Российские солнечные батареи нового поколения. Солнечные батареи: описание различных видов и материалов нового поколения. Взгляд в будущее: наноструктуры с переменным показателем преломления

Приветствуем всех, кому не жаль потратить пару минут на получение интересной информации!
Итак, мы в очередной раз пополнили склад совершенно новой продукцией. Количество новинок не так велико, но зато какое!
С гордостью представляем вам линейку самых эффективных и эффектных солнечных панелей на российском рынке – линейку Eclipse от завода Seraphim, входящего в рейтинг самых надёжных производителей (Bloomberg присвоил Seraphim Solar статус TIER1 ещё в 2015 году).

К заказу доступны две модели солнечных батарей Серафим:

  • Монокристаллическая панель Eclipse SRP-320-E01B
  • Поликристаллическая панель Eclipse SRP-290-E11B

Первая модель выполнена в габарите стандартного монокристаллического 270 Вт модуля и при этом вырабатывает 320 экологически чистых Ватт. Вторая модель соответствует габариту 250 Вт поликристаллического модуля, но эффективность этой панели составляет 290 Ватт - выше, чем у классической монокристаллической батареи такого-же размера. Как удалось достичь такой эффективности? Очень просто и одновременно сложно! Нет никаких фокусов и махинаций: ячейки в солнечных батареях Eclipse уложены таким образом, что практически вся площадь панели занята кремнием, а эффективность всей батареи становится почти равна эффективности кремниевых ячеек, из которых она состоит. Правда ячейки в солнечных батареях Seraphim Eclipse тоже не совсем простые - они выполнены по особой технологии и фактически могут быть "склеены" друг с другом, что снижает потери на внутренних соединениях и также увеличивает итоговую мощность.

Фактически на текущий момент монокристаллическая солнечная батарея премиум класса Seraphim SRP-320-E01B является самой эффективной из имеющихся на Российском рынке.

Также в полку поставляемых нашей компанией моделей солнечных батарей произошло еще одно пополнение: инновационная "прозрачная" солнечная батарея GP Solar GPDP-265W60 мощностью 265 Ватт:

Данная модель представляет собой совершенно новую линейку солнечных батарей. Созданная из двух листов закаленного стекла, тонкая и частично прозрачная (в нашем случае на 10%) солнечная панель - однозначный тренд в мире солнечной энергетики. Предугадывая и возможно даже опережая скорый ажиотаж строителей и архитекторов, а также обычных пользователей мы представляем вам этот новый продукт. Прозрачные солнечные батареи подойдут для тех, кто заинтересован не просто в "утилитарной" составляющей солнечной электростанции, но и в реализации своих творческих, эстетических потребностей. Один - два года назад полупрозрачные панели были лишь любопытной новинкой на специализированных выставках, однако встретив взрывной интерес со стороны потребителей по всему миру Dual Glass продукты появились у каждого уважающего себя производителя. Футуристический дизайн явно намекает на необходимость применения его в архитектурных элементах – ведь находясь рядом с такой панелью будущее становится не только видимым, но и осязаемым.

Помимо стандартного своего предназначения в качестве атрибута крыш и наземных площадок, такие панели могут быть использованы, как основная поверхность стены, забора, навеса, могут стать отличной альтернативой оконным стеклам, либо сердцем архитектурной композиции - этот вопрос мы оставляем на ваше усмотрение. Отметим - прочность этих панелей достаточна для того, чтобы взрослый человек мог спокойно стоять на их поверхности (несущая способность составляет 5400 Па).

