат дополнительную защиту, а возмездие за преступление станет неизбежным. Система будет фиксировать все: кто и где это сделал, куда потом пошел. На смену понятию "безопасный город" придет "умный город": одна и та же инфраструктура будет обеспечивать безопасность и, например, управление потоками людей и машин, а также много чего другого.

Одна и та же система установленных повсюду камер и компьютерного зрения?

Александр Ханин: Да, алгоритму без разницы, кого распознавать: вип-клиента или воришку. Лица у всех устроены одинаково: глаза, рот и нос. Но дело не только в лицах. Эта же система может заняться, скажем, регулированием освещения. Если в помещении нет людей, зачем жечь электричество? Машина вызовет коммунальные службы, если зафиксирует неполадки, и так далее.

Жить в мире, где все на виду, страшновато. Технически все проще становится построить антиутопию, где за всеми ведется тотальная слежка…

Александр Ханин: Я думаю, в итоге мир станет лучше и намного безопаснее. Но обманывать будет труднее. Например, мы с партнерами недавно разработали продукт, который не только дает доступ в рабочее помещение, но и учитывает проведенное там время: пришли во столько-то, ушли во столько. Прогуляли, опоздали, не вернулись с обеда - все будет зафиксировано.

И никак нельзя будет от этого спрятаться? Наверняка появятся маски с чужим лицом.

Александр Ханин: Безусловно, есть масса способов обмануть систему, и в этой области "гонка вооружений" только начинается. Был такой видеоролик, где учили делать макияж, препятствующий распознаванию. Но то было года три назад - нынешние алгоритмы так просто не проведешь.

А если вместо лица показывать фотографию?

Александр Ханин: Чтобы вычислить мошенников, в системах распознавания лиц программируют специальный "детектор живости" (lifeness detector), который определяет, человек перед ним или фотография. Показателей живости несколько. Самый простой, который считается мировым стандартом, - это моргание. Еще система может попросить человека улыбнуться, повернуть голову, приблизиться к камере, чтобы убедиться, что он реальный. Но если камера оснащена сенсором глубины, это не требуется: машина сразу понимает, что в кадре объемный объект, а не фото.

Кто еще в лидерах

Распознавание лиц - это не только наука и технология, но и большой бизнес, который в развитых странах растет огромными темпами. Исследовательская компания Allied Market Research прогнозирует, что к 2022 году его оборот составит почти десять миллиардов долларов. Среди ведущих игроков есть и российские. Из десятков стартапов и исследовательских проектов мы выделили три самых успешных.

NTechLab. Выпускник МГУ Артем Кухаренко начинал с приложения, определявшего породу собак по фотографии. Но уже в 2015 году созданный им с партнерами по проекту NTechLab алгоритм FaceN одержал победу в двух из четырех номинаций главного мирового конкурса по распознаванию лиц MegaFace, обойдя команду Google. Однако настоящая слава пришла к компании после разработки популярнейшего приложения FindFace, предназначенного для поиска по фото людей в соцсети "ВКонтакте". Сегодня число заявок на интеграцию технологии FindFace приближается к тысяче.

Vocord. Компанию "Вокорд" можно смело считать чемпионом мира по распознаванию лиц: на сайте конкурса MegaFace она занимает первое место, лидируя с солидным отрывом. Команда "Вокорд" - ветераны на рынке систем компьютерного зрения: программу дистанционного биометрического распознавания лиц Vocord FaceControl они выпустили еще в 2008 году, сегодня их продуктами пользуются больше двух тысяч коммерческих и государственных организаций. Специализация компании - идентификация лиц, то есть поиск человека в толпе.

VisionLabs. Их продукты входят в тройку лучших мировых коммерческих систем распознавания лиц. Подробнее об этой компании читайте в основном тексте.

Основные виды биометрии

Международная классификация способов идентификации человека

Лицо. Программа по фото или видеоизображению лица анализирует размер и форму глаз, носа, скул, их взаиморасположение и на основе этих данных создает уникальную комбинацию, которую затем сравнивает с имеющимися на предмет совпадения.

Отпечатки пальцев. Дактилоскопический метод основан на неповторимости папиллярного рисунка кожи, широко применяется в криминалистике.

Речь. Способ распознавания, основанный на преобразовании звучащей речи в цифровую информацию.

Глаза. Распознавание происходит в результате сравнения цифрового изображения радужной оболочки глаза с имеющимися в базе.

Вены. Способ идентификации на основе венозного рисунка руки или пальцев.

С завидной регулярностью на Хабре появляются статьи, рассказывающие о тех или иных методах распознавания лиц. Мы решили не просто поддержать эту замечательную тему, но выложить наш внутренний документ, который освещает пусть и не все, но многие подходы к распознаванию лиц, их сильные и слабые места. Он был составлен Андреем Гусаком, нашим инженером, для молодых сотрудников отдела машинного зрения, в образовательных, так сказать, целях. Сегодня предлагаем его все желающим. В конце статьи – впечатляющих размеров список литературы для самых любознательных.

