Расчет основных показателей надежности. Интенсивность отказов, общая формула вероятности безотказной работы Интенсивность отказов сантехнического оборудования справочник

1.1 Вероятность безотказной работы

Вероятностью безотказной работы называется вероятность того, что при определенных условиях эксплуатации, в пределах заданной наработки не произойдет ни одного отказа.
Вероятность безотказной работы обозначается как P (l ) , которая определяется по формуле (1.1):

где N 0 - число элементов в начале испытания; r (l ) - число отказов элементов к моменту наработки. Следует отметить, что чем больше величина N 0 , тем с большей точностью можно рассчитать вероятность P (l).
В начале эксплуатации исправного локомотива P (0) = 1, так как при пробеге l = 0 вероятность того, что ни один элемент не откажет, принимает максимальное значение - 1. С ростом пробега l вероятность P (l ) будет уменьшаться. В процессе приближения срока эксплуатации к бесконечно большой величине вероятность безотказной работы будет стремиться к нулю P (l →∞) = 0. Таким образом в процессе наработки величина вероятности безотказной работы изменяется в пределах от 1 до 0. Характер изменения вероятности безотказной работы в функции пробега показан на рис. 1.1.

Рис.2.1. График изменения вероятности безотказной работы P(l) в зависимости от наработки

Основными достоинствами использования данного показателя при расчетах является два фактора: во-первых, вероятность безотказной работы охватывает все факторы, влияющие на надежность элементов, позволяя достаточно просто судить о его надежности, т.к. чем больше величина P (l ), тем выше надежность; во-вторых, вероятность безотказной работы может быть использована в расчетах надежности сложных систем, состоящих из более чем одного элемента.

1.2 Вероятность отказа

Вероятностью отказа называют вероятность того, что при определенных условиях эксплуатации, в предела х заданной наработки произойдет хотя бы один отказ.
Вероятность отказа обозначается как Q (l ), которая определяется по формуле (1.2):

В начале эксплуатации исправного локомотива Q (0) = 0, так как при пробеге l = 0 вероятность того, что хотя бы один элемент откажет, принимает минимальное значение - 0. С ростом пробега l вероятность отказа Q (l ) будет увеличиваться. В процессе приближения срока эксплуатации к бесконечно большой величине вероятность отказа будет стремиться к единице Q (l →∞ ) = 1. Таким образом в процессе наработки величина вероятности отказа изменяется в пределах от 0 до 1. Характер изменения вероятности отказа в функции пробега показан на рис. 1.2. Вероятность безотказной работы и вероятность отказа являются событиями противоположными и несовместимыми.

Рис.2.2. График изменения вероятности отказа Q(l) в зависимости от наработки

1.3 Частота отказов

Частота отказов - это отношение числа элементов в единицу времени или пробега отнесенного к первоначальному числу испытуемых элементов. Другими словами частота отказов является показателем, характеризующим скорость изменения вероятности отказов и вероятности безотказной работы по мере роста длительности работы.
Частота отказов обозначается как и определяется по формуле (1.3):

где - количество отказавших элементов за промежуток пробега .
Данный показатель позволяет судить по его величине о числе элементов, которые откажут на каком-то промежутке времени или пробега, также по его величине можно рассчитать количество требуемых запасных частей.
Характер изменения частоты отказов в функции пробега показан на рис. 1.3.


Рис. 1.3. График изменения частоты отказов в зависимости от наработки

1.4 Интенсивность отказов

Интенсивность отказов представляет собой условную плотность возникновения отказа объекта, определяемую для рассматриваемого момента времени или наработки при условии, что до этого момента отказ не возник. Иначе интенсивность отказов - это отношение числа отказавших элементов в единицу времени или пробега к числу исправно работающих элементов в данный отрезок времени.
Интенсивность отказов обозначается как и определяется по формуле (1.4):

где

Как правило, интенсивность отказов является неубывающей функцией времени. Интенсивность отказов обычно применяется для оценки склонности к отказам в различные моменты работы объектов.
На рис. 1.4. представлен теоретический характер изменения интенсивности отказов в функции пробега.

Рис. 1.4. График изменения интенсивности отказов в зависимости от наработки

На графике изменения интенсивности отказов, изображенном на рис. 1.4. можно выделить три основных этапа отражающих процесс экс-плуатации элемента или объекта в целом.
Первый этап, который также называется этапом приработки, характеризуется увеличением интенсивности отказов в начальный период эксплуатации. Причиной роста интенсивности отказов на данном этапе являются скрытые дефекты производственного характера.
Второй этап, или период нормальной работы, характеризуется стремлением интенсивности отказов к постоянному значению. В течение этого периода могут возникать случайные отказы, в связи с появлением внезапной концентрации нагрузки, превышающей предел прочности элемента.
Третий этап, так называемый период форсированного старения. Характеризуется возникновением износовых отказов. Дальнейшая эксплуатация элемента без его замены становится экономически не рациональной.

1.5 Средняя наработка до отказа

Средняя наработка до отказа - это средний пробег безотказной работы элемента до отказа.
Средняя наработка до отказа обозначается как L 1 и определяется по формуле (1.5):

где l i - наработка до отказа элемента; r i - число отказов.
Средняя наработка до отказа может быть использована для предварительного определения сроков ремонта или замены элемента.

