Rs422 по сравнению с rs485. Приемопередатчики MAXIM для индустриальных интерфейсов – обзор новинок. Усиленная защита от ЭСР

Компания Maxim является мировым лидером в производстве интерфейсных микросхем разнообразной функциональной организации.

Все микросхемы обладают особенностями, позволяющими уменьшить стоимость, увеличить плотность компоновки элементов на плате за счет уменьшения количества дополнительных элементов, а также обеспечить разнообразную защиту устройств в линии связи.

В линейке интерфейсных микросхем MAXIM можно найти:

  • Приемопередатчики самых распространенных промышленных интерфейсов: RS-232, RS-485/RS-422, IrDA, CAN, LIN, LVDS, USB, HART;
  • Двухпротокольные устройства, позволяющие с помощью одной микросхемы соединить устройства с различными интерфейсами, например RS-232 и RS-485;
  • Многопротокольные устройства, поддерживающие следующие интерфейсы: RS-232, RS-449, RS-485, RS-530, RS-530A, V.10, V.11, V.28, V.35, V.36, и X.21;
  • Микросхемы защиты линий связи от электростатического перенапряжения, позволяющие обеспечить защиту микросхем и устройств по току;
  • Микросхемы контроля интерфейсных шин, позволяющие отреагировать на короткие замыкания в схеме и в случае необходимости подключить резервное питание к разрабатываемому устройству;
  • Микросхемы, упрощающие работу со smart-картами, а также контроллеры интерфейсов, ускоряющие создание USB- и SCSI-устройств;
  • Расширители портов ввода/вывода;
  • Двусторонние высокоскоростные преобразователи уровня логического сигнала для сопряжения микросхем с различным питанием в пределах одной платы.

В основном для связи промышленных устройств используются интерфейсы RS-485 и RS-232. Линейка приемопередатчиков этих интерфейсов от компании Maxim содержит более 300 различных устройств.

Протокол RS-485

Протокол RS-485 совместно разработан двумя ассоциациями: Ассоциацией электронной промышленности (EIA — Electronics Industries Association) и Ассоциацией промышленности средств связи (TIA — Telecommunications Industry Association). Ранее EIA маркировала все свои стандарты префиксом «RS» (Recommended Standard — Рекомендованный стандарт). Многие инженеры продолжают использовать это обозначение, однако EIA/TIA официально заменил «RS» на «EIA/TIA» с целью облегчить идентификацию происхождения своих стандартов.

Этот стандарт стал основой для создания целого семейства промышленных сетей, широко используемых в промышленной автоматизации. Главное отличие RS-485 от RS-232 — возможность объединения нескольких устройств.

Перечислим основные свойства физического уровня интерфейса RS-485:

1. Двунаправленная полудуплексная передача данных. Поток последовательных данных передается одновременно только в одну сторону, передача в другую сторону требует переключения приемопередатчика. Приемопередатчики принято называть «драйверами» (driver).

2. Симметричный канал связи. Для приема/передачи данных используются два равнозначных сигнальных провода, которые обозначаются латинскими буквами «А» и «В». По этим проводам идет последовательный обмен данными в обоих направлениях (поочередно). При использовании витой пары симметричный канал существенно повышает устойчивость сигнала к синфазной помехе и хорошо подавляет электромагнитные излучения, создаваемые полезным сигналом.

3. Дифференциальный способ передачи данных. На выходе приемопередатчика изменяется разность потенциалов, при передаче «1» разность потенциалов между A и B положительная, при передаче «0» — отрицательная. То есть ток между контактами А и В при передаче «0» и «1» течет (балансирует) в противоположных направлениях.

4. Многоточечность. Допускает множественное подключение приемников и приемопередатчиков к одной линии связи. Но в каждый момент времени передавать данные должен только один передатчик, а принимать данные может большое количество устройств.

5. Низкоимпендансный выход передатчика. Буферный усилитель передатчика имеет низкоомный выход, что позволяет передавать сигнал ко многим приемникам. Стандартная нагрузочная способность передатчика равна 32 приемника на один передатчик. Кроме этого токовый сигнал используется для работы «витой пары» (чем больше рабочий ток «витой пары», тем сильнее она подавляет синфазные помехи на линии связи).

6. Зона нечувствительности. Если дифференциальный уровень сигнала между контактами АВ не превышает ±200 мВ, то считается, что сигнал в линии отсутствует. Это увеличивает помехоустойчивость передачи данных.

Дифференциальная передача сигнала в системах на основе RS-485 обеспечивает надежную передачу данных в присутствии шумов, а дифференциальные входы их приемников могут подавлять значительные синфазные напряжения. Однако для защиты от больших уровней напряжений, которые обычно ассоциируются с электростатическим разрядом (ESD), необходимо принимать дополнительные меры.

Заряженная емкость человеческого тела позволяет человеку уничтожать интегральную схему простым касанием. Такой контакт запросто может произойти при прокладке и подключении интерфейсного кабеля.

Некоторые микросхемы на рынке не имеют встроенной защиты от электростатического разряда, что вынуждает устанавливать дополнительные защитные устройства на плату. Интерфейсные микросхемы Maxim включают «ESD-структуры», которые защищают выходы передатчиков и входы приемников в приемопередатчиках RS-485 от уровней ESD до ±15 кВ, а в некоторых моделях до уровня ±30 кВ.

Чтобы гарантировать заявленную защиту от ESD, специалисты компании Maxim осуществляют многократные тестирования положительных и отрицательных выводов питания с шагом 200 В для проверки последовательности заявленных уровней. Устройства этого класса (отвечающие спецификациям модели человеческого тела) маркируются в обозначении изделия дополнительным суффиксом «E».

Также для выходных драйверов интерфейсных микросхем опасен режим короткого замыкания, однако специалисты компании Maxim разработали уникальную систему защиты, отключающую выходные драйверы микросхемы не только при обнаружении короткого замыкания, но и при перегреве микросхемы, что обеспечивает продолжительный безотказный период работы.

Поскольку у микросхем компании MAXIM все системы защиты и преобразователи уровней находятся на одном кристалле, то схема подключения сильно упрощается (рис. 1). Минимальное количество навесных элементов позволяет максимально уплотнить размещение интегральных компонентов на плате, а минимальные размеры микросхем связи (вплоть до 2×2 мм) упрощают проектирование переносных устройств или устройств, работающих в ограниченном пространстве.