Итак, начнем.
Несмотря на большое разнообразие представленных алгоритмов, можно выделить общую структуру процесса распознавания лиц:

Общий процесс обработки изображения лица при распознавании

На первом этапе производится детектирование и локализация лица на изображении. На этапе распознавания производится выравнивание изображения лица (геометрическое и яркостное), вычисление признаков и непосредственно распознавание – сравнение вычисленных признаков с заложенными в базу данных эталонами. Основным отличием всех представленных алгоритмов будет вычисление признаков и сравнение их совокупностей между собой.

1. Метод гибкого сравнения на графах (Elastic graph matching) .

Суть метода сводится к эластичному сопоставлению графов, описывающих изображения лиц. Лица представлены в виде графов со взвешенными вершинами и ребрами. На этапе распознавания один из графов – эталонный – остается неизменным, в то время как другой деформируется с целью наилучшей подгонки к первому. В подобных системах распознавания графы могут представлять собой как прямоугольную решетку, так и структуру, образованную характерными (антропометрическими) точками лица.

А)

Б)

Пример структуры графа для распознавания лиц: а) регулярная решетка б) граф на основе антропометрических точек лица.

В вершинах графа вычисляются значения признаков, чаще всего используют комплексные значения фильтров Габора или их упорядоченных наборов – Габоровских вейвлет (строи Габора), которые вычисляются в некоторой локальной области вершины графа локально путем свертки значений яркости пикселей с фильтрами Габора.


Набор (банк, jet) фильтров Габора


Пример свертки изображения лица с двумя фильтрами Габора

Ребра графа взвешиваются расстояниями между смежными вершинами. Различие (расстояние, дискриминационная характеристика) между двумя графами вычисляется при помощи некоторой ценовой функции деформации, учитывающей как различие между значениями признаков, вычисленными в вершинах, так и степень деформации ребер графа.
Деформация графа происходит путем смещения каждой из его вершин на некоторое расстояние в определённых направлениях относительно ее исходного местоположения и выбора такой ее позиции, при которой разница между значениями признаков (откликов фильтров Габора) в вершине деформируемого графа и соответствующей ей вершине эталонного графа будет минимальной. Данная операция выполняется поочередно для всех вершин графа до тех пор, пока не будет достигнуто наименьшее суммарное различие между признаками деформируемого и эталонного графов. Значение ценовой функции деформации при таком положении деформируемого графа и будет являться мерой различия между входным изображением лица и эталонным графом. Данная «релаксационная» процедура деформации должна выполняться для всех эталонных лиц, заложенных в базу данных системы. Результат распознавания системы – эталон с наилучшим значением ценовой функции деформации.


Пример деформации графа в виде регулярной решетки

В отдельных публикациях указывается 95-97%-ая эффективность распознавания даже при наличии различных эмоциональных выражениях и изменении ракурса лица до 15 градусов. Однако разработчики систем эластичного сравнения на графах ссылаются на высокую вычислительную стоимость данного подхода. Например, для сравнения входного изображения лица с 87 эталонными тратилось приблизительно 25 секунд при работе на параллельной ЭВМ с 23 транспьютерами (Примечание: публикация датирована 1993 годом). В других публикациях по данной тематике время либо не указывается, либо говорится, что оно велико.

Недостатки: высокая вычислительная сложность процедуры распознавания. Низкая технологичность при запоминании новых эталонов. Линейная зависимость времени работы от размера базы данных лиц.

2. Нейронные сети

В настоящее время существует около десятка разновидности нейронных сетей (НС). Одним из самых широко используемых вариантов являться сеть, построенная на многослойном перцептроне, которая позволяет классифицировать поданное на вход изображение/сигнал в соответствии с предварительной настройкой/обучением сети.
Обучаются нейронные сети на наборе обучающих примеров. Суть обучения сводится к настройке весов межнейронных связей в процессе решения оптимизационной задачи методом градиентного спуска. В процессе обучения НС происходит автоматическое извлечение ключевых признаков, определение их важности и построение взаимосвязей между ними. Предполагается, что обученная НС сможет применить опыт, полученный в процессе обучения, на неизвестные образы за счет обобщающих способностей.
Наилучшие результаты в области распознавания лиц (по результатам анализа публикаций) показала Convolutional Neural Network или сверточная нейронная сеть (далее – СНС) , которая является логическим развитием идей таких архитектур НС как когнитрона и неокогнитрона. Успех обусловлен возможностью учета двумерной топологии изображения, в отличие от многослойного перцептрона.
Отличительными особенностями СНС являются локальные рецепторные поля (обеспечивают локальную двумерную связность нейронов), общие веса (обеспечивают детектирование некоторых черт в любом месте изображения) и иерархическая организация с пространственными сэмплингом (spatial subsampling). Благодаря этим нововведениям СНС обеспечивает частичную устойчивость к изменениям масштаба, смещениям, поворотам, смене ракурса и прочим искажениям.


Схематичное изображение архитектуры сверточной нейронной сети

Тестирование СНС на базе данных ORL, содержащей изображения лиц с небольшими изменениями освещения, масштаба, пространственных поворотов, положения и различными эмоциями, показало 96% точность распознавания.
Свое развитие СНС получили в разработке DeepFace , которую приобрел
Facebook для распознавания лиц пользователей своей соцсети. Все особенности архитектуры носят закрытый характер.