1.6 Среднее значение параметра потока отказов

Среднее значение параметра потока отказов характеризует среднюю плотность вероятности возникновения отказа объекта, определяемая для рассматриваемого момента времени.
Среднее значение параметра потока отказов обозначается как W ср и определяется по формуле (1.6):

1.7 Пример расчета показателей безотказности

Исходные данные.
В течение пробега от 0 до 600 тыс. км., в локомотивном депо произведен сбор информации по отказам ТЭД. При этом количество исправных ТЭД в начале периода эксплуатации составляло N0 = 180 шт. Суммарное количество отказавших ТЭД за анализируемый период составило ∑r(600000) = 60. Интервал пробега принять равным 100 тыс. км. При этом количество отказавших ТЭД по каждому участку составило: 2, 12, 16, 10, 14, 6.

Требуется.
Необходимо рассчитать показатели безотказности и построить их зависимости изменения во времени.

Сначала необходимо заполнить таблицу исходных данных так, как это показано в табл. 1.1.

Таблица 1.1.

Исходные данные к расчету
, тыс. км 0 - 100 100 - 200 200 - 300 300 - 400 400 - 500 500 - 600
2 12 16 10 14 6
2 14 30 40 54 60

Первоначально по уравнению (1.1) определим для каждого участка пробега величину вероятности безотказной работы. Так, для участка от 0 до 100 и от 100 до 200 тыс. км. пробега вероятность безотказной работы составит:

Произведем расчет частоты отказов по уравнению (1.3).

Тогда интенсивность отказов на участке 0-100 тыс.км. будет равна:

Аналогичным образом определим величину интенсивности отказов для интервала 100-200 тыс. км.

По уравнениям (1.5 и 1.6) определим среднюю наработку до отказа и среднее значение параметра потока отказов.

Систематизируем полученные результаты расчета и представим их в виде таблицы (табл. 1.2.).

Таблица 1.2.

Результаты расчета показателей безотказности
, тыс.км. 0 - 100 100 - 200 200 - 300 300 - 400 400 - 500 500 - 600
2 12 16 10 14 6
2 14 30 40 54 60
P(l) 0,989 0,922 0,833 0,778 0,7 0,667
Q(l) 0,011 0,078 0,167 0,222 0,3 0,333
10 -7 , 1/км 1,111 6,667 8,889 5,556 7,778 3,333
10 -7 , 1/км 1,117 6,977 10,127 6,897 10,526 4,878

Приведем характер изменения вероятности безотказной работы ТЭД в зависимости от пробега (рис. 1.5.). Необходимо отметить, что первой точкой на графике, т.е. при пробеге равном 0, величина вероятности безотказной работы примет максимальное значение - 1.

Рис. 1.5. График изменения вероятности безотказной работы в зависимости от наработки

Приведем характер изменения вероятности отказа ТЭД в зависимости от пробега (рис. 1.6.). Необходимо отметить, что первой точкой на графике, т.е. при пробеге равном 0, величина вероятности отказа примет минимальное значение - 0.

Рис. 1.6. График изменения вероятности отказа в зависимости от наработки

Приведем характер изменения частоты отказов ТЭД в зависимости от пробега (рис. 1.7.).

Рис. 1.7. График изменения частоты отказов в зависимости от наработки

На рис. 1.8. представлена зависимость изменения интенсивности отказов от наработки.

Рис. 1.8. График изменения интенсивности отказов в зависимости от наработки

2.1 Экспоненциальный закон распределения случайных величин

Экспоненциальный закон достаточно точно описывает надежность узлов при внезапных отказах, имеющих случайный характер. Попытки применить его для других типов и случаев отказов, особенно постепенных, вызванных износом и изменением физико-химических свойств элементов показали его недостаточную приемлемость.

Исходные данные.
В результате испытания десяти топливных насосов высокого давления получены наработки их до отказа: 400, 440, 500, 600, 670, 700, 800, 1200, 1600, 1800 ч. Предполагая, что наработка до отказа топливных насосов подчиняется экспоненциальному закону распределения.

Требуется.
Оценить величину интенсивности отказов, а также рассчитать вероятность безотказной работы за первые 500 ч. и вероятность отказа в промежутке времени между 800 и 900 ч. работы дизеля.

Во-первых, определим величину средней наработки топливных насосов до отказа по уравнению:

Затем рассчитываем величину интенсивности отказов:

Величина вероятности безотказной работы топливных насосов при наработке 500 ч составит:

Вероятность отказа в промежутке между 800 и 900 ч. работы насосов составит:

2.2 Закон распределения Вэйбулла-Гнеденко

Закон распределения Вейбулла-Гнеденко получил широкое распространение и используется применительно к системам, состоящим из рядов элементов, соединенных последовательно с точки зрения обеспечения безотказности системы. Например, системы, обслуживающие дизель-генераторную установку: смазки, охлаждения, питания топливом, воздухом и т.д.