Рис. 1.

Сети, построенные на базе интерфейса RS-485, могут быть как дуплексные, так и полудуплексные. Полудуплексный режим — это режим, при котором передача ведется в обоих направлениях, но с разделением по времени. В каждый момент времени передача ведется только в одном направлении. Дуплексный режим — это режим, при котором передача данных может производиться одновременно с приемом данных. Иногда его также называют «полнодуплексным» режимом для того, чтобы яснее показать разницу с полудуплексным.

Как известно, стандарт RS-485 оговаривает только электрические характеристики интерфейса связи и физический уровень (среду), но не программную платформу. Однако существует множество стандартизированных промышленных протоколов, работающих «поверх» стандарта RS-485. Среди этих протоколов, самым распространенным является PROFIBUS. Он объединяет технологические и функциональные особенности последовательной связи, что позволяет соединить разрозненные устройства автоматизации в единую систему на уровне датчиков и приводов. PROFIBUS использует обмен данными между ведущим и ведомыми устройствами (протоколы DP и PA) или между несколькими ведущими устройствами (протоколы FDL и FMS).

PROFIBUS DP (Decentralized Peripheral — Распределенная периферия) — протокол, ориентированный на обеспечение скоростного обмена данными между системами автоматизации (ведущими DP-устройствами) и устройствами распределенного ввода/вывода (ведомыми DP-устройствами).

Он характеризуется минимальным временем реакции, высокой стойкостью к воздействию внешних электромагнитных полей и оптимизирован для высокоскоростных и недорогих систем. Эта версия сети была спроектирована специально для связи между автоматизированными системами управления и распределенной периферией. Электрически протокол близок к RS-485, именно поэтому микросхемы, позволяющие работать по протоколу PROFIBUS, при желании пользователя можно перенастроить на работу по интерфейсу RS-485.

MAX14840E и MAX14841E

MAX14840E и MAX14841E — защищенные от электростатического разряда трансиверы, предназначенные для полудуплексных сетей RS-485 со скоростью передачи данных до 40 Мбит/с. Эти приемопередатчики оптимизированы для высокоскоростной связи устройств на большом расстоянии. Специальные системы защиты от несимметричности сигнала, а также увеличенный гистерезис входного сигнала позволяют значительно увеличить устойчивость к помехам.

Обычный ток потребления микросхем в режиме ожидания или в режиме работы (с отключенными выходными драйверами) составляет всего 1,5 мА. Устройства, построенные на этой микросхеме, могут включаться в уже работающую сеть «на лету», не вызывая переходные процессы, ухудшающие форму передающегося в данный момент сигнала.

Микросхемы MAX14840E и MAX14841E от компании Maxim доступны в восьмивыводном корпусе формата SO и малых восьмиконтактных (3х3 мм) корпусах формата TDFN-EP, но, независимо от форм-фактора, микросхемы работают в температурном диапазоне -40…125°C, что позволяет использовать их в автомобильных сетях.

Данная микросхема разрабатывалась для работы в высокоскоростной многоточечной сети RS-485 (рис. 2).


Рис. 2.

Минимальное количество выводов микросхемы, а также высокая степень внутренней интеграции позволяет использовать ее практически без внешних элементов, что повышает плотность компоновки платы и упрощает использование микросхемы в малогабаритных переносных устройствах.

Микросхемы серии MAX14840E и MAX14841E содержат блок защиты выходных драйверов, который ограничивает выходной ток в случае короткого замыкания линии, что позволяет сохранить выходные драйверы в рабочем состоянии, а также избежать больших потерь энергии. В данной микросхеме присутствует блок защиты от перегрева, который отключает выходные драйверы микросхемы при превышении температуры в 160°C.

Основные применения:

  • Системы управления двигателями;
  • Управление микроклиматом;
  • Промышленные системы управления;
  • Различные сети RS-485.

MAX14770E

В линейке микросхем от компании Maxim присутствует модель MAX14770E — приемопередатчик интерфейсов PROFIBUS-DP/RS-485. Новое поколение технологического процесса BiCMOS позволяет добиться высокой пропускной способности (20 Мбит/с) и при этом интегрировать в структуру надежную схему защиты от электростатического разряда (±35 кВ, HBM). Компактный корпус TDFN позволяет использовать эту микросхему в переносных устройствах. Микросхема работает в расширенном температурном диапазоне -40…125°C, что гарантирует надежность в сложных условиях.

MAX14770E повыводно совместима с MAX3469, что позволяет использовать ее для модернизации систем управления двигателями, сетей PROFIBUS-DP/RS-485 и промышленных шин.

MAX14770E имеет широкий диапазон напряжения питания, совместимый с промышленным стандартом (5 В ±10%). Микросхема выпускаются в компактном восьмивыводном корпусе TDFN (3×3 мм), а также восьмивыводном корпусе SO, для которого рабочий температурный диапазон -40…85°C.

Основные характеристики:

  • Отвечает требованиям Profibus-DP напряжение питания 4,5…5,5В;
  • Скорость передачи достигает 20Мбит/с;
  • Имеет защиту от короткого замыкания;
  • Имеет отказоустойчивый приемник;
  • Отключается при перегреве;
  • Имеет возможность горячей замены;
  • Имеет расширенную защиту от электростатического разряда: ±35кВ (модель человеческого тела); ±20кВ (модель разряда через воздушный зазор); ±10кВ (модель разряда при касании);
  • Имеет расширенный температурный диапазон -40…125°C для восьмивыводного корпуса TDFN (3×3мм).

Благодаря этим особенностям микросхемы имеют очень широкие области применения. Помимо устройств в промышленных сетях и системах кодирования промышленного оборудования эти микросхемы активно используются в системах управления двигателями, а также в сетях PROFIBUS-DP.

MAX13181E, MAX13182E, MAX13183E, MAX13184E

Микросхемы серии MAX13181E, MAX13182E, MAX13183E, MAX13184E от компании Maxim — приемопередатчики интерфейса RS-485, работающие в полнодуплексном режиме и в режиме по выбору: полу- и полнодуплексном (рис. 3).


Рис. 3.

Особенностью этих микросхем является то, что они выпускаются в компактных корпусах mDFN с габаритами 2х2 мм и предназначены для применения в разработках, критичных к габаритам. Несмотря на размеры, они имеют улучшенную защиту от электростатического разряда ±15 кВ, а также подтягивающие и заземляющие нагрузочные резисторы на входах DE, RE и F для уменьшения количества внешних компонентов.