Принцип работы DeepFace

Недостатки нейронных сетей: добавление нового эталонного лица в базу данных требует полного переобучения сети на всем имеющемся наборе (достаточно длительная процедура, в зависимости от размера выборки от 1 часа до нескольких дней). Проблемы математического характера, связанные с обучением: попадание в локальный оптимум, выбор оптимального шага оптимизации, переобучение и т. д. Трудно формализуемый этап выбора архитектуры сети (количество нейронов, слоев, характер связей). Обобщая все вышесказанное, можно заключить, что НС – «черный ящик» с трудно интерпретируемыми результатами работы.

3. Скрытые Марковские модели (СММ, HMM)

Одним из статистических методов распознавания лиц являются скрытые Марковские модели (СММ) с дискретным временем . СММ используют статистические свойства сигналов и учитывают непосредственно их пространственные характеристики. Элементами модели являются: множество скрытых состояний, множество наблюдаемых состояний, матрица переходных вероятностей, начальная вероятность состояний. Каждому соответствует своя Марковская модель. При распознавании объекта проверяются сгенерированные для заданной базы объектов Марковские модели и ищется максимальная из наблюдаемых вероятность того, что последовательность наблюдений для данного объекта сгенерирована соответствующей моделью.
На сегодняшний день не удалось найти примера коммерческого применения СММ для распознавания лиц.

Недостатки:
- необходимо подбирать параметры модели для каждой базы данных;
- СММ не обладает различающей способностью, то есть алгоритм обучения только максимизирует отклик каждого изображения на свою модель, но не минимизирует отклик на другие модели.

4. Метод главных компонент или principal component analysis (PCA)

Одним из наиболее известных и проработанных является метод главных компонент (principal component analysis, PCA), основанный на преобразовании Карунена-Лоева.
Первоначально метод главных компонент начал применяться в статистике для снижения пространства признаков без существенной потери информации. В задаче распознавания лиц его применяют главным образом для представления изображения лица вектором малой размерности (главных компонент), который сравнивается затем с эталонными векторами, заложенными в базу данных.
Главной целью метода главных компонент является значительное уменьшение размерности пространства признаков таким образом, чтобы оно как можно лучше описывало «типичные» образы, принадлежащие множеству лиц. Используя этот метод можно выявить различные изменчивости в обучающей выборке изображений лиц и описать эту изменчивость в базисе нескольких ортогональных векторов, которые называются собственными (eigenface).

Полученный один раз на обучающей выборке изображений лиц набор собственных векторов используется для кодирования всех остальных изображений лиц, которые представляются взвешенной комбинацией этих собственных векторов. Используя ограниченное количество собственных векторов можно получить сжатую аппроксимацию входному изображению лица, которую затем можно хранить в базе данных в виде вектора коэффициентов, служащего одновременно ключом поиска в базе данных лиц.

Суть метода главных компонент сводится к следующему. Вначале весь обучающий набор лиц преобразуется в одну общую матрицу данных, где каждая строка представляет собой один экземпляр изображения лица, разложенного в строку. Все лица обучающего набора должны быть приведены к одному размеру и с нормированными гистограммами.


Преобразования обучающего набора лиц в одну общую матрицу X

Затем производится нормировка данных и приведение строк к 0-му среднему и 1-й дисперсии, вычисляется матрица ковариации. Для полученной матрицы ковариации решается задача определения собственных значений и соответствующих им собственных векторов (собственные лица). Далее производится сортировка собственных векторов в порядке убывания собственных значений и оставляют только первые k векторов по правилу:




Алгоритм РСА


Пример первых десяти собственных векторов (собственных лиц), полученных на обучаемом наборе лиц

= 0.956*-1.842*+0.046

Пример построения (синтеза) человеческого лица с помощью комбинации собственных лиц и главных компонент


Принцип выбора базиса из первых лучших собственных векторов


Пример отображения лица в трехмерное метрическое пространство, полученном по трем собственным лицам и дальнейшее распознавание

Метод главных компонент хорошо зарекомендовал себя в практических приложениях. Однако, в тех случаях, когда на изображении лица присутствуют значительные изменения в освещенности или выражении лица, эффективность метода значительно падает. Все дело в том, что PCA выбирает подпространство с такой целью, чтобы максимально аппроксимировать входной набор данных, а не выполнить дискриминацию между классами лиц.

В было предложено решение этой проблемы с использование линейного дискриминанта Фишера (в литературе встречается название “Eigen-Fisher”, “Fisherface”, LDA). LDA выбирает линейное подпространство, которое максимизирует отношение:

Где

Матрица межклассового разброса, и

Матрица внутриклассового разброса; m – число классов в базе данных.

LDA ищет проекцию данных, при которой классы являются максимально линейно сепарабельны (см. рисунок ниже). Для сравнения PCA ищет такую проекцию данных, при которой будет максимизирован разброс по всей базе данных лиц (без учета классов). По результатам экспериментов в условиях сильного бакового и нижнего затенения изображений лиц Fisherface показал 95% эффективность по сравнению с 53% Eigenface.