Исходные данные.
Время простоя тепловозов в неплановых ремонтах по вине вспомогательного оборудования подчиняется закону распределения Вейбулла-Гнеденко с параметрами b=2 и a=46.

Требуется.
Необходимо определить вероятность выхода тепловозов из неплановых ремонтов после 24 ч. простоя и время простоя, в течение которого работоспособность будет восстановлена с вероятностью 0,95.

Найдем вероятность восстановления работоспособности локомотива после простоя его в депо в течение суток по уравнению:

Для определения времени восстановления работоспособности локомотива с заданной величиной доверительной вероятности также используем выражение:

2.3 Закон распределения Рэлея

Закон распределения Рэлея используется в основном для анализа работы элементов, имеющих ярко выраженный эффект старения (элементы электрооборудования, различного рода уплотнения, шайбы, прокладки, изготовленные из резиновых или синтетических материалов).

Исходные данные.
Известно, что наработки контакторов до отказа по параметрам старения изоляции катушек можно описать функцией распределения Рэлея с параметром S = 260 тыс.км.

Требуется.
Для величины наработки 120 тыс.км. необходимо определить вероятность безотказной работы, интенсивность отказов и среднюю наработку до первого отказа катушки электромагнитного контактора.

3.1 Основное соединение элементов

Система, состоящая из нескольких независимых элементов, связанных функционально таким образом, что отказ любого из них вызывает отказ системы, отображается расчетной структурной схемой безотказной работы с последовательно соединенными событиями безотказной работы элементов.

Исходные данные.
Нерезервированная система состоит из 5 элементов. Интенсивности их отказов соответственно равны 0,00007; 0,00005; 0,00004; 0,00006; 0,00004 ч-1

Требуется.
Необходимо определить показатели надежности системы: интенсивность отказов, среднее время наработки до отказа, вероятность безотказной работы, частота отказов. Показатели надежности P(l) и a(l) получить в интервале от 0 до 1000 часов с шагом в 100 часов.

Вычислим интенсивность отказа и среднюю наработку до отказа по следующим уравнениям:

Значения вероятности безотказной работы и частоты отказов получим, используя уравнения приведенные к виду:

Результаты расчета P(l) и a(l) на интервале от 0 до 1000 часов работы представим в виде табл. 3.1.

Таблица 3.1.

Результаты расчета вероятности безотказной работы и частоты отказов системы на интервале времени от 0 до 1000 ч.
l , час P(l) a(l) , час -1
0 1 0,00026
100 0,974355 0,000253
200 0,949329 0,000247
300 0,924964 0,00024
400 0,901225 0,000234
500 0,878095 0,000228
600 0,855559 0,000222
700 0,833601 0,000217
800 0,812207 0,000211
900 0,791362 0,000206
1000 0,771052 0,0002

Графическая иллюстрация P(l) и a(l) на участке до средней наработки до отказа представлена на рис. 3.1, 3.2.

Рис. 3.1. Вероятность безотказной работы системы.

Рис. 3.2. Частота отказов системы.

3.2 Резервное соединение элементов

Исходные данные.
На рис. 3.3 и 3.4 показаны две структурные схемы соединения элементов: общего (рис. 3.3) и поэлементного резервирования (рис. 3.4). Вероятности безотказной работы элементов соответственно равны P1(l) = P ’1(l) = 0,95; P2(l) = P’2(l) = 0,9; P3(l) = P ’3(l) = 0,85.

Рис. 3.3. Схема системы с общим резервированием.

Рис. 3.4. Схема системы с поэлементным резервированием.

Вероятность безотказной работы блока из трех элементов без резервирования рассчитаем по выражению:

Вероятность безотказной работы той же системы при общем резервировании (рис. 3.3) составит:

Вероятности безотказной работы каждого из трех блоков при поэлементном резервировании (рис. 3.4) будут равны:

Вероятность безотказной работы системы при поэлементном резервировании составит:

Таким образом, поэлементное резервирование дает более существенное увеличение надежности (вероятность безотказной работы возросла с 0,925 до 0,965, т.е. на 4%).

Исходные данные.
На рис. 3.5 представлена система с комбинированным соединением элементов. При этом вероятности безотказной работы элементов имеют следующие значения: P1=0,8; Р2=0,9; Р3=0,95; Р4=0,97.

Требуется.
Необходимо определить надежность системы. Также необходимо определить надежность этой же системы при условии, что резервные элементы отсутствуют.

Рис.3.5. Схема системы при комбинированном функционировании элементов.

Для расчета в исходной системе необходимо выделить основные блоки. В представленной системе их три (рис. 3.6). Далее рассчитаем надежность каждого блока в отдельности, а затем найдем надежность всей системы.

Рис. 3.6. Сблокированная схема.

Надежность системы без резервирования составит:

Таким образом, система без резервирования является на 28% менее надежной, чем система с резервированием.

Интенсивностью отказов называется отношение числа отказавших образцов аппаратуры в единицу времени к среднему числу образцов, исправно работающих в данный отрезок времени при условии, что отказавшие образцы не восстанавливаются и не заменяются исправными.

