Bsod 3b windows 7 причины. Как исправить ошибки SYSTEM_SERVICE_EXCEPTION типа "синий экран" (0x0000003B). Проверка важных файлов

В настоящей главе рассматриваются устройства, предназначенные для ввода-вывода в пакетном режиме (страницами, рулонами и другими крупными блоками информации).

В основном речь пойдет о вводе-выводе графической информации. За редким исключением, большинство современных устройств пакетного ввода-вывода предназначаются именно для работы с этим типом информации. При этом можно утверждать, что принтеры и сканеры - это, как правило (хотя есть и исключения), устройства для работы с растровой информацией. Плоттеры и дигитайзеры предназначены для обработки векторной графической информации.

Принтеры

Принтер - устройство для вывода текстовой или графической информации на различные твердые носители. Существует несколько типов принтеров: матричные, струйные, лазерные, твердочернильные, термосублимационные и так далее

Принтеры ударного типа (impact printer)

Принтеры ударного действия, или impact-принтеры, создают изображение путем механического давления на бумагу через ленту с красителем. В качестве ударного механизма применяются либо шаблоны символов (механизм печатающей машинки), либо иголки, конструктивно объединенные в матрицы.

Барабанные построчные принтеры

Первые модели печатающих Устройств для вывода информации конструктивно представляли собой модернизированные варианты электрических пишущих машинок и применялись в 60- и 70-х годов в основном для диалогового ввода-вывода небольшого количества данных.

Основным типом устройств для вывода массовой информации в те времена были построчные печатающие устройства барабанного типа, использующие механизм, состоящий из символьного барабана, красящей ленты, системы продвижения перфорированной бумажной ленты (обычно рулонной либо сфальцованной в стопу) и ударных пуассонов.

На символьном барабане размещены выпуклые изображения символов (обычно строками по 120 одинаковых символов). При вращении барабана символы проходят между бумагой, красящей лентой и пуассоном. Удар пуассона, синхронизированный с прохождением требуемого символа, оставляет на бумаге отпечаток. Одна строка, таким образом, печатается за один оборот символьного барабана, что обеспечивает весьма высокое быстродействие (5-20 строк в секунду).

Матричные принтеры. В матричных принтерах (dot matrix printer) изображение формируется иголками, расположенными в головке принтера, и обычно активизируется электромагнитным методом. Каждая ударная иголка приводится в движение независимым электромеханическим преобразователем на основе соленоида. Головка двигается по горизонтальной направляющей и управляется шаговым двигателем. Обычно печать выполняется как при прямом, так и при обратном проходе печатающей головки. Бумага продвигается с помощью вала, а между бумагой и головкой принтера располагается красящая лента. У большинства моделей принтеров красящая лента заключена в специальный пластмассовый корпус, называемый картриджем, который различается по величине и форме для различных моделей. Красящая лента находится внутри корпуса картриджа в виде бесконечной ленты Мебиуса.

Качество печати матричных принтеров определяется количеством иголок в печатающей головке.

В головке 9-игольчатого принтера находятся 9 иголок, которые, как правило, располагаются вертикально в один ряд. Диаметр одной иголки около 0.2 миллиметров. Благодаря горизонтальному движению головки принтера и активизации отдельных иголок напечатанный знак образует как бы матрицу, причем отдельные буквы, цифры и знаки «заложены» внутри принтера (точнее, драйвера) в виде бинарных кодов. Для улучшения качества печати каждая строка пропечатывается 2 раза, при этом увеличивается время процесса печати и имеется возможность смещения при втором проходе отдельных точек, составляющих знаки. Качество печати 9-игольчатых принтеров оставляет желать лучшего, но для распознавания букв этого достаточно (подобные принтеры до сих пор применяются, например, при печати железнодорожных билетов). Дальнейшим развитием 9-игольчатого принтера являлся 18-игольчатый принтер, который имел два ряда по 9 иголок.

В 24-игольном принтере, ставшем современным стандартом матричных принтеров, иголки располагаются в два ряда по 12 штук так, что они в соседних рядах сдвинуты по вертикали. За счет этого точки при печати изображений перекрываются. В 24-игольчатых принтерах имеется возможность перемещения головки дважды по одной и той же строке, что обеспечивает печать на уровне машинописного качества LQ (Letter Quality).