Конечно, безрамная технология, хорошо зарекомендовавшая себя ранее в микроморфных модулях Pramac и Hevel, отнюдь не новинка, однако в сравнении с аналогами эти батареи отличаются значительно большей эффективностью. Удельная мощность прозрачных солнечных батарей GPSolar GPDP-265W60 составляет 16,11%, что более чем в 2 раза выше, чем у микроморфных солнечных батарей. Это является неоспоримым преимуществом при организации солнечной электростанции на ограниченной площади крыши или навеса.
Помимо прочего, безрамная солнечная батарея с двумя слоями стекла имеет больший срок службы, поскольку в отличии от традиционных солнечных панелей с алюминиевой рамой не подвержена влиянию разницы между температурной деформацией алюминиевой рамы и стекла (что с годами приводит к повреждениям конструкции, особенно в условиях России, где солнечные батареи ежегодно подвергаются большим перепадам температуры).

Что касается крепления безрамных солнечных батарей - с этим также нет никаких трудностей. Наша компания уже много лет поставляет качественные , о чём давно знают установщики такого типа батарей по всей стране.


О солнечной энергетике:
Солнечная энергетика - высокотехнологичная отрасль, получившая динамичное развитие в последние годы. Для российской экономики положительный эффект от роста доли солнечной энергетики заключается в создании высокотехнологичного производства и рабочих мест, значительных налоговых отчислениях, сокращении вредных выбросов. С течением времени солнечная электроэнергия становится дешевле традиционной генерации за счёт низких операционных расходов и отсутствия топливной составляющей.

0,5% солнечной энергии могло бы обеспечить все потребности мировой энергетики на сегодняшний день



Часто задаваемые вопросы:

Что такое инсоляция?
Инсоляция - (от лат. in solo выставлено на солнце) количество электромагнитной энергии (радиации), падающей на поверхность земли. Инсоляция измеряется числом единиц энергии, падающей на единицу поверхности за единицу времени. Обычно инсоляцию измеряют в кВт*час/м2.

Сколько солнца в России?
Россия обладает достаточно высоким уровнем инсоляции - у нас есть довольно много районов, где среднегодовой приход солнечной радиации составляет 4-5 кВт*ч на квадратный метр в день (этот показатель соизмерим с югом Германии и севером Испании - странах-лидерах по внедрению солнечных систем). При этом высокий уровень инсоляции в России не только на юге - Краснодарском крае, Ростовской области, Кавказе, но также на Алтае, да и в целом на юге Сибири, Дальнем Востоке и в Забайкалье - в этих регионах количество солнечных дней в году доходит до 300.

Как работает солнечная электростанция?
Принцип работы солнечного модуля, который является основой солнечной электростанции, довольно прост - поверхность модуля улавливает солнечный свет и за счёт проводниковых свойств кремния преобразует его в электрическую энергию.
Солнечные электростанции состоят из солнечных модулей, подключённых в единую цепь, инверторов и другого оборудования.
Существуют два основных типа солнечных электростанций: сетевые - отпускающие всю вырабатываемую электроэнергию в сеть и автономные.
На автономных станциях за счёт установки аккумуляторов есть возможность накапливать электроэнергию для использования, например, в тёмное время суток.

Как посчитать окупаемость солнечной энергоустановки?
Для расчёта окупаемости необходимы следующие показатели: мощность солнечной установки и её ежегодная выработка (зависит от инсоляции региона и типа модулей), размер тарифа за электроэнергию или стоимость подключения при отсутствии централизованного электроснабжения, а также стоимость самой установки под ключ.

Например, мощность энергоустановки составляет 3 кВт, а её расчётная ежегодная выработка составляет 5 тысяч кВт*ч. При тарифе на электроэнергию на уровне 4 рублей, такая установка позволит экономить 20 тысяч рублей в год.