Эта характеристика обозначается .Согласно определению

где n(t) – число отказавших образцов в интервале времени от до ; – интервал времени, - среднее число исправно работающих образцов в интервале ; N i - число исправно работающих образцов в начале интервала , N i +1 – число исправно работающих образцов в конце интервала .

Выражение (1.20) является статистическим определением интенсивности отказов. Для вероятностного представления этой характеристики установим зависимость между интенсивностью отказов, вероятностью безотказной работы и частотой отказов.

Подставим в выражение (1.20) выражение для n(t) из формул (1.11) и (1.12). Тогда получим:

.

Учитывая выражение (1.3) и то, что N ср = N 0 – n(t), найдем:

.

Устремляя к нулю и переходя к пределу, получим:

. (1.21)

Интегрируя выражение (1.21), получим:

Так как , то на основании выражения (1.21) получим:

. (1.24)

Выражения (1.22) – (1.24) устанавливают зависимость между вероятностью безотказной работы, частотой отказов и интенсивностью отказов.


Выражение (1.23) может быть вероятностным определением интенсивности отказов.

Интенсивность отказов как количественная характеристика надежности обладает рядом достоинств. Она является функцией времени и позволяет наглядно установить характерные участки работы аппаратуры. Это может позволить существенно повысить надежность аппаратуры. Действительно, если известны время приработки (t 1) и время конца работы (t 2), то можно разумно установить время тренировки аппаратуры до начала ее экс

плуатации и ее ресурс до ремонта. Это позволяет уменьшить число отказов при эксплуатации, т.е. приводит, в конечном счете, к повышению надежности аппаратуры.

Интенсивность отказов как количественная характеристика надежности имеет тот же недостаток, что и частота отказов: она позволяет достаточно просто характеризовать надежность аппаратуры лишь до первого отказа. Поэтому она является удобной характеристикой надежности систем разового применения и, в частности, простейших элементов.

По известной характеристике наиболее просто определяются остальные количественные характеристики надежности.

Указанные свойства интенсивности отказов позволяют ее считать основной количественной характеристикой надежности простейших элементов радиоэлектроники.

Наиболее удобным для аналитического описания является так называемый экспоненциальный (или показательный) закон надежности, который выражается формулой

где - постоянный параметр.

График экспоненциального закона надежности показан на рис. 7.10. Для этого закона функция распределения времени безотказной работы имеет вид

а плотность

Это есть уже известный нам показательный закон распределения, по которому распределено расстояние между соседними событиями в простейшем потоке с интенсивностью (см. § 4 гл. 4).

При рассмотрении вопросов надежности часто бывает удобно представлять себе дело так, словно на элемент действует простейший поток отказов с интенсивностью Я; элемент отказывает в момент, когда приходит первое событие этого потока.

Образ «потока отказов» приобретает реальный смысл, если отказавший элемент немедленно заменяется новым (восстанавливается).

Последовательность случайных моментов времени, в которые проис ходят отказы (рис. 7.11), представляет собой простейший поток событии, а интервалы между событиями - независимые случайные величины, распределенные по показательному закону (3,3),

Понятие «интенсивности отказов» может быть введено не только для экспоненциального, но и для любого другого закона надежности о плотностью вся разница будет в том, что при неэкспоненциальном законе интенсивность отказов Я будет уже не постоянной величиной, а переменной.

Интенсивностью (или иначе «опасностью») отказов называется отношение плотности распределения времени безотказной работы элемента к его надежности:

Поясним физический смысл этой характеристики. Пусть одновременно испытывается большое число N однородных элементов, каждый - до момента своего отказа. Обозначим - число элементов, оказавшихся исправными к моменту , как и и раньше, - число элементов, отказавших на малом участке времени На единицу времени придется среднее число отказов

Разделим эту величину не на общее число испытываемых элементов N, а на число исправных к моменту t элементов . Нетрудно убедиться, что при большом N это отношение будет приближенно равно интенсивности отказов

Действительно, при большом N

Но согласно формуле (2.6)

В работах по надежности приближенное выражение (3.5) часто рассматривают как определение интенсивности отказов, т. е. определяют ее как среднее число отказов в единицу времени, приходящееся на один работающий элемент.

Характеристике можно дать еще одно истолкование: это есть условная плотность вероятности отказа элемента в данный момент времени t, при условии, что до момента t он работал безотказно. Действительно, рассмотрим элемент вероятности - вероятность того, что за время элемент перейдет из состояния «работает» в состояние «не работает», при условии, что до момента t он работал. В самом деле, безусловная вероятность отказа элемента на участке равна Это - вероятность совмещения двух событий:

А - элемент работал исправно до момента

В - элемент отказал на участке времени По правилу умножения вероятностей:

Учитывая, что получим:

а величина есть не что иное, как условная плотность вероятности перехода из состояния «работает» в состояние «отказал» для момента t.

Если известна интенсивность отказов , то можно выразить через нее надежность Учитывая, что запишем формулу (3.4) в виде:

Интегрируя, получим:

Таким образом надежность выражается через интенсивность отказов.

В частном случае, когда , формула (3.6) дает:

т. е. уже известный нам экспоненциальный закон надежности.

