Ультразвуковой излучатель изготовить. Ультразвуковая ванна своими руками. Где применяются ультразвуковые ванны

УЗ излучатель - это генератор мощных ультразвуковых волн. Как мы знаем, ультразвуковую частоту человек не слышит, но организм чувствует. Иными словами ультразвуковая частота воспринимается человеческим ухом, но определенный участок мозга, отвечающий за слух, не может расшифровать данные звуковые волны. Те, кто занимаются построением аудио систем должны знать, что высокая частота очень неприятна для нашего слуха, но если поднять частоту на еще высокий уровень (УЗ диапазон) то звук исчезнет, но на самом деле он есть. Мозг попытается безуспешно раскодировать звук, в следствии этого возникнет головная боль, тошнота, рвота, головокружение и т.п.

Ультразвуковая частота давно применяется в самых разных областях науки и техники. При помощи ультразвука можно сваривать металл, провести стирку и многое другое. Ультразвук активно применяется для отпугивания грызунов в сельскохозяйственной технике, поскольку организм многих животных приспособлен к общению с себе подобными на УЗ диапазоне. Есть данные и про отпугивание насекомых с помощью УЗИ генераторов, многие фирмы выпускают такие электронные репелленты. А мы предлагаем вам самостоятельно собрать такой прибор, по приведённой схеме:

Рассмотрим конструкцию достаточно простой УЗ пушки высокой мощности. Микросхема D4049 работает в качестве генератора сигналов ультразвуковой частоты, она имеет 6 логических инверторов.

Микросхему можно заменить на отечественный аналог К561ЛН2. Регулятор 22к нужен для подстройки частоты, ее можно снижать до слышимого диапазона, если резистор 100к заменить на 22к, а конденсатор 1,5нФ заменить на 2,2-3,3нФ. Сигналы с микросхемы подаются на выходной каскад, который построен всего на 4-х биполярных транзисторах средней мощности. Выбор транзисторов не критичен, главное подобрать максимально близкие по параметрам комплементарные пары.

В качестве излучателя можно использовать буквально любые ВЧ головки с мощностью от 5 ватт. Из отечественного интерьера можно использовать головки типа 5ГДВ-6, 10ГДВ-4, 10ГДВ-6. Такие ВЧ головки можно найти в акустических системах производства СССР.

Осталось только оформить все в корпус. Для направленности УЗ сигнала нужно использовать металлический рефлектор.

Ультразвук - это не слышимые человеком упругие акустические волны, частота которых превышает 20 кГц. Принято различать низкочастотные (20…100 кГц), среднечастотные (0.1… 10 МГц) и высокочастотные (более 10 МГц) ультразвуковые колебания. Несмотря на кил мегагерцы, ультразвуковые волны не следует путать с радиоволнами и радиочастотами. Это абсолютно разные вещи!

По своей физической природе ультразвук ничем не отличается от обычного слышимого звука. Частотная граница между звуковыми и ультразвуковыми волнами условна, она определяется субъективными свойствами человеческого слуха. Для справки, колебания высокой частоты хорошо чувствуют животные (в том числе и домашние), а для летучих мышей и дельфинов они являются жизненно важными.

Ультразвук, благодаря малой длине волны, хорошо распространяется в жидкостях и твёрдых телах. Например, ультразвуковые волны в воде затухают примерно в 1000 раз меньше, чем в воздухе. Отсюда следуют основные сферы их применения: гидролокация, неразрушающий контроль изделий, «звуковидение», молекулярная и квантовая акустика.

Для генерации ультразвуковых колебаний используют следующие виды излучателей (англ. «ultrasonic transducer»):

Пьезокерамические (piezo);

Электростатические (electrostatic);

Электромагнитные (electromagnetic).

Для последнего варианта годятся даже обычные высокочастотные звуковые громкоговорители (на сленге «пищалки»), которые имеют достаточный КПД для генерации сигналов в ближнем ультразвуковом диапазоне 20…40 кГц.