Некоторые модели 24-игольчатых матричных принтеров обладают возможностью цветной печати за счет использования многоцветной красящей ленты с цветами CMYK.

К числу несомненных преимуществ матричных принтеров относится возможность печати одновременно нескольких копий документа с использованием копировальной бумаги. Существуют специальные матричные принтеры для одновременной печати пяти и более экземпляров, которые предназначены для эксплуатации в промышленных условиях и могут печатать на карточках, сберегательных книжках и других носителях из плотного материала. Кроме того, многие матричные принтеры оборудованы стандартными направляющими для обеспечения печати в рулоне и механизмом автоматической подачи бумаги, с помощью которого принтер самостоятельно заправляет новый лист (sheet feeder).

Достоинствами матричных принтеров являются: дешевизна расходных материалов; долговечность работы; низкая себестоимость печати (один отпечатанный на матричном принтере лист стоит в 20-30 раз дешевле, чем у принтеров других типов); относительная дешевизна матричных принтеров формата A3.

Матричные принтеры обеспечивают скорость печати до 400 знс (знаков в секунду, или cps - characters per second), обладают разрешением 360 х 360 тнд (точек на дюйм, dpi).

Существенным недостатком матричных принтеров как принтеров ударного действия является шум, который достигает 58 дБ. Для устранения этого недостатка в отдельных моделях предусмотрен так называемый тихий режим (Quiet Mode), однако такое понижение шума приводит к снижению скорости печати в 2 раза. Другое направление борьбы с шумом матричных принтеров связано с использованием специальных звуконепроницаемых кожухов.

Струйные принтеры

Главным элементом струйного принтера является печатающая головка, состоящая из сопел, к которым подводятся чернила. Число сопел находится в диапазоне от 16 до 64, а иногда достигает нескольких сотен.

Чернила подаются к соплам за счет капиллярных свойств и удерживаются от вытекания за счет сил поверхностного натяжения жидкости. В головку встроен специальный механизм, позволяющий выбрасывать из сопла микроскопическую капельку чернил. Печатающая головка при печати перемещается поступательно слева направо, отпечатав строку, передвигается вниз по листу. Работают эти принтеры практически бесшумно. Благодаря высокой скорости полета капель допускается использовать поверхности с сильными неровностями и в зависимости от требований к качеству печати размещать их на расстоянии 1-2 сантиметра от сопла-распылителя. В результате можно наносить маркировку, например данные о сроке годности товара на картонные коробки, бутылки, консервные банки, куриные яйца или кабели. Эту технологию печати нетрудно узнать по точкам, кажущимся неравномерными и как бы обтрепанными. В зависимости от устройства этого механизма различают принадлежность принтера к тому или иному классу.

Струйные принтеры подразделяются на устройства непрерывного действия (continuous drop) и дискретного (drop-on-demand) действия. Ввиду менее высокой цены более распространенными являются принтеры второго типа, в свою очередь, подразделяющиеся на следующие основные:

  • пьезоэлектрические (piezo-ink) - Epson, Brother;
  • пузырьковые (bubble-jet) - Hewlett-Packard, Canon, Lexmark.

Каждый из этих двух способов по-своему привлекателен, однако каждый из них не свободен и от недостатков.

Пьезоэлектрическая технология дешева, отличается надежностью (так как не используется высокая температура). Этот способ управления менее инерционен, чем нагрев, что позволяет повысить скорость печати.

Пузырьковая (термическая) технология связана с высокой температурой. При высокой температуре нагреватель со временем покрывается слоем нагара, поэтому в принтерах, использующих эту технологию, печатающая головка довольно часто выходит из строя. Достоинством этого типа принтеров является долговечность (исключая печатающие головки, которые быстро изнашиваются и заменяются вместе со сменой чернильного картриджа), а недостатком - низкая резкость получаемых отпечатков.

Печатающие устройства с пьезоэлектрическими исполнительными механизмами

Для реализации пьезоэлектрического метода в каждое сопло установлен пьезокристалл, связанный с диафрагмой. Под воздействием электрического заряда происходит деформация пьезоэлемента. При печати находящийся в трубке пьезоэлемент, сжимая и разжимая трубку, наполняет капиллярную систему чернилами. Чернила, которые отжимаются назад, перетекают обратно в резервуар, а чернила, которые выдавились наружу, образуют на бумаге точки.