Как развивается солнечная энергетика в России?
Россия не осталась в стороне от мировых трендов развития солнечной энергетики - в России есть производство солнечных модулей, строятся большие сетевые и малые автономные солнечные электростанции, разработана и запатентована собственная высокоэффективная технология производства гетероструктурных модулей.
Установленная мощность солнечных электростанций в России достигает порядка 500 МВт, а до 2024 года планируется довести эти показатели до 1,5 ГВт. Развивается и розничный рынок - сегодня в России практически в каждом российском регионе есть компании, которые предлагают солнечные решения.
Со второго квартала 2017 года группа компаний "Хевел" приступила к производству солнечных модулей нового поколения по гетероструктурной технологии - это наиболее перспективная из существующих сегодня технологий.
Один из наиболее перспективных новых сегментов, который Россия успешно освоила - гибридная генерация с использованием возобновляемых источников энергии. В 2013 году в Республике Алтай запущена первая в мире автономная гибридная энергоустановка, работающая на солнечной и дизельной генерации. Такие решения перспективны не только для труднодоступных и изолированных российских территорий, но и как технология на экспорт - в странах Африки и Азии, по разным оценкам, более 1,2 млрд людей не имеют доступа к электроэнергии и тратят ежегодно более 27 млрд долларов на керосин и свечи.

Когда солнечная энергетика будет доступна каждому?
Во всём мире поддержка солнечной энергетики начиналась именно «с крыш» - потребители после установки частных солнечных установок получали либо существенную скидку на оплату электроэнергии, либо специальный «зелёный» тариф, по которому они могли отпускать электроэнергию в сеть. Это обеспечило ускоренный рост технологий, а развитие конкуренции, экономия масштаба и автоматизация производств привели к тому, что капитальные затраты на строительство СЭС в мире за последние 8 лет снизились в 5 раз. В России уже локализовано производство компонентов, поэтому вне зависимости от курса валют солнечная энергетика продолжит дешеветь для российских потребителей.
Сегодня в силу в силу технологических особенностей энергосистемы и нормативного регулирования рынка, 90% всех «зелёных» энергоустановок небольшой мощности - до 10 кВт - это автономные или гибридные системы, не включённые в единую энергосистему. Технологическое включение частных владельцев солнечных установок в работу розничного рынка электроэнергии сегодня хотя и не запрещено формально, на практике труднореализуемо - в российском законодательстве нет положений, определяющих статус такого потребителя-производителя, а у энергосбытовых компаний нет обязательств по покупке «солнечных» объёмов электроэнергии. Тем не менее, в ряде российских регионов уже есть примеры покупки «зелёной» электроэнергии у простых потребителей энергосбытовыми компаниями.
Сейчас правительство поручило проработать вопрос об упрощении продажи зелёной электроэнергии от частных домохозяйств в общую сеть. В 2017 году будем следить за развитием событий.
Другая форма поддержки возобновляемой энергетики - субсидирование кредитов на покупку солнечных энергоустановок. В России этот сегмент кредитования только начинает развиваться, но это вопрос 2-3 лет и скоро купить солнечную установку для дачи в рассрочку или по льготному кредиту будет не сложнее, чем бытовую технику.

Какие перспективы у солнечной энергетики сегодня?
В 2016 году в солнечной энергетике случился настоящий бум - по оценкам различных аналитических агентств было построено порядка 76 ГВт солнечных мощностей.
Так что перспективы самые радужные - инвестиции в солнечную энергетику растут, и Россия просто не сможет оставаться в стороне. У нас огромное количество энергодефицитных и изолированных от общей сети территорий с высоким уровнем инсоляции, где развитие солнечной энергетики не просто эффективно, но и позволит сэкономить миллионы бюджетных средств, которые сейчас идут на сдерживание роста тарифов на электроэнергию.



Экология потребления.Наука и техника:Швейцарские физики продемонстрировали работу нового поколения солнечных батарей, обладающих рекордно высоким КПД и при этом остающихся достаточно дешевыми по сравнению с обычными фотоэлементами.

Швейцарские физики продемонстрировали работу нового поколения солнечных батарей, обладающих рекордно высоким КПД и при этом остающихся достаточно дешевыми по сравнению с обычными фотоэлементами.