Пьезокерамические ультразвуковые излучатели (Табл. 2.10) выпускаются, как правило, в паре с согласованными по частоте пьезо приёмниками. Типовые параметры «ультразвукового тандема»: частота резонанса 37…45 кГц, уровень звукового давления на расстоянии 30 см - 95…105 дБ(А), рабочее напряжение 12…60 В, ёмкость 1000…3000 пФ, выходной импеданс передатчика 200…500 Ом, входной импеданс приёмника 10…30 кОм.

Таблица 2.10. Параметры ультразвуковых излучателей

На обкладки ультразвуковых пьезоизлучателей рекомендуется подавать не однополярные, а разнополярные импульсы, т.е. в паузах формировать напряжение обратной полярности. Это способствует ускоренному разряду эквивалентной ёмкости излучателя и повышению быстродействия.

На Рис. 2.53, а…л приведены схемы подключения ультразвуковых излучателей к MK. Для формирования разнополярных импульсов широко используются транзисторные мосты и разделительные трансформаторы. Если снизить частоту генерации, то приведенные схемы подойдут «один к одному» и для слышимого диапазона, т.е. для рассмотренных ранее звуковых пьезокерамических излучателей.

Рис. 2.53. Схемы подключения ультразвуковых излучателей к MK (начало):

а) сглаживание формы сигнала, подаваемого на ультразвуковой излучатель BQ1, с помощью катушки индуктивности L1. Резистором R1 регулируется амплитуда;

б) транзисторы VT1, VT2 попеременно открываются короткими импульсами от MK. Для надёжности следует выбирать транзисторы с большим допустимым коллекторным током, чтобы они не вышли из строя при низком омическом сопротивлении катушки индуктивности L1\

в) конденсатор C1 дифференцирует сигнал и устраняет постоянную составляющую, что позволяет подключить ультразвуковой пьезоизлучатель BQ1 к двухполярному источнику питания;

г) маломощный ультразвуковой приёмопередатчик. Делитель R1, R2 определяет рабочую точку АЦП MK при приёме сигнала и амплитуду выходных импульсов при передаче сигнала;

д) приёмопередатчик ультразвукового дальномера. Частота импульсов 36…465 кГц, напряжение на излучателе BQ1 50…100 В (максимум подбирается конденсатором C3). Диоды VD1, VD2 ограничивают сигнал для приёмника. Трансформатор 77 содержит в обмотках I, II по 15 витков провода ПЭВ-0.3, в обмотке III - 100…200 витков ПЭВ-0.08 (кольцо M2000HM K10x6x5); О

О Рис. 2.53. Схемы подключения ультразвуковых излучателей к MK (продолжение):

е) применение логической микросхемы DD1 аппаратно устраняет одновременное открывание транзисторов одного плеча. Импульсные помехи, возникающие в цепи питания из-за неодновременного переключения инверторов DD1.l…DD13 и разброса ВАХ транзисторов, устраняются фильтром L /, C1. Диоды VD1… VD4ставятся в случае замены звукового ВЧ-динамика BA1 (10ГД-35, 6ГД-13, 6ГДВ-4) более мощным ультразвуковым пьезоизлучателем;

ж) увеличение мощности излучателя BQ1 с помощью удвоителя напряжения на микросхеме DD1 и повышенного питания +9…+ 12 В. Транзистор VT1 согласует логические уровни;

з) увеличение амплитуды напряжения на излучателе BQJ происходит ввиду повышенного напряжения питания +9 В и накопления энергии в дросселе L1\

и) полевые транзисторы K77, VT2 (замена IRF7831) снижают потери энергии при коммутации. Резисторы R1, R2 не дают открываться транзисторам при рестарте MK; О

О Рис. 2.53. Схемы подключения ультразвуковых излучателей к MK (окончание):

к) ультразвуковой эхолокатор работает на частоте 40 кГц и генерирует импульсы длительностью 0.4 мс. Амплитуда сигнала на пьезоизлучателе BQ1 (фирма Murata) достигает 160 В. Индуктивность вторичной обмотки трансформатора T1 совместно с ёмкостью пьезоизлучателя BQ1 образует колебательный контур, настроенный на частоту, близкую к 40 кГц. Индуктивность первичной обмотки трансформатора T1 - 7.1 МК Гн, вторичной - 146 МК Гн, добротность Q > 80;