Принципиальное отличие формирования проекций PCA и LDA

Отличие PCA от LDA

5. Active Appearance Models (AAM) и Active Shape Models (ASM) ()
Active Appearance Models (AAM)
Активные модели внешнего вида (Active Appearance Models, AAM) - это статистические модели изображений, которые путем разного рода деформаций могут быть подогнаны под реальное изображение. Данный тип моделей в двумерном варианте был предложен Тимом Кутсом и Крисом Тейлором в 1998 году . Первоначально активные модели внешнего вида применялись для оценки параметров изображений лиц.
Активная модель внешнего вида содержит два типа параметров: параметры, связанные с формой (параметры формы), и параметры, связанные со статистической моделью пикселей изображения или текстурой (параметры внешнего вида). Перед использованием модель должна быть обучена на множестве заранее размеченных изображений. Разметка изображений производится вручную. Каждая метка имеет свой номер и определяет характерную точку, которую должна будет находить модель во время адаптации к новому изображению.


Пример разметки изображения лица из 68 точек, образующих форму AAM.

Процедура обучения AAM начинается с нормализации форм на размеченных изображениях с целью компенсации различий в масштабе, наклоне и смещении. Для этого используется так называемый обобщенный Прокрустов анализ.


Координаты точек формы лица до и после нормализации

Из всего множества нормированных точек затем выделяются главные компоненты с использованием метода PCA.


Модель формы AAM состоит из триангуляционной решетки s0 и линейной комбинации смещений si относительно s0

Далее из пикселей внутри треугольников, образуемых точками формы, формируется матрица, такая что, каждый ее столбец содержит значения пикселей соответствующей текстуры. Стоит отметить, что используемые для обучения текстуры могут быть как одноканальными (градации серого), так и многоканальными (например, пространство цветов RGB или другое). В случае многоканальных текстур векторы пикселов формируются отдельно по каждому из каналов, а потом выполняется их конкатенация. После нахождения главных компонент матрицы текстур модель AAM считается обученной.

Модель внешнего вида AAM состоит из базового вида A0, определенного пикселями внутри базовой решетки s0 и линейной комбинации смещений Ai относительно A0

Пример конкретизации AAM. Вектор параметров формы
p=(p_1,p_2,〖…,p〗_m)^T=(-54,10,-9.1,…)^T используется для синтеза модели формы s, а вектор параметров λ=(λ_1,λ_2,〖…,λ〗_m)^T=(3559,351,-256,…)^Tдля синтеза внешнего вида модели. Итоговая модель лица 〖M(W(x;p))〗^ получается как комбинация двух моделей – формы и внешнего вида.

Подгонка модели под конкретное изображение лица выполняется в процессе решения оптимизационной задачи, суть которой сводится к минимизации функционала

Методом градиентного спуска. Найденные при этом параметры модели и будут отражать положение модели на конкретном изображении.




Пример подгонки модели на конкретное изображение за 20 итераций процедуры градиентного спуска.

С помощью AAM можно моделировать изображения объектов, подверженных как жесткой, так и нежесткой деформации. ААМ состоит из набора параметров, часть которых представляют форму лица, остальные задают его текстуру. Под деформации обычно понимают геометрическое преобразование в виде композиции переноса, поворота и масштабирования. При решении задачи локализации лица на изображении выполняется поиск параметров (расположение, форма, текстура) ААМ, которые представляют синтезируемое изображение, наиболее близкое к наблюдаемому. По степени близости AAM подгоняемому изображению принимается решение – есть лицо или нет.

Active Shape Models (ASM)

Суть метода ASM заключается в учете статистических связей между расположением антропометрических точек. На имеющейся выборке изображений лиц, снятых в анфас. На изображении эксперт размечает расположение антропометрических точек. На каждом изображении точки пронумерованы в одинаковом порядке.




Пример представления формы лица с использованием 68 точек

Для того чтобы привести координаты на всех изображениях к единой системе обычно выполняется т.н. обобщенный прокрустов анализ, в результате которого все точки приводятся к одному масштабу и центрируются. Далее для всего набора образов вычисляется средняя форма и матрица ковариации. На основе матрицы ковариации вычисляются собственные вектора, которые затем сортируются в порядке убывания соответствующих им собственных значений. Модель ASM определяется матрицей Φ и вектором средней формы s ̅.
Тогда любая форма может быть описана с помощью модели и параметров:

Локализации ASM модели на новом, не входящем в обучающую выборку изображении осуществляется в процессе решения оптимизационной задачи.


а) б) в) г)
Иллюстрация процесса локализации модели ASM на конкретном изображении: а) начальное положение б) после 5 итераций в) после 10 итераций г) модель сошлась

Однако все же главной целью AAM и ASM является не распознавание лиц, а точная локализация лица и антропометрических точек на изображении для дальнейшей обработки.

Практически во всех алгоритмах обязательным этапом, предваряющим классификацию, является выравнивание, под которым понимается выравнивание изображения лица во фронтальное положение относительно камеры или приведение совокупности лиц (например, в обучающей выборке для обучения классификатора) к единой системе координат. Для реализации этого этапа необходима локализация на изображении характерных для всех лиц антропометрических точек – чаще всего это центры зрачков или уголки глаз. Разные исследователи выделяют разные группы таких точек. В целях сокращения вычислительных затрат для систем реального времени разработчики выделяют не более 10 таких точек .