Особенностью микросхем MAX13182E, MAX13184E также является очень низкий ток в отключенном режиме, что необходимо в приложениях, критичных к энергопотреблению. Входы приемника микросхемы создают импеданс величиной в 1/8 единичной нагрузки, что дает возможность подключать к шине до 256 приемопередатчиков.

Микросхемы MAX13181E, MAX13182E включают драйверы с ограничением скорости нарастания напряжения выходного сигнала, что уменьшает электромагнитные помехи и отражения сигналов, возникающие при неправильной разводке кабелей. Однако применение драйверов с ограничением скорости нарастания напряжения выходного сигнала позволяет осуществлять передачу данных со скоростью до 250 кбит/с, хоть и значительно уменьшает количество ошибок.

MAX13183E, MAX13184E, в отличие от предыдущих ИС, имеют драйверы, работающие на полной скорости, что позволяет добиться скорости передачи данных до 16 Мбит/с. Особенностью этих микросхем является возможность выбора полу- или полнодуплексного режима работы, а MAX13182E и MAX13184E работают только в полнодуплексном режиме. Все выходы передатчиков и входы приемника имеют улучшенную защиту от электростатического разряда.

Все микросхемы MAX13181E…MAX13184E выпускаются в 10-выводном корпусе mDFN с габаритами 2х2 мм и в 14-выводном корпусе SO. Все они работают в расширенном температурном диапазоне -40…85°C.

Среди особенностей описываемых микросхем можно выделить следующие:

  • 10-выводной корпус mDFN с габаритами 2х2мм и 14-выводной корпус SO;
  • Напряжение питания 5В;
  • Расширенная защита от электростатического разряда;
  • ±15кВ (Спецификация HBM- модель человеческого тела);
  • ±12 кВ (Спецификация IEC 61000-4-2- модель разряда через воздушный зазор);
  • ±6 кВ (Спецификация IEC 61000-4-2- модель разряда при касании);
  • Режим работы с ограничением скорости нарастания напряжения выходного сигнала для передачи данных без ошибок (MAX13181E, MAX13182E);
  • Низкий ток потребления 2,5мкА в режиме отключения;
  • Импеданс величиной в 1/8 единичной нагрузки, который дает возможность подключать к шине до 256 приемопередатчиков.

Благодаря малым размерам и низкому потреблению тока данные микросхемы отлично подходят для применения в переносных устройствах с автономным питанием, которые могут использоваться как при управлении производственными процессами, так и в измерительной аппаратуре, в системах безопасности и в телекоммуникационном оборудовании.

MAX13448E

MAX13448Е — дуплексные приемопередатчики интерфейса RS-485 с защитой входов и выходов от перепадов напряжения ±80 В (относительно земли). MAX13448E работает от источника питания номиналом 3…5,5 В. Особенностью ИС является схема защиты, которая гарантирует наличие логического состояния высокого уровня на выходе приемника в случае отключения или замыкания входов. Это позволяет все выходы приемника, подключенные к шине, перевести в состояние высокого логического уровня при отключении всех приемопередатчиков.

Возможность работы ИС при наличии перепадов напряжения ±80 В на выводах интерфейса RS-485 позволяет устранить необходимость применения внешней схемы защиты, которая обычно содержит самовосстанавливающиеся предохранители и стабилитроны.

Встроенная схема защиты успешно используется в таких архитектурах как USB и CAN, в которых питание и передача данных осуществляет по одному кабелю. MAX13448E хорошо подходит для применения в промышленных системах вентиляции и кондиционирования воздуха, а также системах управления электродвигателями.

Основной особенностью микросхемы MAX13448E является модуль ограничения скорости нарастания выходного напряжения, использование которого снижает уровень электромагнитных помех и эффект наводок на кабель, что позволяет осуществлять безошибочную передачу данных на скорости до 500 Кбит/с при питании 5 В и 250 Кбит/с при питании 3,3 В.

В MAX13448E предусмотрена функция горячей замены, которая устраняет возможность передачи неправильных данных в моменты включения питания или при включении ИС в работу без отключения источника питания. Драйвер и приемник микросхемы имеют, соответственно, активный высокий и активный низкий логический уровень включения, что дает возможность при совместном включении извне управлять направлением передачи.

Полное входное сопротивление приемника ИС представляет собой только 1/8 стандартной нагрузки, что дает возможность к одной шине подключить до 256 передатчиков. Выходы всех драйверов имеют защиту от электростатического разряда до ±8 кВ (касание человека — Human Body Model). MAX13448E работает в температурном диапазоне -40…85°C и выпускается в 14-контактных корпусах SO.

MAX13410E, MAX13411E, MAX13412E, MAX13413E

MAX13410E, MAX13411E, MAX13412E, MAX13413E — полудуплексные приемопередатчики для интерфейсов RS-485/RS-422, оптимизированные для применения в схемах с изолированными контурами. Эти ИС включают встроенный стабилизатор напряжения с низким падением напряжения, драйвер и приемник. Встроенный стабилизатор позволяет работать от нерегулируемого источника питания номиналом до 28 В. Функция автоматического перенаправления пересылаемых данных (архитектура AutoDirection фирмы Maxim) дает возможность уменьшить количество оптических элементов для развязки. Среди других особенностей можно отметить защиту от электростатического разряда, схему ограничения скорости нарастания напряжения, схему повышения отказоустойчивости, способность пересылки данных на максимальной скорости.

Встроенный стабилизатор напряжения с низким падением напряжения вырабатывает напряжение номиналом 5 В ±10%, которое используется для питания внутренних цепей приемопередатчика. Выход встроенного регулятора напряжения выведен на VREG, что позволяет пользователю подключить внешние компоненты к источнику стабильного напряжения при условии, что потребляемый ток будет меньше 20 мА. В MAX13410E/MAX13411E нет выхода напряжения 5 В, но его выводы соответствуют промышленному стандарту, что позволяет легко встраивать ИС в промышленные системы.

В MAX13410E, MAX13411E, MAX13412E и MAX13413E полное входное сопротивление приемника ИС представляет собой только 1/8 стандартной нагрузки, что дает возможность к одной шине подключить до 256 передатчиков. Выходы драйвера имеют защиту от электростатического напряжения.