л) ультразвуковой гидроионизатор работает на частоте 1.8…2 МГц. Трансформатор T1 наматывается на трёх сердечниках 50BH K20x 10×5. Обмотки I и II содержат по 4 витка сложенного втрое провода ПЭВ-0.3, обмотка III - 12 витков провода ПЭВ-0.3. Катушка L1 содержит 5 витков провода ПЭВ-0.8 на оправке диаметром 8 мм с шагом 1 мм. Излучатель BQ1 имеет диаметр 30 мм (пьезокерамика ЦТС). Резистором R1 снижаются выбросы напряжения на стоке VT1.

С малых дистанций. Естественно я сразу же захотел сделать подобную самоделку, поскольку она довольно эффектная и на практике показывает работу электромагнитных импульсов. В первых моделях ЭМИ излучателя стояли несколько высоко ёмкостных конденсаторов из одноразовых фотоаппаратов, но данная конструкция работает не очень хорошо, из-за долгой "перезарядки". Поэтому я решил взять китайский высоковольтный модуль (который обычно используется в электрошокерах) и добавить к нему "пробойник". Данная конструкция меня устраивала. Но к сожалению у меня сгорел высоковольтный модуль и поэтому я не смог отснять статью по данной самоделке, но у меня было отснято подробное видео по сборке, поэтому я решил взять некоторые моменты из видео, надеюсь Админ будет не против, поскольку самоделка реально очень интересная.

Хотелось бы сказать что всё это было сделано в качестве эксперимента!

И так для ЭМИ излучателя нам понадобится:
-высоковольтный модуль
-две батарейки на 1,5 вольта
-бокс для батареек
-корпус, я использую пластиковую бутылку на 0,5
-медная проволока диаметром 0,5-1,5 мм
-кнопка без фиксатора
-провода

Из инструментов нам понадобится:
-паяльник
-термо клей

И так первым делом нужно намотать на верхнюю часть бутылки толстую проволоку примерно 10-15 витков, виток к витку (катушка очень сильно влияет на дальность электромагнитного импульса, лучше всего показала себя спиральная катушка диаметром 4,5 см) затем отрезаем дно бутылки




Берём наш высоковольтный модуль и припаиваем обязательно к входным проводам питание через кнопку, предварительно вынув батарейки из бокса




Берём трубочку от ручки и отрезаем от неё кусочек длиной 2 см:




Один из выходных проводов высоковольтника вставляем в отрезок трубочки и приклеиваем так как показано на фото:


С помощью паяльника проделываем отверстие с боку бутылки, чуть больше диаметра толстой проволоки:


Самый длинный провод вставляем через отверстие внутрь бутылки:


Припаиваем к нему оставшийся провод высоковольтника:


Располагаем высоковольтный модуль внутри бутылки:


Проделываем ещё одно отверстие с боку бутылки, диаметром чуть больше диаметра трубочки от ручки:


Вытаскиваем отрезок трубочки с проводом через отверстие и крепко приклеиваем и изолируем термо клеем:




Затем берём второй провод от катушки и вставляем его внутрь куска трубочки, между ними должен остаться воздушный зазор, 1,5-2 см, подбирать нужно экспериментальным путём




укладываем всю электронику внутрь бутылки, так чтобы ни чего не замыкало, не болталось и было хорошо заизолировано, затем приклеиваем:




Делаем ещё одно отверстие по диаметру кнопки и вытаскиваем её изнутри, затем приклеиваем:




Берём отрезанное дно, и обрезаем его по краю, так чтобы оно смогло налезть на бутылку, надеваем и приклеиваем:






Ну вот и всё! Наш ЭМИ излучатель готов, осталось только его протестировать! Для этого берём старый калькулятор, убираем ценную электронику и желательно одеваем резиновые перчатки, затем нажимаем на кнопку и подносим калькулятор, в трубочке начнёт происходить пробои электрического тока, катушка начнёт испускать электромагнитный импульс и наш калькулятор сначала сам включится, а потом начнёт рандомно сам писать числа!