Модели AAM и ASM как раз и предназначены для того чтобы точно локализовать эти антропометрические точки на изображении лица.

6. Основные проблемы, связанные с разработкой систем распознавания лиц

Проблема освещенности

Проблема положения головы (лицо – это, все же, 3D объект).

С целью оценки эффективности предложенных алгоритмов распознавания лиц агентство DARPA и исследовательская лаборатория армии США разработали программу FERET (face recognition technology).

В масштабных тестах программы FERET принимали участие алгоритмы, основанные на гибком сравнении на графах и всевозможные модификации метода главных компонент (PCA). Эффективность всех алгоритмов была примерно одинаковой. В этой связи трудно или даже невозможно провести четкие различия между ними (особенно если согласовать даты тестирования). Для фронтальных изображений, сделанных в один и тот же день, приемлемая точность распознавания, как правило, составляет 95%. Для изображений, сделанных разными аппаратами и при разном освещении, точность, как правило, падает до 80%. Для изображений, сделанных с разницей в год, точность распознавания составило примерно 50%. При этом стоит заметить, что даже 50 процентов - это более чем приемлемая точность работы системы подобного рода.

Ежегодно FERET публикует отчет о сравнительном испытании современных систем распознавания лиц на базе лиц более одного миллиона. К большому сожалению в последних отчетах не раскрываются принципы построения систем распознавания, а публикуются только результаты работы коммерческих систем. На сегодняшний день лидирующей является система NeoFace разработанная компанией NEC.

Список литературы (гуглится по первой ссылке)
1. Image-based Face Recognition - Issues and Methods
2. Face Detection A Survey.pdf
3. Face Recognition A Literature Survey
4. A survey of face recognition techniques
5. A survey of face detection, extraction and recognition
6. Обзор методов идентификации людей на основе изображений лиц
7. Методы распознавания человека по изображению лица
8. Сравнительный анализ алгоритмов распознавания лиц
9. Face Recognition Techniques
10. Об одном подходе к локализации антропометрических точек.
11. Распознавание лиц на групповых фотографиях с использованием алгоритмов сегментации
12. Отчет о НИР 2-й этап по распознаванию лиц
13. Face Recognition by Elastic Bunch Graph Matching
14. Алгоритмы идентификации человека по фотопортрету на основе геометриче-ских преобразований. Диссертация.
15. Distortion Invariant Object Recognition in the Dynamic Link Architecture
16. Facial Recognition Using Active Shape Models, Local Patches and Support Vector Machines
17. Face Recognition Using Active Appearance Models
18. Active Appearance Models for Face Recognition
19. Face Alignment Using Active Shape Model And Support Vector Machine
20. Active Shape Models - Their Training and Application
21. Fisher Vector Faces in the Wild
22. Eigenfaces vs. Fisherfaces Recognition Using Class Specific Linear Projection
23. Eigenfaces and fisherfaces
24. Dimensionality Reduction
25. ICCV 2011 Tutorial on Parts Based Deformable Registration
26. Constrained Local Model for Face Alignment, a Tutorial
27. Who are you – Learning person specific classifiers from video
28. Распознавание человека по изображению лица нейросетевыми методами
29. Face Recognition A Convolutional Neural Network Approach
30. Face Recognition using Convolutional Neural Network and Simple Logistic Classifier
31. Face Image Analysis With Convolutional Neural Networks
32. Методы распознавания лиц на основе скрытых марковских процессов. Авторе-ферат
33. Применение скрытых марковских моделей для распознавания лиц
34. Face Detection and Recognition Using Hidden Markovs Models
35. Face Recognition with GNU Octave-MATLAB
36. Face Recognition with Python
37. Anthropometric 3D Face Recognition
38. 3D Face Recognition
39. Face Recognition Based on Fitting a 3D Morphable Model
40. Face Recognition
41. Robust Face Recognition via Sparse Representation
42. The FERET Evaluation Methodology For Face-Recognition Algorithms
43. Поиск лиц в электронных коллекциях исторических фотографий
44. Design, Implementation and Evaluation of Hardware Vision Systems dedicated to Real-Time Face Recognition
45. An Introduction to the Good, the Bad, & the Ugly Face Recognition Challenge Prob-lem
46. Исследование и разработка методов обнаружения человеческого лица на циф-ровых изображениях. Диплом
47. DeepFace Closing the Gap to Human-Level Performance in Face Verification
48. Taking the bite out of automated naming of characters in TV video
49. Towards a Practical Face Recognition System Robust Alignment and Illumination by Sparse Representation
50. Алгоритмы обнаружения лица человека для решения прикладных задач анализа и обработки изображений
51. Обнаружение и локализация лица на изображении
52. Модифицированный мотод Виолы-Джонса
53. Разработка и анализ алгоритмов детектирования и классификации объектов на основе методов машинного обучения
54. Overview of the Face Recognition Grand Challenge
55. Face Recognition Vendor Test (FRVT)
56. Об эффективности применения алгоритма SURF в задаче идентификации лиц

Колонка

Она ставит под угрозу безопасность и гражданские права человека, поэтому частичное её регулирование должно быть заменено полным запретом. Пока весь мир увлечён преимуществами технологии распознавания лиц, некоторые специалисты по безопасности считают, что она таит в себе большое зло для человечества. Преподаватель права и информатики Вудроу Хартцог и преподаватель философии Эван Селинджер изложили свою точку зрения на методы контроля технологии в статье на Medium.