Пользуясь образом «потока отказов», можно истолковать не только формулу (3.7), но и более общую формулу (3.6). Представим себе (совершенно условно!), что на элемент с произвольным законом надежности действует поток отказов с переменной интенсивностью Тогда формула (3.6) для выражает вероятность того, что на участке времени (0, t) не появится ни одного отказа.

Таким образом, как при экспоненциальном, так и при любом другом законе надежности работу элемента, начиная с момента включения можно представлять себе так, что на элемент действует пуассоновский поток отказов; для экспоненциального закона надежности это будет поток с постоянной интенсивностью , а для неэкспоненциального - с переменной интенсивностью

Заметим, что этот образ годится только в том случае, когда отказавший элемент не заменяется новым. Если, как мы это делали раньше, немедленно заменять отказавший элемент новым, поток отказов уже не будет пуассоновским. Действительно, интенсивность его будет зависеть не просто от времени t, протекшего с начала всего процесса, а и от времени , протекшего со случайного момента включения именно данного элемента; значит, поток событий имеет последействие и пуассоновским не является.

Если же на протяжении всего исследуемого процесса данный элемент не заменяется и может отказать не более одного раза, то при описании процесса, зависящего от его функционирования, можно пользоваться схемой марковского случайного процесса, но при переменной, а не постоянной интенсивности потока отказов.

Если неэкспоненциальный закон надежности сравнительно мало отличается от экспоненциального, то можно, в целях упрощения, приближенно заменить его экспоненциальным (рис. 7.12). Параметр этого закона выбирается так, чтобы сохранить неизменным математическое ожидание времени безотказной работы, равное, как мы знаем, площади, ограниченной кривой и осями координат. Для этого нужно положить параметр показательного закона равным

где - площадь, ограниченная кривой надежности

Таким образом, если мы хотим характеризовать надежность элемента некоторой средней интенсивностью отказов, нужно в качестве этой интенсивности взять величину, обратную среднему времени безотказной работы элемента.

Выше мы определяли величину t как площадь, ограниченную кривой Однако, если требуется знать только среднее время безотказной работы элемента, проще найти его непосредственно по статистическому материалу как среднее арифметическое всех наблюденных значений случайной величины Т - времени работы элемента до его отказа. Такой способ может быть применен и в случае, когда число опытов невелико и не позволяет достаточно точно построить кривую

Пример 1. Надежность элемента убывает со временем по линейному закону (рис. 7.13). Найти интенсивность отказов и среднее время безотказной работы элемента

Решение. По формуле (3.4) на участке ) имеем:

Согласно заданному закону надежности 4

При рассмотрении законов распределения отказов было выяснено, что интенсивности отказов элементов могут быть либо постоянными, либо меняться в зависимости от времени эксплуатации. Для систем длительного использования, к которым относятся все транспортные системы, предусматри­вается профилактическое обслуживание, что практически исключает влияние износовых отказов, поэтому возникают только внезапные отказы.

Это в значительной мере упрощает расчет надежности. Однако сложные системы состоят из множества элементов, соединенных различным способом. Когда система находится эксплуатации, некоторые ее элементы работают непрерыв­но, другие - только в определенные промежутки времени, третьи - выполняют лишь короткие операции включения или подключения. Следовательно, в течение заданного промежут­ка времени лишь у части элементов время работы совпадает со временем работы системы, другие же работают более ко­роткое время.

В этом случае для расчета наработки заданной системы рассматривается только время, в течение которого элемент включен; такой подход возможен, если допустить, что в те­чение периодов, когда элементы не включены в работу систе­мы, их интенсивность отказов равна нулю.

С точки зрения надежности наиболее распространена схе­ма последовательного соединения элементов. В этом случае при расчете используется правило произведения надежностей:

где R (t i) - надежность i-го элемента, который включается на t i часов из общего времени работы системы t ч .


Для расчетов может быть использован так называемый

коэффициент занятости, равный

т. е. отношению вре­мени работы элемента ко времени работы системы. Практи­ческий смысл этого коэффициента состоит в том, что для элемента с известной интенсивностью отказов интенсив­ность отказов в системе с учетом времени работы будет равна

Такой же подход может быть использован по отношению к отдельным узлам системы.

Другим фактором, который следует учитывать при ана­лизе надежности системы, является уровень рабочей нагруз­ки, с которой элементы работают в системе, так как он в значительной мере определяет величину ожидаемой интен­сивности отказов.

Интенсивность отказов элементов существенно меняется даже при небольших изменениях рабочей нагрузки, воздей­ствующей на них.

В данном случае основное затруднение при расчете вызы­вается многообразием факторов, определяющий как понятие прочности элемента, так и понятие нагрузки.

Прочность элемента объединяет его сопротивление меха­ническим нагрузкам, вибрациям, давлению, ускорению и т. д. К категории прочности относятся также сопротивления тепло­вым нагрузкам, электрическая прочность, влагостойкость, стой­кость против коррозии и ряд других свойств. Поэтому проч­ность не может быть выражена некоторой числовой величиной и нет единиц измерения прочности, учитывающих все эти фак­торы. Также многообразны проявления нагрузки. Поэтому для оценки прочности и нагрузки используются статистические методы, с помощью которых определяется наблюдаемый эффект отказа элемента во времени под действием ряда на­грузок или под действием преимущественной нагрузки.