До этой самоделки я делал ЭМИ на базе перчатки, но к сожалению отснял только видео испытаний, кстати с этой перчаткой я ездил на выставку и занял второе место из-за того что плохо показал презентацию. Максимальная дальность ЭМИ перчатки составляла 20 см. Надеюсь эта статья была вам интересна, и будьте осторожны с высоким напряжением!

Необходим для очень широкого спектра девайсов - отпугивателей мышей, комаров, собак. Или просто в качестве ультразвуковой стиральной машинки. Так-же с данным EPU можно ставить интересные опыты и эксперименты (товарищи добавляют: в том числе и с соседями:)). Может использоваться для сокращения времени травления и промывки печатных плат, уменьшения времени замачивания белья. Ускорение протекания химических процессов в жидкости, облучённой ультразвуком, происходит благодаря явлению кавитации — возникновению в жидкости множества пульсирующих пузырьков, заполненных паром, газом или их смесью и звукокапиллярному эффекту. Ниже представлена схема ультразвукового генератора переменной частоты, взятая из журнала "Радиоконструктор".

Основу схемы составляют два генератора импульсов прямоугольной формы и мостовой усилитель мощности. На логических элементах DD1.3, DD1.4 выполнен перестраиваемый генератор импульсов формы меандр ультразвуковой частоты. Его рабочая частота зависит от ёмкости конденсатора С3 и общего сопротивления резисторов R6, R4. Чем сопротивление этих резисторов больше, тем частота меньше. На элементах DD1.1, DD1.2 сделан НЧ генератор с рабочей частотой около 1 Гц. Оба генератора связаны между собой через резисторы R3, R4. Конденсатор С2 предназначен для того, чтобы частота высокочастотного генератора изменялась плавно. Если конденсатор С2 зашунтировать переключателем SA1, то частота высокочастотного генератора будет постоянной. На микросхеме DD2 и полевых транзисторах выполнен мостовой усилитель мощности импульсов. Инверторы микросхемы раскачивают двухтактные повторители на полевых транзисторах. Когда на выводах 3, 6 DD2 лог. О, то на выходах DD2.3, DD2.4 будет лог. 1. Соответственно, в этот момент времени будут открыты транзисторы VT1, VT4, a VT2, VT4 будут закрыты. Использование сигнала прямоугольной формы приводит к богатому гармониками акустическому излучению. В качестве излучателей ультразвука используются две высокочастотные динамические головки типа 2ГД-36-2500. Можно использовать и 6ГД-13 (6ГДВ-4-8), ЭГД-31 (5ГДВ-1-8) и другие аналогичные. При возможности, их желательно заменить мощным пьезокерамическим излучателем или магнитостриктором, который можно попробовать изготовить самостоятельно, намотав на ферритовом П-образном сердечнике от ТВС телевизора несколько десятков витков многожильного медного провода, а в качестве мембраны применить небольшую стальную пластину. Катушка должна быть размещена на массивной опоре. Р-канальные полевые транзисторы можно заменить на IRF5305, IRF9Z34S, IRF5210; п-канальные — IRF511, IRF541, IRF520, IRFZ44N, IRFZ48N. Транзисторы устанавливаются на радиаторы. Микросхемы можно заменить на 564ЛА7, CD4011A, К561ЛЕ5, КР1561ЛЕ5, CD4001B. Дроссель L1 — любой миниатюрный индуктивностью 220.... 1000 мкГн. Резисторы R7, R8 — самодельные проволочные. Переменный резистор СП3-30, СП3-3-33-32 или с выключателем питания СП2-33-20. Печатную качаем в архиве.

Настройка. Движок переменного резистора R5 устанавливается в среднее положение, контакты выключателя SA1 замыкаются, подбором ёмкости конденсатора С3 и сопротивления резистора R6 устанавливается частота генератора на DD1.3, DD1.4 около 30 кГц. Далее, контакты SA1 размыкаются и подбором сопротивлений резисторов R2, R3 и R4 следует установить девиацию ультразвуковой частоты от 24 кГц до 35...45 кГц. Делать её более широкой не следует, так как или работа устройства станет слышимой человеком, либо заметно возрастут потери на переключение полевых транзисторов, а эффективность излучателей звука упадёт. Срыв работы генератора на DD1.3, DD1.4 не допускается, так как это может привести к повреждению катушек динамических головок. Источник питания должен быть рассчитан на ток не менее 2 А. Напряжение питания может быть от 11 до 13 вольт.