Особенностью ИС MAX13412E/MAX13413E является функция автоматического перенаправления потока данных. Подобная архитектура устраняет необходимость использования сигналов управления DE и RE.

В MAX13410E/MAX13412E применяется схема ограничения скорости нарастания напряжения, что снижает создаваемые электромагнитные помехи и обеспечивает устойчивую работу в условиях высоких внешних электромагнитных помех при скорости передачи данных до 500 Кбит/с. В MAX13411E/MAX13413E схема ограничения не применяется, но эти микросхемы могут передавать данные на скорости до 16 Мбит/с.

Микросхемы работают в температурном диапазоне -40…85°С и выпускаются в 8-контактных корпусах SO.

Интерфейс RS-232

Несмотря на все положительные качества интерфейса RS-485, интерфейс RS-232 до сих пор часто используется в промышленных системах. Он был разработан для простого применения, определяемого из его названия: «Интерфейс между терминальным оборудованием и связным оборудованием с обменом по последовательному двоичному коду».

Интерфейс RS-232 создан для передачи информации между двумя устройствами на расстояние до 20 м. Он основан на передаче дифференциального сигнала, однако отличается уровнями и полярностью.

Информация передается по проводам с уровнями сигналов, отличающимися от стандартных 5 В, что обеспечивает большую устойчивость к помехам. Асинхронная передача данных осуществляется с установленной скоростью при синхронизации уровнем сигнала стартового импульса.

Сигналы после прохождения по кабелю ослабляются и искажаются. Ослабление растет с увеличением длины кабеля. Этот эффект вызван электрической емкостью кабеля. По стандарту максимальная нагрузочная емкость составляет 2500 пФ. Типичная погонная емкость кабеля составляет 130 пФ, поэтому максимальная длина кабеля ограничена примерно 17 м.

Логические уровни передатчика: «0» — 5…15 В, «1» — -5…-15 В.

Логические уровни приемника: «0» — выше 3 В, «1» — ниже -3 В.

Несмотря на то, что протокол RS-232 создавался давно, специалисты компании Maxim до сих пор улучшают аппаратную часть сети, которая позволяет обеспечить большую надежность промышленных систем.

MAX13223E

Новый двухканальный приемопередатчик MAX13223E для интерфейса RS-232 имеет встроенную защиту входов/выходов до напряжения ±70 В. MAX13223E — это первый на рынке приемопередатчик с защитой от перенапряжения, совместимый по выводам с MAX3223E, являющимся в настоящее время промышленным стандартом.

В новую микросхему интегрированы цепи защиты входов/выходов от короткого замыкания на шины питания, ошибок подключения и перенапряжения до ±70 В, что устраняет необходимость использования внешних защитных цепей. Такая защита особенно критична для приложений, в которых питание и данные передаются по одному и тому же проводу, т.к. предотвращает выход схемы из строя из-за ошибок подключения и коротких замыканий на выводы интерфейса при повреждении кабеля.

Запатентованная Maxim схема AutoShutdown позволяет довести потребляемый ток в отключенном режиме до 1 мкА. Микросхема MAX13223E автоматически переходит в режим низкого потребления энергии при отключении связующего кабеля RS-232 или при отсутствии данных на входе приемника. Запатентованная эффективная схема подкачки напряжения питания и низкий уровень падения напряжения в тракте передачи обеспечивает работу микросхемы от однополярного источника напряжения номиналом 3…5 В.

MAX13223E, выполненный в корпусе TSSOP-20, работает в диапазоне напряжений питания 3…5,5 В, обеспечивая интерфейс EIA/TIA-232 и V.28/V.24 с автоматическим отключением и улучшенной защитой от разрядов статического электричества. Температурный диапазон микросхемы -40…85°C.

MAX13223E создана для использования в автомобильных приложениях, средствах связи, базовых станциях, системах учета коммунальных услуг, промышленном оборудовании, торговых терминалах и телекоммуникационном оборудовании.

Типовая схема подключения (рис. 4) содержит минимум навесных элементов, что позволяет максимально упростить разводку платы, а также максимально уплотнить расположение элементов на плате.

Рис. 4.

MAX13234E, MAX13235E, MAX13236E, MAX13237E

Приемопередатчики интерфейса RS-232 MAX13234E, MAX13235E, MAX13236E, MAX13237E разработаны для замены существующих приемопередатчиков семейства MAX3224E…MAX3227E и обеспечивают высокую скорость передачи данных (до 3 Мбит/с). Встроенные регуляторы напряжения позволяют работать с логическими уровнями при низком напряжении питания, а за счет использования схемы AutoShutdown Plus ток потребления уменьшился до уровня менее 1 мкА. Схема ESD обеспечивает высокий уровень защиты от статического разряда.

Микросхемы MAX13234E…MAX13237E обеспечивают возможность работы при высокой скорости передачи данных за счет отсутствия необходимости использования внешнего преобразования логических уровней. Микросхемы MAX13234E и MAX13235E включают два приемника и два передатчика. MAX13236E и MAX13237E включают один приемник и один передатчик, выпускаются в компактном корпусе TQFN. MAX13235E и MAX13237E обеспечивают скорость передачи данных до 3 Мбит/с, а MAX13234E и MAX13236E поддерживают работу на скорости 250 кбит/с. Все устройства работают в расширенном температурном диапазоне -40…85°C от источника питания номиналом 3…5,5 В.

Данные микросхемы были созданы для применения в основном в области коммуникационных систем, но они также идеально подойдут для портативных электронных устройств и промышленного оборудования.

HART-протокол

Если в описанных выше интерфейсах для передачи данных использовалось напряжение, т.е. сигнал определялся разницей напряжения между двумя выводами схемы, то в протоколе HART (Highway Addressable Remote Transducer ) электрическим сигналом является ток. Сети HART построены по принципу аналоговой токовой петли с частотной модуляцией сигнала.

Протокол HART способен обеспечить обмен данными на скорости до 1200 Бод. Диаграмма, поясняющая работу приборов по HART-протоколу, представлена на рис. 5.

Рис. 5.

Для передачи логической «1» HART использует один полный период частоты 1200 Гц, а для передачи логического «0» — два неполных периода 2200 Гц.

Как видно на рисунке 5, HART-составляющая накладывается на токовую петлю 4…20 мА. Поскольку среднее значение синусоиды за период равно «0», то HART-сигнал никак не влияет на аналоговый сигнал 4…20 мА.