Жители Трои были бы в восторге

Очень легко поддаться внешне заманчивому, но в действительности ошибочному мнению о том, каким будет будущее человечества в мире, раскрывшем весь скрытый потенциал технологии распознавания лиц. Люди смогут мгновенно получать информацию о незнакомцах, им больше не придётся запоминать массу паролей или бояться забыть кошелёк. Можно будет запросто находить события с определённым человеком в архивах фотографий и видео, оперативно разыскивать пропавших людей или преступников, сделать безопасными общественные места.

Казалось бы, технология несёт одни только плюсы, в мире воцарится абсолютная справедливость, реализуются самые невероятные идеи человечества. Но ни один из изобретённых человечеством механизмов наблюдения не несёт в себе такой опасности, как технология распознавания лиц.

Соблазняясь этим утопическим видением, люди будут впускать технологию распознавания лиц в своё жилище и открывать доступ к своим устройствам, позволяя ей занять центральное место во всё новых аспектах жизни. Это будет означать, что ловушка захлопнулась, а после придёт неприятное осознание того, что технология была своего рода троянским конём. Этот идеальный инструмент притеснения слишком хорош, чтобы им не воспользовались правительства для установления авторитарного контроля и всеобъемлющих режимов, которые уничтожат понятие личной жизни.

Этот троянский конь не должен проникнуть в город.

Текущие обсуждения

Американский союз защиты гражданских свобод совместно с 70 другими правозащитными организациями потребовал от Amazon прекратить предоставлять технологию распознавания лиц правительству, а также призвал Конгресс ввести мораторий на её использование правительством. К ним подключились и СМИ, выразили свою обеспокоенность. Например, редколлегия Washington Post считает , что Конгресс обязан немедленно вмешаться в ситуацию. У парламентариев тоже есть веский повод задуматься: некоторых из них программа по распознаванию лиц Amazon с преступниками.

Не остались в стороне и редакторы The Guardian. Президент Microsoft Брэд Смит обратился в своём блоге к правительству США с просьбой ввести регулирование технологии распознавания лиц:

«Единственный надёжный способ контролировать использование технологии правительством - это чтобы оно самостоятельно и с учётом возможных обстоятельств контролировало её использование. Мы считаем, что сегодня существует острая необходимость в правительственной инициативе по контролю за правомерным применением технологии распознавания лиц, основанной на решении двухпартийной комиссии экспертов»

Мнение лидеров компаний имеет немаловажное значение, как и законодательные акты, ограничивающие использование технологии. Но лишь частичной поддержки и тщательно прописанных инструкций никогда не будет достаточно. Законы могли бы принести большую пользу, но их, скорее всего, начнут вводить тогда, когда технология станет в разы дешевле и проще в использовании. Смит подчёркивает, что Microsoft призывала к созданию национального закона в этой области ещё в 2005 году. Прошло более десяти лет, но подобный закон Конгресс так и не принял.

Если технологию распознавания лиц продолжат разрабатывать и внедрять в жизни, возникнет гигантская инфраструктура, которая поглотит человечество. Как показывает история, широкое внимание к успехам, страх не обеспечить должного уровня безопасности и пьянящее чувство власти могут приводить к обману, сдвигу корпоративных ценностей и в конечном счёте систематическом злоупотреблению технологией.

Благополучие человечества в будущем возможно только в том случае, если технология распознавания лиц будет запрещена, прежде чем слишком прочно укрепится в жизни человека.

Почему нужен запрет

Необходимость полного запрета систем распознавания лиц - чрезвычайна. Но некоторые талантливые учёные, вроде Джудит Донат , считают эту позицию неверной. Они предлагают более нейтральную с технологической точки зрения тактику: запрет на конкретные действия, а также обозначение ценностей и прав, которые нужно защитить. Этот подход вполне разумен почти для всех цифровых технологий.

Но ни один из изобретённых человечеством механизмов наблюдения не несёт в себе такой опасности, как технология распознавания лиц. Это недостающий элемент уже опасной инфраструктуры наблюдения за людьми, разработанный потому, что эта инфраструктура нужна правительствам и частному бизнесу. И если технологии становятся опасными в такой степени, а соотношение пользы и вреда - настолько искажённым, пришло время задуматься о категорических запретах. На законодательном уровне уже запрещены некоторые виды опасных цифровых технологий, например шпионского ПО . Технология распознавания лиц несёт в себе гораздо большие риски, и её не мешало бы удостоить особого юридического внимания. Нужен конкретный запрет на основе надежной, целостной, основанной на ценностях и в значительной степени нейтральной с точки зрения технологий нормативной базы. Такая система поможет избежать нормативных ситуаций, когда законодатели пытаются догонять технические тенденции.