Сегодня собрал такую схему ультразвукового излучателя - работает не очень, но! Немного пораскинув умом, пришел к выводу о необходимости повысить ёмкость С3 до 2200 пф, далее естественно была устранена ошибка в схеме - в элементе DD2.2 выводы 4 и 6 перепутаны. И о чудо - работает. Правда долго выдержать этот пронзительный звук, меняющийся в широком диапазоне не представляется возможным даже тем, кто находится и в других комнатах. Голова начинает даже не болеть, а её как будто в тиски жмёт, до тошноты противное состояние, выдержал секунд 30.

Ток потребления можно рассчитать исходя из сопротивления применяемого ультразвукового излучателя, закон Ома помнят думаю все. К примеру, у меня стоит на 16 Ом, приняв за КПД 100% оконечного каскада, что почти так и есть, получаем 750 мА при напряжении питания 12 В. Напряжение менять не стоит, иначе упадет мощность, да и смысл уменьшать? Свой ультразвуковой излучатель питаю от кренки на 12 В. При перепадах напряжения частота более менее стабильна получается. Диапазон выходных частот варьирует в широком пределе переменным резистором от слышимого спектра - до не слышимого, необходимо лишь правильно подобрать скважность импульсов для правильной работы схемы. Устройство собрал и испытал: ГУБЕРНАТОР.

Ультразвуковая ванна своими руками: её устройство и принцип работы. Где применяется ультразвуковая обработка? Сборка ультразвуковой ванны в домашних условиях за 7 шагов + 3 правила эксплуатации.

С техническим прогрессом наши дома начали наполняться предметами повседневного пользования, что во много раз упрощают жизнь. Некоторую технику, которую ранее применяли лишь в промышленных условиях, делают более компактной и подстраивают под использование рядовым потребителем.

Внести частичку прогресса в свой дом можно и самому.

Ультразвуковая ванна своими руками позволит сэкономить финансы и принести большую пользу в хозяйстве.

Что собой представляет ультразвуковая ванна?

Продлить жизнь элементам стиральной машины? А может очистить драгоценные металлы от налета?

Казалось бы, не столь популярная конструкция ранее может стать незаменимым помощником в абсолютно любом деле, связанном с очисткой от накипи и следов коррозии.

1) Конструкция ультразвуковой ванны.

Главным компонентом конструкции ультразвуковой ванны является преобразователь электрической энергии в механическую. По всей площади емкости происходит распространение ультразвуковых волн, которые и воздействуют на погружаемый объект.

Ультразвуковая волна – звуковая частота, не воспринимаемая на слух. Находится в пределах 17 — 118 килогерц.

Чтобы получить такой диапазон, требуется специальный частотный преобразователь .

На входе при помощи действия электроэнергии снижается уровень колебания частот до ультразвуковых. Именно они и влияют на разрушение результатов процесса коррозии.

Ну и для повышения КПД используется нагревательный элемент , который располагают под основой ёмкости из нержавейки с излучателем .

В совокупности рассмотренные 3 элемента составляют цепь, способную импульсивно действовать на погруженный объект и проводить его очистку.

Как работает прибор?

Ультразвуковая ванна своими руками или купленная, работают по одному и тому же принципу. Волны влияют на структуру и расщепляют элементы со слабой кристаллической решеткой. Ржавчина, накипь, налет – вещества, которые подпадают под эту категорию.

Для очистки с помощью ультразвуковой ванны нужно:

  1. В нержавеющий резервуар налить специальную жидкость по очистке.
  2. Поместить предмет в раствор.
  3. Включить ультразвуковую ванну.
  4. Если периодически начали появляться мелкие пузырьки на поверхности - это признак успешной работы.

  5. Вытащить предмет после 3 – 10 часов в растворе.

Длительность нахождения детали в жидкости зависит от степени его начального загрязнения. Если накипь слоем с палец, на очистку может уйти более 5 часов.