Пленки из аналога необычного природного минерала помогли физикам из Швейцарии создать новый вид дешевых солнечных батарей, преобразующих рекордные 20% энергии солнечного света в электричество, говорится в статье, опубликованной в журнале Nature.

«Лучшие прототипы солнечных батарей на перовскитах используют особые материалы, которые очень сложно изготовлять и очищать. Их минимальная стоимость составляет около 300 евро за грамм вещества, что делает невозможным их коммерческое использование. Для сравнения, наше вещество, FDT, легко изготовлять и оно в пять раз дешевле, и при этом обладает теми же качествами», - заявил Мохаммад Назируддин (Mohammad Nazeeruddin) из Федеральной политехнической школы Швейцарии в Лозанне (EPFL).

В последние годы ученые создали несколько экзотических материалов, позволяющих увеличить эффективность солнечных батарей в несколько раз. В частности, внимание физиков все больше привлекает минерал перовскит и его синтетические аналоги, тонкие пленки которого являются полупроводниками, хорошо преобразующими энергию света в электричество.

Большинство свето-поглощающих материалов обладают симметричной кристаллической структурой, что и позволяет электронам свободно течь в разные стороны. Перовскит имеет кубическую кристаллическую решетку, образованную атомами одного металла. Внутри каждого куба находится восьмигранник, образованный атомами кислорода, внутри которого «сидит» атом другого металла.

Взаимодействие между этими атомами заставляет электроны течь в едином направлении, благодаря чему солнечные батареи на базе перовскита обладают крайне высоким КПД, около 12-15%. Назируддин и его коллеги смогли достичь еще более высокого уровня эффективности, не повышая стоимости батареи, создав вещество FDT.

Оно относится к категории так называемых «переносчиков дырок» – особых субстанций, помогающих удалять положительные заряды, так называемые «дырки», из пленки перовскита после того, как в нее попадают частицы света и «выбивают» из нее электроны. По своей химической структуре FDT представляет собой небольшую молекулу ароматического углеводорода, похожую по форме на бабочку с крупными крыльями.

Кончики крыльев этой «бабочки» цепляются за поверхность пленки из перовскита, а ее нижняя часть взаимодействует с атомами йода, служащими источником «дырок» и электронов, и заставляют их быстрее возвращаться в рабочее положение после того, как свет выбьет очередной электрон из кристалла перовскита.

Благодаря ее необычным свойствам, солнечная батарея, покрытая тонким слоем FDT, способна достичь рекордного на сегодняшний день показателя КПД – свыше 20,2%, что чуть выше, чем у солнечных батарей на базе более дорогих «переносчиков дырок». Как надеются ученые, их открытие приблизит нас к появлению действительно эффективных «зеленых» источников энергии. опубликовано

Мир уверенно движется к революции в энергосберегающих технологиях. Одно из последних достижений в этой области принадлежит Международной исследовательской группе, которую образовал Университет Техаса в Далласе и Московский институт стали и сплавов (МИСиС). Ученые разработали метод создания солнечной батареи на базе перовскита. В отличие от традиционных аналогов, которые основаны на кремнии, эффективность новинки намного выше. При этом себестоимость солнечной батареи будущего снижается. Исследователи уверены, что пластичные, легкие, доступные по цене устройства из перовскита со временем найдут широкое применение, будут востребованы и полностью вытеснят устаревшие кремневые аналоги.

Анализ кремниевых солнечных батарей начали еще в двадцатом столетии.

Существующая технология имеет ряд недостатков. Это токсичность и энергоемкость производства кремния. Поэтому процесс и получается дорогостоящим. А еще кремний отличается ненадежностью, недостаточной пластичностью и большим весом панелей. Поэтому сфера применения этого химического элемента слишком узкая. За прогнозами ученых, решить все эти проблемы сможет металло-органический перовскит.