HART-протокол построен по принципу «главный-подчиненный», то есть полевое устройство отвечает по запросу системы. Протокол допускает наличие двух управляющих устройств (управляющая система и коммуникатор).

Существует два режима работы датчиков, поддерживающих обмен данными по HART-протоколу.

В режиме передачи цифровой информации одновременно с аналоговым сигналом датчик работает в аналоговых АСУ ТП, а обмен по HART-протоколу осуществляется посредством HART-коммуникатора или компьютера. При этом можно удаленно (расстояние до 3000 м) осуществлять полную настройку и конфигурирование датчика.

В многоточечном режиме датчик передает и получает информацию только в цифровом виде. Аналоговый выход автоматически фиксируется на минимальном значении (только питание устройства — 4 мА) и не содержит информации об измеряемой величине. Информация о переменных процесса считывается по HART-протоколу.

К одной паре проводов может быть подключено до 15 датчиков. Их количество определяется длиной и качеством линии, а также мощностью блока питания датчиков. Все датчики в многоточечном режиме имеют свой уникальный адрес от 1 до 15, и обращение к каждому идет по соответствующему адресу. Коммуникатор или система управления определяет все датчики, подключенные к линии, и может работать с любым из них.

DS8500

Компания Maxim Integrated Products, Inc представила DS8500 — однокристальный HART-модем, отвечающий на физическом уровне требованиям спецификации HART.

Как видно на рис. 6, на кристалле интегрированы модулятор и демодулятор 1200/2200 Гц частотно-модулированного сигнала.


Рис. 6.

Микросхема имеет очень малое энергопотребление и благодаря реализованной цифровой сигнальной обработке требует лишь несколько внешних компонентов. Входной сигнал оцифровывается АЦП и поступает на цифровой фильтр/демодулятор. Архитектура модема позволяет уверенно обнаруживать сигнал даже в зашумленной среде. Выходной ЦАП генерирует синусоидальное напряжение и сохраняет сдвиг фаз при переключении частот 1200 и 2200 Гц. Низкое потребление достигается запрещением работы приемника во время передачи сигнала, передатчик не работает во время приема. DS8500 идеальны для создания малопотребляющих передатчиков систем управления технологическими процессами.

Как видно на рис. 7, всего несколько внешних компонентов и 20-выводной миниатюрный корпус TQFN уменьшают стоимость и габариты изделия.


Рис. 7.

Основные особенности модема:

  • Однокристальное решение для полудуплексной передачи, 1200бод, FSK-модуляция и демодуляция;
  • Цифровая сигнальная обработка, обеспечивающая надежное детектирование входного сигнала в зашумленной среде;
  • Синусоидальный выходной сигнал с минимальными гармоническими искажениями;
  • Стандартная тактовая частота 3,6864МГц;
  • Соответствие требованиям спецификации HART на физическом уровне;
  • Напряжение питания в диапазоне 2,7…3,6В;
  • Максимальный ток потребления 285 мкА;
  • Миниатюрный 20-выводной корпус TQFN с размерами 5х5х0,8мм.

Благодаря активному использованию протокола HART, микросхема DS8500 незаменима при разработке передатчиков для устройств сбора информации (температуры, давления и т.д.), HART-модемов или HART-мультиплексоров.

Заключение

Хотя стандарты RS-232 и RS-485 были созданы более 30 лет назад, они активно используются до сих пор. Ранее ни один персональный компьютер не мог обойтись без COM-порта, передача данных по которому основывается на протоколе RS-232. Даже несмотря на то, что в современных компьютерах COM-порт давно заменен более современными, это еще не означает, что протоколы RS-232 и RS-485 забыты.

В промышленных сетях им нет равных из-за высокой стабильности и больших расстояний, на которых обеспечивается передача данных. Однако эта надежность определяется не только первоначальной удачной разработкой протокола, но и постоянным совершенствованием аппаратной части.

Интерфейсная продукция компании MAXIM идеально удовлетворяет потребностям российского рынка промышленной электроники, а интерфейсы еще долго будут жить. Maxim активно совершенствует надежностные характеристики микросхем связи и расширяет их дополнительный функционал.

.

Получение технической информации, заказ образцов, поставка — e-mail:


Maxim приобрел компанию Teridian

Компания Maxim объявила о приобретении компании Teridian Semiconductor Corporation. Teridian Semiconductor является fabless-компанией (разработчиком без собственных производственных мощностей), штаб-квартира которой располагается в Ирвайне, штат Калифорния. Компания является крупным поставщиком полупроводниковых компонентов, при этом основное внимание сосредоточено на микросхемах для счетчиков энергопотребления и средств измерения энергии интеллектуальных энергетических систем. Она является поставщиком трех из четырех основных производителей счетчиков энергопотребления в США и свыше пятидесяти их производителей в мире. Основная отличительная характеристика интеллектуальных датчиков Teridian — новая архитектура, которая позволяет проводить более точные измерения мощности в более широком динамическом диапазоне. Для того, чтобы оптимизировать время выхода продукта на рынок и уменьшить затраты, производители счетчиков электропотребления нуждаются в микросхемах с высокой степенью интеграции компонентов на чипе и готовых многоуровневых решениях. Продемонстрированная Maxim возможность объединять множественные сигнальные функции будет крайне полезна в производстве высоинтегрированных «систем-на-кристалле» (SoC) и готовых решений, удовлетворяющих этим требованиям. Было заявлено, что количество интеллектуальных счетчиков, использующих как «системы-на-кристалле», так и готовые решения, должно ежегодно увеличиваться на 10% до 2014 года.

Как недавно отметил генеральный директор (СЕО) Maxim Тунк Долука (Tunc Doluca ): «Инвестиции в глобальные интеллектуальные энергетические системы должны быть существенны, для того чтобы использовать электростанции и сети энергоснабжения более эффективно. Средства измерения энергии и сетевые средства связи являются ключевыми компонентами интеллектуальной энергетической системы, а, следовательно, неизбежно ведет за собой разработку новых счетчиков энергопотребления на замену устаревших. Приобретение продуктовой линейки и команды компании Teridian в значительной степени ускорит наше внедрение на этот быстроразвивающийся рынок и поможет нам укрепить наши позиции».

В современной технике все большее значение приобретает обмен информацией между различными устройствами. А для этого требуется передавать данные как на небольшие расстояния, так и на значительные, порядка километров. Один из таких видов передачи данных – связь между устройствами по интерфейсу RS-485.