Пузырьки, которые выделяются в ультразвуковой ванне, постепенно «съедают» частички коррозии на предмете, помещенном в состав. Большим плюсом является возможность очистить даже самые труднодоступные места, что практически невозможно сделать просто своими руками.

2) Где применяются ультразвуковые ванны?

На сегодняшний день сфера применения ультразвуковых ванн весьма широка.
Промышленные предприятия уже достаточно долго используют эту технологию для своих нужд, но к нам в дом процесс очистки предметов подобным образом пришел лишь недавно.

Сферы применения ультразвуковых ванн:

    .

    Налет на золоте и серебре удаляется в течение 20 — 40 минут.

    Небольшие частные ремонтные конторки часто держат у себя подобную конструкцию, которая в 60% случаев сделана своими руками.

  1. Оптика .

    Составляющие оптических приборов в промышленном масштабе также поддаются процессу коррозии.

    Очистка в ультразвуковой ванне — самый безопасный и быстрый метод восстановить работоспособность деталей.

  2. Электроника .

    Платы портативной и другой техники очень хрупкие, потому обработка механическим путем им только навредит.

  3. Химия .

    Ускорение протекания некоторых химических реакций за счет воздействия ультразвуковой обработкой.

  4. и автомобильная промышленность.

    Очистка всех металлических деталей от признаков старения.

В домашних условиях можно с помощью ультразвуковой ванны очистить элементы бытовых электроприборов и продлить их жизнь. Наиболее полезен метод будет для нагревательных элементов стиральных машин, которые постоянно страдают от накипи.

Преимущества очистки в ультразвуковой ванне:

  • Экономия личного времени.

    При очистке своими руками все время уходит на непосредственное взаимодействие с объектом.

    В нашем случае достаточно будет положить деталь в ультразвуковую ванну и включить устройство.

  • Вы не вредите своему здоровью .

    Прямой контракт с активными химическими веществами сводится к 2 — 3%.

    Если быть аккуратным, а также использовать резиновые перчатки, то вы будете защищены на 100%.

  • Очистка труднодоступных мест .

    Мелкие щели или даже микротрещины, куда могла пробраться грязь — ничто не сможет избежать действия ультразвука.

  • Отсутствие механических повреждений после обработки .

    В отличие от механического воздействия, риск привести деталь в неисправность при ультразвуковой чистке сводится к нулю.

  • Область применения ультразвуковых ванн очень широка не только в промышленных масштабах, но и в домашнем хозяйстве.

    Хоть этот предмет и не является столь распространенным в нашей стране, его можно найти на специализированных сайтах по продажам бытовой техники.

    Как сделать ультразвуковую ванну своими руками?

    Что если нет желания тратить лишние 5000 — 8000 рублей на предмет бытовой утвари, который не так уж и часто используется?

    Решением станет ультразвуковая ванна своими руками. Во сколько она вам обойдется, и какие от этого выгоды — разберем ниже.

    1. Покупать ультразвуковую ванну или собирать самому?

    Для начала давайте разберемся, во сколько вам обойдется готовая ультразвуковая ванна.

    В зависимости от целей использования вы можете приобрести портативный вариант или его расширенную версию. Предприниматели, которые , часто покупают такую технику для чистки деталей автомобилей (форсунки, клапаны и другое).

    По объему ультразвуковые ванны разделяют на:


Расценки на ультразвуковые ванны по стране скачут от 4 000 до 20 000 рублей на портативные и в пределах 15 000 – 40 000 на их промышленные аналоги. По минимальной цене вы получите стандартный агрегат с минимумом дополнительных функций.

Сборка ультразвуковой ванны своими руками может вам обойтись в 2 — 3 раза дешевле . Главное иметь начальные навыки владения паяльником и найти нужные материалы.

2. Инструкция по сборке ультразвуковой ванны своими руками.

Китайские модели быстро ломаются и не прослужат вам более 1 года. Цена на такое устройство растет пропорционально его вместимости.

Что если вам потребуется проводить чистку крупных сельскохозяйственных деталей, таких как трактор или комбайн?

Тратить 50 000 рублей на 3 – 4х-разовое использование в год будет не особо заманчивым предложением.