Новое исследование позволило плодотворно поработать над прототипом тандемного устройства, которое состоит из углеродных нанотрубок и фотоэлектрических составляющих. Эта разработка предусматривает сочетание частей из перовскита и традиционного кремния. Установка эффективно преобразует доступные ультрафиолетовые лучи в электричество и повышает коэффициент полезного действия батареи на 15%.

— Основное достоинство гибридного перовскита – это легкость его добывания из стандартных источников: органических химсоединений промышленного образца и солей металлов. В то время как высокоэффективные полупроводниковые аналоги в виде солнечных батарей, основанные на арсенидегаллия и кремнии, получают из нераспространенных и дорогостоящих элементов, — было отмечено руководителем проекта, ведущим экспертом университета МИСиС и профессором Анваром Захидовым.

Также немаловажный фактор заключается в том, что основы на перовските при печати фотоэлектроникине ограничиваются печатью на стекле. Это существенно удешевляет батареи нового образца по сравнению с более сложными способами создания составляющих из тонкой пленки. Данные составляющие из перовскита имеют активные ярусы. Они без проблем наносятся даже на самые пластичные и тонкие подложки. А современная рулонная методика делает возможным размещение солнечных батарей на поверхности всевозможной кривизны. Учитывая все эти преимущества, сфера применения инновационных батарей расширяется и выходит далеко за рамки использования традиционных кремниевых аналогов. Разработка может снабжать природной энергией портативную электронную и бытовую технику, реализоваться в проекте «Умный дом» и т.д. Батареи на базе перовскита гарантируют бесперебойную подачу электрической энергии в жилье. Также инновация подходит для автомобильной промышленности.

Кто запретит нам мечтать!

Всё чаще учёными рассматривается вечный двигатель как один из видов альтернативных источников энергии, возобновляемых природой безвозмездно. Если брать точку зрения закона сохранения энергии, тогда такой двигатель невозможен. Но названный закон действует только для замкнутых электрических сетей.

Мы подключаем электроприбор в сеть вилкой двумя проводниками. Подключи один — электротока не будет, потому что цепь не замкнута. А Николо Тесла, сербский учёный, ещё в начале прошлого века продемонстрировал передачу тока по одному проводнику. И был уже на пороге открытия передачи тока вообще без проводов. Тем самым, учёный доказал, что вечный двигатель возможен, но при условии разомкнутой сети.

Тесла одним из первых понял, что Земля и околоземное пространство представляют из себя незамкнутую электрическую сеть. Значит, закон сохранения энергии при такой сети не действует и есть возможность получать из космоса неиссякаемую энергию и приводить в движение вечные двигатели. Впервые воочию учёный продемонстрировал свою идею в 1931 году на бесшумном автомобильном электродвигателе и ездил целую неделю без аккумуляторов и зарядных устройств.

Современники ему не поверили. Учёного обозвали шарлатаном. Типичный пример для любой эпохи, когда человека, опережающего своё время в открытиях или идеях, завистники или шельмуют, или заключают в психушку. Слава Богу, чаша сия миновала Тесла, но ненормальным его считали до конца его дней и шельмованию он подвергался постоянно.

Однако, и поныне есть скептики, не верящие ни в какие чудеса. По их мнению, природные двигатели существуют, но их нельзя назвать «вечными», потому что они не постоянны. Сейчас всё крутится-вертится, через час ветер затих, солнце скрылось за облака или наступила ночь и «вечный» двигатель замолчал. Другое дело гидроэлектростанция, или атомная – там есть возможность получить «вечный» двигатель на продолжительное время, но назвать его абсолютно вечным тоже нельзя.

По большому счёту, правомерность вечных двигателей не стыкуется с Законом сохранения энергии, который до сих пор не опровергнут ни одним из известных лабораторных экспериментов. Таково мнение скептиков.