Элементы проектируются так, чтобы они могли выдержать номинальные нагрузки. При эксплуатации элементов в усло­виях номинальных нагрузок наблюдается определенная за­кономерность интенсивности их внезапных отказов. Эта ин­тенсивность называется номинальной интенсивностью вне­запных отказов элементов, и она является исходной величи­ной для определения действительной интенсивности внезап­ных отказов реального элемента (с учетом времени работы и рабочей нагрузки).

Для реального элемента или системы в настоящее время учитываются три основных воздействия окружающей среды: механические, тепловые и рабочие нагрузки.

Влияние механических воздействий учитывается коэффи­циентом , величина которого определяется местом уста­новки аппаратуры, и может быть принята равной:

для лабораторий и благоустроенных помещений - 1

, стационарных наземных установок - 10

, железнодорожного подвижного состава - 30.

Номинальная интенсивность внезапных отказов, выбран­ная по

табл. 3, должна быть увеличена в раз в зависи­мости от места установки аппарата в эксплуатации.

Кривые рис. 7 иллюстрируют общий характер изменения интенсивности внезапных отказов электрических и электронных элементов в зависимости от температуры нагрева и ве­личины рабочей нагрузки.

Интенсивность внезапных отказов с увеличением рабочей нагрузки,как видно из приведенных кривых, возрастает по логарифмическому закону. Из этих кривых также видно, каким образом можно уменьшить интенсивность внезапных отказов элементов даже до величины, меньшей номинального значения. Существенное сокращение интенсивности внезап­ных отказов достигается в том случае, если элементы рабо­тают при нагрузках ниже номинальных значений.


Рис. 16

Рис. 7 может быть использован при проведении ориенти­ровочных (учебных) расчетов надежности любых электрических и электронных элементов. Номинальному режиму в этом случае соответствует температура 80°С и 100% рабочей на­грузки.

Если расчетные параметры элемента отличаются от но­минальных значений, то по кривым рис. 7 может быть опре­делено увеличение для выбранных параметров и получено отношение на которое и умножается величина интен­сивности отказов рассматриваемого элемента.

Высокая надежность может быть заложена при проекти­ровании элементов и систем. Для этого необходимо стре­миться к уменьшению температуры элементов при работе и применять элементы с повышенными номинальными парамет­рами, что равносильно снижению рабочих нагрузок.

Увеличение стоимости изготовления изделия в любом слу­чае окупается за счет сокращения эксплуатационных рас­ходов.


Интенсивность отказов для элементов электрических це­-
пей в зависимости от нагрузки может быть определена так­
же по эмпирическим формулам. В частности, в зависимости
от рабочего напряжения и температуры

Табличное значение при номинальном напряжении и температуре t i .

- интенсивность отказов при рабочем напряжении U 2 и температуре t 2 .

Предполагается, что механические воздействия остаются на прежнем уровне. В зависимости от вида и типа элементов значение п, меняется от 4 до 10, а значение К в пределах 1,02 1,15.

При определении реальной интенсивности отказов эле­ментов необходимо хорошо представлять величину ожидае­мых уровней нагрузок, при которых элементы будут рабо­тать, рассчитать величины электрических и тепловых пара­метров с учетом переходных режимов. Правильное выявле­ние нагрузок, воздействующих на отдельные элементы, при­водит к значительному повышению точности расчета надеж­ности.

При расчете надежности с учетом износовых отказов не­обходимо также учитывать условие эксплуатации. Значения долговечности М, приведенные в табл. 3, так же как и относятся к номинальному режиму нагрузки и лабора­торным условиям. Все элементы, работающие в других условиях, имеют долговечность, отличающуюся от ной на величину К Величина К может быть принята равной:

для лаборатории - 1,0

, наземных установок - 0,3

, железнодорожного подвижного состава - 0,17

Небольшие колебания коэффициента К возможны для аппаратуры различного назначения.

Для определения ожидаемой долговечности М необхо­димо среднюю (номинальную) долговечность, определенную по таблице, умножить на коэффициент К .

При отсутствии материалов, необходимых для определе­ния интенсивности отказов в зависимости от уровней нагруз­ки, может быть использован коэффициентный метод расчета интенсивности отказов.

Сущность коэффициентного метода расчета сводится к тому, что при расчете критериев надежности аппаратуры используются коэффициенты, связывающие интенсивность отказов элементов различных типов с интенсивностью отказов элемента, характеристики надежности которого достоверно известны.