Где необходимо передавать данные по RS 485.

Один из самых распространенных примеров применения устройств для обмена данными – . Электросчетчики, объединяемые в единую сеть, рассредоточены по шкафам, ячейкам распределительных устройств и даже подстанциях, находящимся на значительном удалении друг от друга. В этом случае интерфейс служит для отправки данных от одного или нескольких устройств учета.

Система «один счетчик – один модем» активно внедряется для передачи данных в службы энергосбытовых компаний от узлов учета частных домов, небольших предприятий.

Другой пример: получение данных от микропроцессорных терминалов релейной защиты в режиме реального времени, а также централизованный доступ к ним с целью внесения изменений. Для чего терминалы обвязываются через интерфейс связи аналогичным образом, а данные от него поступают в компьютер, установленный у диспетчера. В случае срабатывания защиты оперативный персонал имеет возможность сразу же получить информацию о месте действия и характере повреждения силовых цепей.

Но самой сложной задачей, решаемой интерфейсами связи, являются системы централизованного управления сложными производственными процессами – АСУ ТП. У оператора промышленной установки на столе есть компьютер, на дисплее которого он видит текущее состояние процесса: температуры, производительность, включенные и отключенные агрегаты, их режим работы. И имеет возможность всем этим управлять легким щелчком мыши.

Компьютер же обменивается данными с контроллерами – устройствами, преобразующими команды от датчиков на язык, понятный машине, и обратное преобразование: от языка машины в команды управления. Связь с контроллером, а также – между разными контроллерами, осуществляется через интерфейсы связи.


Интерфейс RS-232 — младший брат RS 485.

Нельзя хотя бы коротко не упомянуть об интерфейсе RS-232, который еще называют последовательным. Разъем под соответствующий порт имеют некоторые ноутбуки, а некоторые цифровые устройства (те же терминалы релейной защиты) снабжаются выходами для связи с помощью RS-232.

Для того, чтобы обмениваться информацией, нужно уметь ее передавать и принимать. У для этого есть передатчик и приемник сигналов. Они имеются в каждом устройстве. Причем выход передатчика одного устройства (TX) соединяется со входом приемника другого устройства (RX). И, соответственно, по другому проводнику аналогичным образом сигнал движется в обратную сторону.

При этом обеспечивается полудуплексный режим связи, то есть, приемник и передатчик могут работать одновременно. Данные по кабелю RS-232 могут в одно и то же время перемещаться и в одну, и в другую сторону.

Недостаток этого интерфейса – низкая помехозащищенность. Это происходит из-за того, что сигнал в соединительный кабель и на прием, и на передачу формируется относительно общего провода – земли. Любая наводка, существующая даже в экранированном кабеле, может привести к сбою связи, потере отдельных битов информации. А это недопустимо при управлении сложными и недешевыми механизмами, где любая ошибка – авария, а потеря связи – длительный простой.

Поэтому в основном применяется для небольших временных подключений ноутбука к цифровому устройству, например, для установки начальной конфигурации или исправления ошибок.


Организация интерфейса RS-485.

Главное отличие RS-458 от RS-232 – все приемники и передатчики работают на одну пару проводов, являющуюся линией связи. Провод земли при этом не используется, а сигнал в линии формируется дифференциальным методом. Он передается одновременно по двум проводам («А» и «В») в инверсном виде.

Если на выходе передатчика – логический «0», то на проводник «А» выдается нулевой потенциал. На проводнике «В» формируется сигнал «не 0», то есть – «1». Если передатчик транслирует «1», получается все наоборот.

В итоге получаем изменение напряжения сигнала между двумя проводами, представляющими собой витую пару. Любая наводка, попадая в кабель, изменяет напряжение относительно земли одинаково на обоих проводах пары. Но напряжение полезного сигнала формируется между проводами, а поэтому – ничуть не страдает от потенциалов на них.

Порядок обмена данными между устройствами по RS-485.

Все устройства, объединяемые интерфейсом RS-485, имеют всего два клеммы: «А» и «В». Для подключения к общей сети эти клеммы соединяются в параллельную цепь. Для этого от одного устройства к другому прокладывается цепочка кабелей.

При этом возникает необходимость упорядочить обмен данными между устройствами, установив очередность передачи и приема, а также – формат пересылаемых данных. Для этого служит специальная инструкция, называемая протоколом.

Протоколов обмена данными по интерфейсу RS-485 существует много, наиболее часто используемый – Modbas. Вкратце рассмотрим, как работает простейший протокол, и какие еще проблемы приходится решать с его помощью.

Для примера разберем сеть, в которой одно устройство собирает данные с нескольких источников данных. Это может быть модем и группа электросчетчиков. Для того, чтобы знать, от какого счетчика пойдут данные, каждому приемопередатчику присваивается номер, уникальный для данной сети. Номер присваивается и приемопередатчику модема.

Когда приходит пора собирать данные о расходе электроэнергии, модем формирует запрос. Сначала передается стартовый импульс, по которому все устройства понимают, что сейчас придет кодовое слово – посылка из последовательности нулей и единиц. В ней первые биты будут соответствовать номеру абонента в сети, остальное – данные, например, команда передать требуемую информацию.

Все устройства принимают посылку и сравнивают номер вызываемого абонента со своим собственным. Если они совпадают – выполняется команда, переданная в составе запроса. Если нет – устройство игнорирует его текст и не делает ничего.

При этом во многих протоколах посылается назад подтверждение, что команда принята к исполнению или выполнена. Если ответа нет, передающее устройство может повторить запрос определенное количество раз. Если реакции так и не последует, генерируются сведения об ошибке, связанные с неисправностью канала связи с молчащим абонентом.

Ответа может не последовать не только при поломке. При наличии сильных помех в канале связи, которые все-таки проникают туда, команды могут не доходить до пункта назначения. Еще они подвергаются искажениям и не правильно при этом распознаются.

Неверного выполнения команды допустить нельзя, поэтому в данные посылки вводят заведомо избыточную информацию – контрольную сумму. Она подсчитывается по определенному закону, прописанному в протоколе, на передающей стороне. На приемной подсчитывается контрольная сумма по такому же принципу и сравнивается с переданной. Если они совпадают, прием считается успешным, и команда выполняется. Если нет – устройство пересылает на передающую сторону сообщение об ошибке.

Требования к кабельным соединениям.