Наблюдение с использованием систем распознавания лиц по своей сути деспотично. Существование таких систем, которые сами часто скрыты от глаз человека, - нарушение гражданских свобод, потому что люди ведут себя иначе, если подозревают, что за ними наблюдают. Даже законы, которые гарантируют строгие защитные меры, не предотвратят гнетущее ощущение того, что будут ущемлены возможности самовыражения человека.

Вот примеры злоупотребления и разрушительных действий технологии распознавания лиц:

  • непропорциональное внимание к людям небелого цвета кожи , другим меньшинствам и незащищённым народам ;
  • замена презумпции невиновности на принцип «люди, чья вина пока что не доказана»;
  • распространение насилия и жестокости;
  • отрицание фундаментальных прав и возможностей, например защиты от произвольного отслеживания правительствами передвижения, привычек, отношений, интересов и мыслей человека;
  • беспрерывная «работа» закона - как постоянная мера пресечения;
  • уничтожение концепции хранения информации «practically obscure », когда данные находятся в открытом доступе, но хранятся в различных источниках и найти их чрезвычайно сложно;
  • распространение «капитализма надзора ».

Как отмечает исследователь технологии распознавания лиц Клэр Гарви, ошибки в ней могут иметь фатальные последствия:

«Что произойдёт, если подобная система даст сбой? В случае ошибки системы видеонаблюдения будут преследовать, допрашивать или могут даже арестовать и обвинить в преступлении невинного человека. Или портативные камеры с системой распознавания лиц у полицейских: если система укажет на человека, который якобы может представлять опасность для общества, полицейский должен будет мгновенно решить, применять ли ему оружие. В результате ложного оповещения могут пострадать невинные люди».

В числе прочих есть два доклада, которые подробно затрагивают многие из этих проблем: весьма ценная работа об использовании правоохранителями распознавания лиц, опубликованная старшим юристом Electronic Frontier Foundation Дженнифер Линч, а также исследование специалистов Center on Privacy & Technology университета Джорджтауна.

Несмотря на описанные в докладах проблемы, не все убеждены, что запрет действительно необходим. Ведь другие технологии представляют не меньшую угрозу: геолокационные данные, информация из профилей в соцсетях, результаты поисковых запросов и многие другие источники информации о пользователях можно использовать, чтобы составить их детальный портрет. Но распознавание лиц всё же несёт опасность иного характера и стоит особняком даже по сравнению с биометрическими данными: отпечатками пальцев, образцами ДНК или сканированием сетчатки глаза.

Системы, обрабатывающие изображения лиц, имеют пять отличительных особенностей, которые дают все основания для их запрета. Во-первых, лицо трудно скрыть или изменить. Лица нельзя зашифровать, как данные на цифровых носителях, в электронных или текстовых сообщениях. Их можно снимать с помощью удалённых камер, а стоимость самой технологии и хранения изображений в облаке постоянно снижается, что приводит к всё более широкому применению таких систем мониторинга.

Во-вторых, существуют базы данных имён и лиц, например для водительских удостоверений, или аккаунты в соцсетях, к которым можно очень легко получить доступ.

В-третьих, в отличие от типичных систем наблюдения, которые часто требуют дорогостоящее оборудование или новые источников данных, входные данные для распознавания лиц находятся повсюду и поступают непосредственно в момент съёмки камерами.

В-четвёртых, переломный момент. Любая база данных лиц для идентификации арестованных или попавших в поле зрения камер личностей с помощью нескольких строчек кода может «сравниваться» с любой другой базой в режиме реального времени, подключаясь к портативным камерам полицейских или системам видеонаблюдения. Губернатор штата Нью-Йорк Эндрю Куомо точно подметил причины распространения технологии распознавания лиц, утверждая, что простое сканирование номерных знаков автомобилей покажется мелочью по сравнению с возможностями применения камер со встроенной технологией: «Система считывает номерной знак, чтобы вычислить нарушителя, но штрафы - далеко не самая большая польза от этой аппаратуры. Мы переходим на технологию распознавания лиц, и теперь система сможет сканировать лицо водителя и проверять его по базам данных, что открывает абсолютно новые перспективы».

В-пятых, лицо, в отличие от отпечатков пальцев, походки или снимков сетчатки, - центральный элемент идентичности человека. Лицо - это посредник между виртуальной и реальной жизнью человека, связующее звено между действиями, которые человек выполняет анонимно, под своим или чужим именем. Может легко показаться, что обеспечивать конфиденциальность лиц, как любой другой частной информации, не нужно, потому что в жизни люди обычно не закрывают лица. За исключением стран, где женщины обязаны носить паранджу, люди со скрытым лицом вызывают подозрения.


Обеспечивать конфиденциальность лица человека действительно необходимо, потому что в прошлом люди вырабатывали институты и ценности, связанные с защитой частной информации в те периоды, когда опознать незнакомых людей в основном было достаточно сложно. По причине биологических особенностей память человека ограничена, и без технологической надстройки он может запомнить лишь небольшое количество лиц. А с учётом численности и распределения населения за свою жизнь человек встретит не так уж много новых людей. Эти ограничения создают своего рода «белые пятна», благодаря чему у людей были хорошие шансы затеряться в толпе.