Между прочим, вы сами можете сделать вечный двигатель:

Так что, теперь и мечтать нельзя, как это успешно делал Николо Тесла? Он мечтал о передаче электроэнергии на большие расстояния без проводов и разрабатывал новые подходы к решению данной проблемы. Ему удавалось включать и выключать электродвигатель на значительном удалении от него, включать лампочки без всякой проводки. Это происходило в 1892 году, а секреты великого учёного не разгаданы до сих пор.

Ищем слабые места в законе

Закон сохранения и превращения энергии в свободной интерпретации трактуется так: в любых природных явлениях энергия просто так не возникает и не исчезает. Она переходит из одного вида в другой, но при этом её значение уменьшается. И немыслимо думать ни о каком вечном двигателе без приложения постоянных дополнительных усилий.

Но люди веками ищут возможность создания вечного двигателя. Вот примеры нескольких изобретений:

Учёные ломают головы над тем, как бы обойти этот тормозной закон и двинуть науку на службу человечества по пути, который нащупал Николо Тесла 122 года тому назад и унёс с собой в могилу свои секреты. Как найти эти природные «дополнительные усилия», чтобы без участия человека с помощью возобновляемых источников энергии заработал вечный двигатель?

Кое что учёными в этом направлении уже сделано. Институт имени А.Иоффе в Петербурге открыл центр по изготовлению тонкоплёночных солнечных батарей, способных вырабатывать энергию не только при прямом воздействии солнечных лучей, но даже при инфракрасном излучении. Значит, — ночью.

Зацепка найдена, которая может привести к тому, что на законе сохранения энергии можно будет в ближайшем времени поставить жирный крест. К такому же мнению пришли и учёные из подмосковной Дубны, речь о которых в следующем разделе.

До утренней встречи, солнце!

Почему у нас в стране использование солнечной энергии на таком низком уровне? Да и мир не может гордиться преобладающим обузданием возобновляемой солнцем энергии. В чём причина?

Солнце здесь не причём. Во-первых, до настоящего времени человеческое сообщество не научилось превращать дневной свет в электрический ток с должным КПД. Во-вторых, выпускаемые солнечные батареи работают только днём и в ясную солнечную погоду. И, в-третьих, не изобретены ещё эффективные и безопасные аккумуляторы для достаточного накопления энергии, которой хватит до следующего светового дня. А что тогда делать в мёрзлой тундре, территория которой в нашей стране огромна? Там ведь до восхода солнца полгода надо ждать!

Но, к счастью, о таком положении дел можно теперь говорить в прошедшем времени. В подмосковной Дубне был продемонстрирован первый образец принципиально нового фотоэлемента. Он-то и стал главным компонентом солнечной батареи, авторами которой являются учёные центра института ядерных исследований. Новая батарея не имеет себе подобных, а внедрение открытых фотоэлементов приведёт к настоящей технической революции в освоении солнечной энергетики.

Пару слов надо сказать о принципе работы новой солнечной батареи. Она состоит из так называемого гетероэлектрического фотоэлемента, который одинаково хорошо действует как в видимом, так и в инфракрасном излучении. Кроме того, новая батарея снабжена гетероэлектрическим конденсатором, обладающим значительной емкостью, имея при этом малый объём.

Результат превзошёл все ожидания российских учёных. Если КПД старых фотоэлементов составлял 5, максимум 7%, то для батарей с использованием новых фотоэлементов результат ошеломляющий. Он может достичь 30% и выше. Мало того, изделия имеют уникальную способность работать даже ночью, прекрасно реагируя на инфракрасное излучение.

Появилась возможность утверждать, что скоро вступят в строй не только солнечные батареи, но и «звездные», способные извлекать электроэнергию в любое время суток и спокойно, в рабочем ритме встречать утреннее солнце, сколько бы ни длилась ночь. И с новой силой заряжаться на будущую бесперебойную работу. Чем не вечный двигатель, работающий на возобновляемой энергии!

Мнение сомневающегося:

«Вот это глобальные перспективы! Появится возможность на даче установить солнечные батареи! Да плюс энергию ветра использовать!