Для соединения устройств интерфейсом RS-485 используются кабели «витая пара». Хоть для передачи данный достаточно одной пары проводов, обычно применяются кабели минимум с двумя, чтобы был заложен резерв.

Для лучшей защиты от помех кабели экранируются, при этом экраны на всей линии соединяют друг с другом. Для этого на объединяемых устройствах помимо выводов «А» и «В» имеется клемма «СОМ». Заземляется линия только в одной точке, обычно в месте расположения контроллера, модема или компьютера. В двух точках это делать запрещено, чтобы избежать наводок, которые неизбежно пойдут по экрану из-за разности потенциалов в точках заземления.

Кабели соединяют только последовательно друг с другом, делать ответвления нельзя. Для согласования линии в ее конце подключается резистор с сопротивлением 120 Ом (это волновое сопротивление кабеля).

В целом монтаж кабельных линий интерфейса – простое занятие. Гораздо сложнее будет настроить аппаратуру, для чего понадобятся люди со специальными знаниями.

Для лучшего понимая работы интерфейса RS-485 предлагаем Вам посмотреть следующее видео:

В данной статье представлено введение в интерфейсы RS-422 и RS-485 и объясняется, почему вы можете захотеть использовать их в своих проектах.

Связанная информация

  • Зачем и как использовать дифференциальную передачу сигналов
  • Технология двойной буферизации UART, дружественная к прерываниям

Большинство из нас знакомы с RS-232 - надежным, но неудобным стандартом, который навсегда связан с нашими воспоминаниями обо всё более устаревающем последовательном порте на компьютере. Вы можете быть менее знакомы с RS-422 и RS-485, которые действительно (как следует из названия) связаны с RS-232.

Однако не делайте ошибку, полагая, что эти более новые стандарты разделяют с ним характеристики, которые делают RS-232 настолько несовместимым с современными электронными системами. RS-422 и RS-485 являются основными улучшениями в теме RS-232; и тот, и другой может быть хорошим выбором для вашего следующего канала цифровой связи.

Во-первых, RS-422 или RS-485

Эти два стандарта обычно группируются вместе потому, что у них очень много общего. Но они, конечно, не идентичны, а устройства RS-422 и RS-485 не являются полностью взаимозаменяемыми. Во-первых, я расскажу о значительных различиях между этими двумя стандартами. Затем, в остальной части статьи, мы сможем сделать упрощение, ссылаясь к ним как «RS-422/485».

Оба стандарта (и RS-422, и RS-485) позволяют использовать несколько устройств на шине (т.е. вы не ограничены одним передатчиком и одним приемником). Однако RS-422 может использоваться только для многоабонентской шины, т.е. дифференциальная пара может иметь несколько приемников, но только один передатчик.

Максимальное количество приемников на двухпроводной шине RS-422 равно 10 (ну, вроде... смотрите ниже обсуждение «единичных нагрузок»).

С другой стороны, с RS-485 вы можете иметь реальную многоточечную систему, где «точка» вместо «абонента» означает, что одна дифференциальная пара может поддерживать несколько передатчиков, а также несколько приемников.

RS-485 также увеличивает емкость шины до 32 устройств.

(На самом деле, это не так просто - стандарт указывает максимум 32 «единичные нагрузки», но вы можете подключить гораздо больше 32 устройств, используя микросхемы RS-485, которые представляют собой на шине лишь малую долю единичной нагрузки. Это немного сложно, и честно говоря, это тот момент, когда я начинаю терять интерес... Но если вы более упорны, чем я, то можете прочитать подробности .)

Полностью укомплектованная шина RS-485 представляет собой высокопроизводительный интерфейс. В дополнение к преимуществам, рассмотренным далее в этой статье, вы можете иметь множество приемопередатчиков, которые используют одни и те же два провода, а любое устройство на шине может отправлять данные на любое другое устройство на шине.

Другим важным моментом является то, что RS-485 является важным расширением RS-422. Другими словами, RS-485 добавляет и улучшает функциональность, но не конфликтует ни с чем в стандарте RS-422. Таким образом, устройство RS-485 может использоваться в сети RS-422, но устройства RS-422 не обязательно совместимы с существующей сетью RS-485.

Основы

RS-422/485 представляет собой четырех- или двухпроводный, полнодуплексный или полудуплексный, дифференциальный, среднескоростной последовательный интерфейс, который поддерживает многоабонентскую (RS-422) или многоточечную (RS-485) архитектуру шины. Вот некоторые комментарии к этим характеристикам:


Мне это нравится

Характеристики RS-422/485 - большие длины кабелей, устойчивость к шуму и т.д. - делают его отличным выбором для промышленного применения. Однако часть моей задачи в данной статье - продемонстрировать, что RS-422/485 является хорошим выбором для многих электронных и электромеханических систем, даже если вам не нужны все функциональные возможности, которые он предлагает. Мой благосклонный взгляд на RS-422/485 основан, прежде всего, на трех соображениях: простота проектирования, отличная поддержка в технических описаниях микросхем и в примечаниях к применению, устойчивость к шуму.

Будь проще

Несмотря на многолетний опыт работы с различными протоколами последовательной связи, UART по-прежнему остается моим любимым. Он прост и надежен, он требует минимальных взаимосвязей, и я не удивлюсь, если обнаружу, что он поддерживается каждым микроконтроллером на рынке. Он может быть немного примитивен, но вы всегда можете написать прошивку для реализации любого управления потоком данным, идентификации устройства или проверки ошибок в вашем конкретном приложении.

В любом случае, я хочу сказать, что мне нравится использовать UART каждый раз, когда я могу, и RS-422/485 - отличный физический уровень для связи UART.

Поддержка со стороны экспертов

RS-422/485 включить в ваш проект просто: практически всё, что вам нужно, это микросхема конвертера/приемопередатчика, а их выбор велик. Эти устройства преобразуют типовые логические сигналы в дифференциальные сигналы RS-422/485, а также обрабатывают остальные докучливые детали, необходимые для обеспечения соответствия стандарту RS-422/485. И если вы не уверены в том, как точно спроектировать вашу конкретную шину связи, вы найдете множество рекомендаций в примечаниях к применению и в технических описаниях.