Предполагается, что справедлив экспоненциальный закон надежности, а интенсивности отказов элементов всех типов изменяются в зависимости от условий эксплуатации в одина­ковой степени. Последнее допущение означает, что при раз­личных условиях эксплуатации справедливо соотношение

Интенсивность отказов элемента, количественные ха­рактеристики которого известны;

Коэффициент надежности i-го элемента. Элемент с интенсивностью отказов ^ 0 называется основным элементом расчета системы. При вычислении коэффи­циентов K i за основной элемент расчета системы прини­мается проволочное_нерегулируемое сопротивление. В данном случае для расчета надежности системы не требуется знать интенсивность отказа элементов всех типов. Достаточно знать лишь коэффициенты надежности K i , число элементов в схе­ме и интенсивность отказов основного элемента расчета Так как K i имеет разброс значений, то надежность прове­ряется как для К min , так и для К мах. Значения K i , опреде­ленные на основании анализа данных по интенсивностям отказов, для аппаратуры различного назначения приведены в табл. 5.

Таблица 5

Интенсивность отказов основного элемента расчета (в дан­ном случае сопротивления) следует определять как средне­взвешенное значение интенсивностей отказов сопротивлений, применяемых в проектируемой системе, т. е.

И N R - интенсивность отказов и количество сопро­тивлений i-го типа и номинала;

т - число типов и номиналов сопротивлений.

Построение результирующей зависимости надежности си­стемы от времени эксплуатации желательно производить как для значений К min , так и для К мах

Располагая сведениями о надежности отдельных элемен­тов, входящих в систему, можно дать общую оценку надежности системы и определить блоки и узлы, требующие даль­нейшей доработки. Для этого исследуемая система разби­вается на узлы по конструктивному либо смысловому при­знаку (составляется структурная схема). Для каждого вы­бранного узла определяется надежность (узлы, имеющие меньшую надежность требуют доработки и усовершенствова­ния в первую очередь).

При сравнении надежности узлов, а тем более различных вариантов систем, следует помнить, что абсолютная величина надежности не отражает поведения системы в эксплуатации и ее эффективности. Одна и та же величина надежности си­стемы может быть достигнута в одном случае за счет основ­ных элементов, ремонт и смена которых требует значительного времени и больших материальных затрат (для электровоза-отстранение от поездной работы), в другом случае это мелкие элементы, смена которых производится обслужи­вающим персоналом без отстранения машины от работы. Поэтому для сравнительного анализа проектируемых систем рекомендуется сравнивать надежности элементов, аналогич­ных по своему значению и последствиям, возникающим в ре­зультате их отказов.

При ориентировочных расчетах надежности можно поль­зоваться данными опыта эксплуатации аналогичных систем. что в какой-то мере учитывает условия эксплуатации. Расчет в этом случае может осуществляться двумя путями: по сред­нему уровню надежности однотипной аппаратуры или покоэффициенту пересчета к реальным условиям эксплуатации.

В основе расчета по среднему уровню надежности лежит предположение, что проектируемой аппаратуры и эксплуа­тируемого образца равны. Это можно допустить при одина­ковых элементах, аналогичных системах и одинаковом со­отношении элементов в системе.

Сущность метода состоит в том, что

И - число элементов и наработка на отказ аппаратуры - образца;

И - то же проектируемой аппаратуры. Из данного соотноше-ния легко определить наработку на отказ для проектируемой ап-паратуры:

Достоинство метода - простота. Недостатки - отсутствие, как правило, образца эксплуатируемой аппаратуры, пригод­ного для сравнения с проектируемым устройством.

В основе расчета по второму способу лежит определение коэффициента пересчета, учитывающего условия эксплуата­ции аналогичной аппаратуры. Для его определения выби­рается аналогичная система, эксплуатируемая в заданных условиях. Остальные требования могут не соблюдаться. Для выбранной эксплуатируемой системы определяются показатели надежности с использованием данных табл. 3, отдельно определяются те же показатели по эксплуатационным данным.

Коэффициент пересчета определяется как отношение

- наработка на отказ по данным эксплуатации;

Т оз - наработка на отказ по расчету.

Для проектируемой аппаратуры расчет показателей на­дежности производится с использованием тех же табличных данных, что идля эксплуатируемой системы. После чего полученные результаты умножаются на К э.

Коэффициент К э учитывает реальные условия эксплуатации,- профилактические ремонты и их качество, замены де­талей между ремонтами, квалификацию обслуживающего персонала, состояние оборудования депо и т. д., чего нельзя предусмотреть при других способах расчета. Значения К э могут быть и больше единицы.

Любой из рассмотренных методов расчета может быть произведен на заданную надежность, т. е. методом от про­тивного - от надежности системы и наработки на отказ к выбору показателей составляющих элементов.

“ Обеспечение высокой доступности ”

Цель работы:

Изучить два вида средств поддержания высокой доступнос­ти: обеспечение отказоустойчивости (нейтрализация отказов, живу­честь) и обеспечение безопасного и быстрого восстановления после отказов (обслуживаемость). Получить навык работы по обеспечению высокой доступности.

1. Теоретическое введение

1.1. Доступность

1.11. Основные понятия

Информационная система предоставляет своим пользователям определенный набор услуг (сервисов). Говорят, что обеспечен нужный уровень доступности этих сервисов, если следующие показатели находятся в заданных пределах:

Эффективность услуг. Эффективность услуги определяется в терминах максимального времени обслуживания запроса, количества поддерживаемых пользователей и т.п. Требуется, чтобы эффективность не опускалась ниже заранее установленного порога.