Но, на мой взгляд, массово не будут внедряться экологически чистые источники. «Углеводородистым» магнатам такое не по вкусу. Они будут продолжать травить всех и самих себя химией и грести бабки на наших болезнях. Им здоровая нация не нужна. Потому что она станет неуправляемой»!

Мнение здравомыслящего:

«На первый взгляд, можно утвердиться во мнении, что гетероэлектрические элементы солнечных батарей — это сплошная фантазия. Но такое впечатление ошибочное. Яростное сопротивление монополий говорит об обратном. Значит, за новыми солнечными батареями большое будущее, если богачи не на шутку всполошились».

Мнение пессимиста:

«Гетероэлектрики, бесспорно, могут привести мир к геополитическому переделу. Но этого не допустят! Интересы политиков и денежных мешков не дадут оторваться от потребления углеводородного сырья. Слишком большие ставки сделаны. Владельцы полезных ископаемых горло перегрызут за своё безбедное существование».

Мнение оптимиста:

«Это, конечно, безрадостно, но отчаиваться не следует. Сегодня интернет вполне позволяет изобретателям нашей страны, да и всего мира, объединиться и общими усилиями думать над проектами, внедрять их в производство, находить спонсоров и т.д. Не исключена и такая возможность, что вал народной инициативы с головой накроет бюрократическую волокиту и появятся работающие модели. Тогда процесс станет необратимым».

Источник – Блог «Экология в России» Льва Миролюбова из Ижевска.

«Здравствуй племя, младое, незнакомое»

Речь не о людях, а о новом поколении солнечных батарей. Ученым удалось разработать такие батареи, которые способны получать электричество из солнечной энергии даже тогда, когда солнце спрячется в облаках или зайдёт до утра за горизонт.

Знакомьтесь – пластичные солнечные батареи! Их можно наносить на раму как краску, или наклеивать в виде плёнки. Их главное достоинство — они способны улавливать инфракрасное излучение. Это значит, работать ночью так же эффективно, как и днём. Согласитесь, — немалый шаг на пути к прогрессу!

Существующие материалы для изготовления традиционных солнечных батарей улавливали лишь видимый солнечный свет, хотя другая большая часть излучения находилась в инфракрасном спектре.

Изобретённый материал – такой пластичный состав, который способен реагировать как на инфракрасную, так и на видимую часть спектра. Благодаря таким конструкциям появилась возможность улавливать значительный объём солнечной энергии и вырабатывать электроэнергию.

Но и это не самое важное. С внедрением в производство солнечных батарей нового поколения с применением необычного материала стоимость изделий резко снизилась, что даёт надежду массового использования возобновляемых источников в виде энергии солнца.

Российским нанотехнологиям – быть!

Ранее солнечные батареи изготавливались на кремниевой основе. А кремний получали методом разложения взрывоопасного газа силана. Его молекула содержит один атом кремния и четыре атома водорода. Учёные добились замены чистого кремния на получение тетрафторида кремния, что исключило всякую опасность при изготовлении изделия.

При новой технологии можно менять состав кремния, улучшая тем самым его электрические свойства. Такие образцы уже получены в Нижнем Новгороде, что дало возможность получать тонкие и гибкие плёнки, способные работать даже ночью. Это открыло прямую дорогу для изготовления более эффективных и дешёвых материалов для солнечных батарей нового поколения.

Кремниевые батареи используются и на больших солнечных электростанциях, создаваемых в альтернативной энергетике, и уже начали уверенно завоёвывать частный рынок для россиян, озабоченных загрязнением природы и ростом цен на электроэнергию.

КПД батарей нового поколения достигает 30%, против прежних, более дорогих и громоздких, имеющих КПД всего лишь 5-7%.

Результат работы нижегородских практиков в рамках разработки приоритетных направлений технологического комплекса России заложил основу создания новой технологии в нашей стране.