Рассказать в:
Интерфейс стандарта EIA RS232C предназначен для последовательной связи двух
устройств. Он является общепринятым и широко используется в аппаратных комплексах с
подсоединением внешнего оборудования к персональному компьютеру. Интерфейс
RS/232C предусматривает использование «несимметричных» передатчиков и
приемников, при этом передача данных осуществляется с помощью «несимметричного»
сигнала по двум линиям – ТхD и RxD, а амплитуда сигнала измеряется относительно линии
GND («нуля»). Логической единице соответствует диапазон значений амплитуды
сигнала (напряжения) от –12 до –3 В, логическому нулю – от +3 до +12 В. Диапазон от
–3 до +3 В соответствует зоне нечувствительности, определяющей гистерезис приемника.
Несимметричность сигнала обуславливает низкую помехозащищенность данного
интерфейса, особенно при промышленных помехах. Наличие линий приема (RxD) и передачи
(TxD) данных позволяет поддерживать полнодуплексную передачу информации, т.е.
одновременно информация может как передаваться, так и приниматься.

Достоинства - простота.

Недостатки - к одному порту подключается только одно устройство, дальность передачи сигналов без дополнительных примочек - всего несколько метров

Для управления потоком данных наиболее широко используется аппаратный способ
управления. Для корректной передачи данных необходимо, чтобы приемник находился в
состоянии готовности к приему информации. При аппаратном способе управления
используется сигнал RTS/CTS, который позволяет остановить передачу данных, если
приемник не готов к их приему. Аппаратное управление потоком данных обеспечивает самую
быструю реакцию передатчика на состояние приемника.
При проектировании промышленных систем автоматизации наибольшее
распространение получили информационные сети, основанные на интерфейсе стандарта
EIA RS485. В отличие от RS/232, этот интерфейс предусматривает передачу данных с
помощью «симметричного» (дифференциального) сигнала по двум линиям (А и В)
(см.рисунок) и использование дополнительной линии для выравнивания потенциалов
заземления устройств, объединенных в сеть стандарта RS/485. Логический уровень сигнала
определяется разностью напряжений на линиях (А – В), при этом логической единице
соответствует диапазон значений напряжения от +0,2 до +5 В, а логическому нулю – диапазон
значений от –0,2 до –5 В. Диапазон от –0,2 до +0,2 В соответствует зоне нечувствительности
приемника. При использовании данного интерфейса максимальная длина линии связи между
крайними устройствами может составлять до 1200 м. При этом в максимально удаленных
друг от друга точках сети рекомендуется устанавливать оконечные согласующие резисторы
(терминаторы), позволяющие компенсировать волновое сопротивление кабеля и
минимизировать амплитуду отраженного сигнала.

Сопротивления согласующих резисторов зависит от длины линии и колличества приборов. Оно должно быть в пределах от 100 до 620 ОМ.

Оба указанных интерфейса поддерживаютасинхронный режим передачи. Данные
посылаются блоками (кадрами), формат которых представлен на рис. 1.2. Передача каждого
кадра начинается со старт/бита, сигнализирующего приемнику о начале передачи, за
которым следуют биты данных и бит четности. Завершает посылку стоп/бит, гарантирующий
паузу между посылками.
Для асинхронного режима принят ряд стандартных скоростей обмена: 50, 75, 110, 150,
300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 бит/с. Количество бит данных
может составлять 5, 6, 7 или 8 (5/ и 6/битные форматы распространены незначительно).
Количество стоп/бит может составлять 1, 1,5 или 2 («полтора бита» означает только
длительность стопового интервала).

Раздел.

В последовательном интерфейсе для передачи данных в одном направлении используется одна сигнальная линия, по которой информационные биты передаются друг за другом – последовательно.

Начиная с первых моделей в ПЭВМ, имелся последовательный интерфейс (англ. «Serial Interface») – COM-порт (англ. «Communications port»). Этот порт обеспечивает асинхронный обмен по стандарту RS-232. COM-порты реализуются на микросхемах универсальных асинхронных приемопередатчиков (англ. «UART»). Они занимают по 8 смежных 8-разрядных регистров и могут располагаться по стандартным базовым адресам 3F8h (COM1), 2F8h (COM2), 3E8h (COM3), 2E8h (COM4). Порты могут вырабатывать аппаратные прерывания IRQ4 (обычно используются для COM1 и COM3) и IRQ3 (для COM2 и COM4). С внешней стороны порты имеют линии последовательных данных передачи и приема, а также набор сигналов управления и состояния, соответствующий стандарту RS-232C. COM-порты имеют внешние разъемы-вилки DB-25P или DB-9P, выведенные на заднюю панель компьютера. Характерной особенностью интерфейса является применение не ТТЛ-сигналов – все внешние сигналы порта двуполярные. Гальваническая развязка отсутствует – схемная «земля» подключаемого устройства соединяется со схемной «землей» компьютера. Скорость передачи данных может достигать 115200 бит/с.

Стандарт RS-232C описывает несимметричные передатчики и приемники: сигнал передается относительно общего провода – схемной «земли». Логической единице на входе данных (сигнал RxD) соответствует диапазон напряжения от -12 до -3 В; логическому нулю – от +3 до +12 В. Для входов управляющих сигналов состоянию ON (включено) соответствует диапазон от +3 до +12 В, состоянию OFF (выключено) – от -12 до -3 В.Диапазон от -3 до +3 В – зона нечувствительности, обусловливающая гистерезис приемника: состояние линии считается измененным только после пересечения порога. Уровни сигналов на выходах передатчиков должны быть в диапазонах от -12 до -5 В и от +5 до +12 В.

Интерфейс предполагает наличие защитного заземления соединяемых устройств, если оба они питаются от сети переменного тока и имеют сетевые фильтры.

На физическом уровне последовательный интерфейс имеет различные реализации, различающиеся способом передачи электрических сигналов. Существует ряд международных стандартов, родственных RS-232C. На рис. 25 приведены схемы соединения их приемников и передатчиков, а также показаны ограничения на длину линии (L ) и максимальную скорость передачи данных (v ). Несимметричные линии интерфейсов RS-232C имеют самую низкую защищенность от синфазной помехи. Лучшие параметры имеют двухточечный интерфейс RS-422A и его магистральный (шинный) аналог RS-485, работающие на симметричных линиях связи. В них для передачи каждого сигнала используются дифференциальные сигналы с отдельной (витой) парой проводов для каждой сигнальной цепи. Поскольку логически эти интерфейсы родственны, допустимо применение несложных преобразователей сигналов, обеспечивающих переход от одного интерфейса к другому (рис.1).