Время недоступности. Если эффективность информационной услуги не удовлетворяет наложенным ограничениям, услуга считается недоступной. Требуется, чтобы максимальная продолжительность периода недоступности и суммарное время недоступности за некоторой период (месяц, год) не превышали заранее заданных пределов.

В сущности, требуется, чтобы информационная система почти всегда работала с нужной эффективностью. Для некоторых критически важных систем (например, систем управления) время недоступности должно быть нулевым, без всяких "почти". В таком случае говорят о вероятности возникновения ситуации недоступности и требуют, чтобы эта вероятность не превышала заданной величины. Для решения данной задачи создавались и создаются специальные отказоустойчивые системы, стоимость которых, как правило, весьма высока.

К подавляющему большинству коммерческих систем предъявляются менее жесткие требования, однако современная деловая жизнь и здесь накладывает достаточно суровые ограничения, когда число обслуживаемых пользователей может измеряться тысячами, время ответа не должно превышать нескольких секунд, а время недоступности - нескольких часов в год.

Задачу обеспечения высокой доступности необходимо решать для современных конфигураций, построенных в технологии клиент/сервер. Это означает, что в защите нуждается вся цепочка - от пользователей (возможно, удаленных) до критически важных серверов (в том числе серверов безопасности).

Основные угрозы доступности были рассмотрены нами ранее.

В соответствии с ГОСТ 27.002, под отказом понимается событие, которое заключается в нарушении работоспособности изделия. В контексте данной работы изделие - это информационная система или ее компонент.

В простейшем случае можно считать, что отказы любого компонента составного изделия ведут к общему отказу, а распределение отказов во времени представляет собой простой пуассоновский поток событий. В таком случае вводят понятие интенсивности отказов и среднего времени наработки на отказ, которые связаны между собой соотношением

i - номер компонента,

Интенсивность отказов,

Среднее время наработки на отказ.

Интенсивности отказов независимых компонентов складываются:

а среднее время наработки на отказ для составного изделия задается соотношением

Уже эти простейшие выкладки показывают, что если существует компонент, интенсивность отказов которого много больше, чем у остальных, то именно он определяет среднее время наработки на отказ всей информационной системы. Это является теоретическим обоснованием принципа первоочередного укрепления самого слабого звена.

Пуассоновская модель позволяет обосновать еще одно очень важное положение, состоящее в том, что эмпирический подход к построению систем высокой доступности не может быть реализован за приемлемое время. При традиционном цикле тестирования/отладки программной системы по оптимистическим оценкам каждое исправление ошибки приводит к экспоненциальному убыванию (примерно на половину десятичного порядка) интенсивности отказов. Отсюда следует, что для того, чтобы на опыте убедиться в достижении необходимого уровня доступности, независимо от применяемой технологии тестирования и отладки, придется потратить время, практически равное среднему времени наработки на отказ. Например, для достижения среднего времени наработки на отказ 105 часов потребуется более 104,5 часов, что составляет более трех лет. Значит, нужны иные методы построения систем высокой доступности, методы, эффективность которых доказана аналитически или практически за более чем пятьдесят лет развития вычислительной техники и программирования.

Пуассоновская модель применима в тех случаях, когда информационная система содержит одиночные точки отказа, то есть компоненты, выход которых из строя ведет к отказу всей системы. Для исследования систем с резервированием применяется иной формализм.

В соответствии с постановкой задачи будем считать, что существует количественная мера эффективности предоставляемых изделием информационных услуг. В таком случае вводятся понятия показателей эффективности отдельных элементов и эффективности функционирования всей сложной системы.

В качестве меры доступности можно принять вероятность приемлемости эффективности услуг, предоставляемых информационной системой, на всем протяжении рассматриваемого отрезка времени. Чем большим запасом эффективности располагает наличии избыточности в конфигурации системы вероятность того, что в система, тем выше ее доступность.

При рассматриваемый промежуток времени эффективность информационных сервисов не опустится ниже допустимого предела, зависит не только от вероятности отказа компонентов, но и от времени, в течение которого они остаются неработоспособными, поскольку при этом суммарная эффективность падает, и каждый следующий отказ может стать фатальным. Чтобы максимально увеличить доступность системы, необходимо минимизировать время неработоспособности каждого компонента. Кроме того, следует учитывать, что, вообще говоря, ремонтные работы могут потребовать понижения эффективности или даже временного отключения работоспособных компонентов; такого рода влияние также необходимо минимизировать.

Несколько терминологических замечаний. Обычно в литературе по теории надежности вместо доступности говорят о готовности (в том числе о высокой готовности). Мы предпочли термин "доступность", чтобы подчеркнуть, что информационный сервис должен быть не просто "готов" сам по себе, но доступен для своих пользователей в условиях, когда ситуации недоступности могут вызываться причинами, на первый взгляд не имеющими прямого отношения к сервису (пример - отсутствие консультационного обслуживания).

Далее, вместо времени недоступности обычно говорят о коэффициенте готовности . Нам хотелось обратить внимание на два показателя - длительность однократного простоя и суммарную продолжительность простоев, поэтому мы предпочли термин "время недоступности" как более емкий.