Именно поэтому стоит рассмотреть подобный вариант решения проблем.
Какие элементы для ультразвуковой ванны потребуются:

Металлическая основа
Составляющая, на которой будет происходить крепёж всех элементов
НасосДля подачи раствора в ультразвуковую ванну
Импульсный трансформатор
Его целью будет постоянное повышение силы напряжения
Керамическая емкость
Основная рабочая область
4-5 магнитов
Можно достать из старой советской электроники или купить новые
Катушка с ферритовым стержнем
В свободном доступе на специализированных барахолках
Пластиковая трубка диаметром 2 - 3 см Для подачи/вывода жидкости
Раствор Жидкость, в которой будет происходить процесс очищения

Все элементы стоит подготовить заранее.

Для сборки потребуются элементарные знания физики по школьной программе. Если вы на практике занимались сборкой домашней радиотехники, то соорудить ультразвуковую ванну не составит труда.

3. Пошаговый план сборки ультразвуковой ванны.


Чтобы увидеть наглядный результат, потребуется около 3 часов.

Существует хитрость, которая позволит сэкономить кучу времени. Для тестирования подойдет обычная пищевая фольга.

Помните ее хорошенько и положите в наполненную керамическую емкость. После включения питания вы заметите, как фольга в местах сгибов начинает понемногу разлагаться. Весь тест займет не более 2 минут.

4. Какая жидкость применяется в ультразвуковой ванне?

В зависимости от сферы работы растворы могут кардинально различаться. Найти в продаже жидкость для ультразвуковых ванн в 2 раза сложнее, чем купить само устройство.

Есть 2 варианта:

  1. Вода + ПАВ (поверхностно-активное вещество) .

    *Используется для очистки от налета золота, серебра и других драгоценных материалов. В свободном доступе в хозяйственных магазинах страны.

  2. Спиртовой раствор .

    *Для работы с микросхемами и платами.

    Спирт предотвращает замыкание и прекрасно помогает в случаях, когда вода бессильна.

  3. Иногда для очистки деталей автомобильной техники используют керосиновые или бензиновые смеси , но из-за опасности воспламенения лучше перейти к более щадящим методам.

    Тут хорошим вариантом станут растворы порошков и других моющих средств .

    5. Правила эксплуатации ультразвуковых ванн.

    Устройство, сделанное своими руками или покупное, потребует от вас определенных условий использования. Чтобы прибор прослужил вам как можно дольше, следует придерживаться нескольких правил эксплуатации ультразвуковых ванн.

    3 основных правила:

    1. Не лезть своими руками в емкость при работе конструкции .

      Чтобы обезопасить себя, используйте резиновые перчатки.

    2. Не включать устройство, когда оно пустое .

      Особенно это правило важно соблюдать при работе с самодельными ваннами.

      Ферритовый стержень от влияния электричества может разлететься на части и навредить окружающим.

      На покупных устройствах все закрыто и обычно присутствует система автоматического отключения.

    3. Перед использованием осмотрите устройство на наличие механических повреждений , которые могут повлиять на работоспособность прибора и безопасность окружающих.

    Элементарные правила пожарной и эклектической безопасности также не стоит забывать. Короткие замыкания или проблемы с работой импульсивного трансформатора могут нести опасность при длительной работе устройства.

    Совет: если вам нужно очистить мелкую деталь, положите ее в стакан с раствором, а уже затем его поставьте в керамическую емкость, наполненную обычной водой.
    Метод позволит сохранить сырье и ваши деньги.

    Любое самодельное устройство периодически нуждается в проверке. Выявив заранее проблемные места можно избавить себя от лишних хлопот и опасностей в будущем.

    Хотите разобраться наглядно, как устроена и работает ультразвуковая ванна?

    Демонстрация разборки и описание принципа действия оборудования вы найдете в ролике:

    Мы рассмотрели, как создается ультразвуковая ванна своими руками , и что для этого требуется. Себестоимость такого устройства не более 1000 рублей , а если добыть все компоненты самому, получится вообще бесплатно.

    Полезная статья? Не пропустите новые!
    Введите e-mail и получайте новые статьи на почту