Недавние решения Верховного суда США касательно четвёртой поправки (которая запрещает необоснованные обыски и задержания, а также требует выдачи ордеров на обыск судом при наличии достаточных оснований) свидетельствуют о том, что борьба за защиту конфиденциальности в общественных местах по-прежнему актуальна. Этим летом в одном из процессов суд решил, что геолокационные данные с мобильных телефонов подпадают под действие Конституции, а информация, которую человек желает сохранить в тайне, даже если она оказывается доступна публично, может охраняться Конституцией.

Почему технология распознавания лиц не поддаётся правовому регулированию

В связи с тем, что технология распознавания лиц представляет огромную угрозу, общество не может пустить её регулирование на самотёк. Потенциальная прибыльность подтолкнёт к появлению идей по реализации максимальных возможностей технологии, и отдельные компании будут продвигать свои интересы в этом направлении.

Общество также не может ждать подъёма популистов. Технологию распознавания лиц продолжат «продавать» как часть самых новых и продвинутых приложений и устройств. Apple уже называет Face ID лучшей функцией последнего iPhone. То же самое касается новостных репортажей с идеологической подоплёкой, в которых технологию распознавания лиц провозглашают решением всех проблем.

Наконец, обществу не следует излишне рассчитывать на традиционные методы регулирования. Особенности технологии распознавания лиц не позволяют удержать её в рамках мер, которые определяют законные и незаконные способы применения и пытаются уместить в ней потенциальную полезность для общества и устрашающий фактор для злоумышленников. Это - один их немногих примеров, когда необходимо ввести полный запрет.

На данный момент существует очень немного проектов по контролю технологии распознавания лиц и ещё меньше - по её ограничению. Есть достойные законы о биометрических данных в штатах Иллинойс и Техас, но они придерживаются общепринятой стратегии регулирования, согласно которой субъекты, собирающие и использующие эти данные, должны выполнять ряд базовых информационных практик и протоколов конфиденциальности. Сюда относятся требование получать информированное согласие на сбор биометрических данных, их обязательная защита и ограничение на срок хранения, запрет на их использование с целью получения прибыли, ограничение прав передачи третьим лицам и частные основания для подачи иска в случае нарушения этих норм.

Предлагаемые законы в области распознавания лиц похожи на них. Федеральная комиссия по торговле США рекомендует ввести такой же механизм в отношении технологии: предупреждать человека о её применении, давать ему выбор и честно ограничивать использование его данных. Доклад Electronic Frontier Foundation, в котором упор сделан на проведение этих законов в жизнь, содержит аналогичные, хотя и более глубокие предложения. Например, создать чёткие правила использования, распространения и обеспечения безопасности данных; ввести ограничения на сбор и хранение данных; запрет на включение нескольких видов биометрических данных в одну базу; обязательное уведомление, проведение проверок и независимого надзора. В своём проекте закона о распознавании лиц Center on Privacy & Technology университета Джорджтауна предлагает значительно ограничить доступ правительства к базам лиц, а также использование технологии распознавания лиц в реальном времени.


К сожалению, большинство действующих и предлагаемых требований носят процедурный характер. И в конечном счёте не остановят распространение самой технологии и развитие соответствующей инфраструктуры. Прежде всего нужно отметить ложность некоторых исходных допущений относительно согласия, уведомления и выбора, которые присутствуют в существующих законах. Информированное согласие как механизм регулирования наблюдения и обработки данных полностью бесполезно. Даже если бы людям всецело принадлежало право контролировать свои данные, они бы всё равно не смогли им воспользоваться в полной мере.

И всё же законодатели и сама отрасль пытаются сдвинуться с мёртвой точки. Но в этих нормах, как и в большинстве норм конфиденциальности цифровой эры, есть много пробелов. Одни законы касаются только сбора или хранения данных и не затрагивают то, как они используются. Другие применимы лишь к компаниям или правительству и настолько неоднозначны, что позволяют избежать последствий за различные противоправные действия. И чтобы прочувствовать преимущества технологии распознавания лиц, которую так расхваливают, потребуется больше камер, лучшая инфраструктура и необъятные базы данных.

Будущее технологии распознавания лиц

Технология распознавания лиц открывает безграничные возможности отслеживать информацию о личности и перемещениях человека. А также практически мгновенно сохранять, распространять и анализировать её. Развитие этой технологии в будущем может привести к тому, что конфиденциальность частной информации человека будет постоянно нарушаться. Благополучие человечества возможно лишь в том случае, если будет введён запрет на технологии распознавания лиц, прежде чем эти системы слишком прочно войдут в повседневную жизнь. Иначе людям будет знаком только мир, в котором при каждом появлении в общественном месте их будут автоматически идентифицировать, заносить информацию в профиль и, возможно, использовать её. В таком мире те, кто выступает против технологии распознавания лиц, будут дискредитированы, вынуждены замолчать или устранены.