Пьезоэлектрические трубки . В 1977 года был продемонстрирован первый струйный принтер с дозированным выбросом красителя. Он был оснащен двенадцатью соплами-распылителями и печатал почти бесшумно со скоростью 270 знс. В принтере Siemens в качестве электромеханического преобразователя использовалась пьезоэлектрическая трубка, помещенная в канал литой пластмассы. Все каналы заканчиваются пластиной с калиброванными отверстиями для распыления, расположенной на передней стороне устройства.

Пьезопластины . В начале 1985 года компания Epson представила первый из своих пьезопланарных струйных принтеров.

Вместо пьезоэлектрических трубочек, как у Siemens, в печатающих головках Epson, выполненных из структурированных стеклянных пластинок, укреплены небольшие пьезопластинки.

В 1987 года компания Dataproducts предложила другой принцип использования пьезоэлектриков для струйной печати, основанный на применении пластинчатого пьезопреобразователя. Согласно этому методу пьезопреобразователь, представляющий собой длинную плоскую пластинку (ламель), размещается позади небольшого резервуара с красителем. При воздействии на ламель импульсов напряжения ее длина немного меняется, что приводит к всплескам давления внутри резервуара, которые, в свою очередь, выталкивают капли из сопла-распылителя.

Пластинчатые пьезопреобразователи сочетают в себе преимущества как плоских, так и трубчатых систем - высокую частоту распыления и компактную конструкцию.

Печатающие устройства с термографическими исполнительными механизмами

Метод газовых пузырей базируется на термической технологии. Каждое сопло оборудовано нагревательным элементом, который при пропускании через него тока за несколько микросекунд нагревается до температуры около 500 °С. Возникающие при резком нагревании газовые пузыри выталкивают через выходное отверстие сопла порцию (каплю) жидких чернил, которые переносятся на бумагу. При отключении тока нагревательный элемент остывает, паровой пузырь уменьшается и через входное отверстие поступает новая порция чернил.

Если пьезоэлектрические печатающие механизмы приходилось с большим или меньшим трудом собирать из множества отдельных деталей, то пузырьково-струйные печатающие головки, представляющие собой кристаллы на кремниевых подложках, изготавливались по тонкослойной технологии сотнями.

При тонкослойной технологии применяются в принципе те же производственные процессы, что и при изготовлении интегральных схем. Каналы подачи красителя, сопла-распылители, исполнительные механизмы и токоподводящие шины создаются при поочередном нанесении слоев на подложки, например способом ионно-лучевого напыления, и последующем структурировании этих слоев.

Поскольку головки струйно-пузырьковой термопечати изготавливаются по тому же принципу, что и интегральные микросхемы, очевидна возможность интеграции последних в печатающие кристаллы. Первый шаг в этом направлении сделала фирма Canon, встроив в печатающие головки своих принтеров транзисторную матрицу. Примеру Canon последовала компания Xerox, выпустившая в 1993 году модель пузырьково-струйного принтера с головкой, оборудованной 128 распылителями, и полностью интегрированным последовательно-параллельным преобразователем.

Процесс функционирования пузырьково-струйного сопла-распылителя иллюстрируется на рисунке. Сначала сильный импульс напряжения длительностью 3-7 мкс подается на крохотный нагревательный элемент, который мгновенно накаляется до 500 °С. На его поверхности температура превышает 300 °С. Мощность нагрева настолько велика, что при увеличении длительности импульса напряжения всего лишь на несколько микросекунд нагревательный элемент моментально бы разрушился. В тонкой пленке над нагревательным элементом начинают кипеть чернила, и через 15 мкс образуется закрытый пузырек пара высокого давления (до 10 бар). Он выталкивает каплю чернил из сопла-распылителя, причем скорость полета капли достигает 10 м/с и более. Затем через 40 мкс пузырек, соединившись с атмосферой, опять опадает, однако пройдет еще 200 мкс, пока новая порция чернил не будут засосана из резервуара.

Пузырьково-струйные печатающие устройства делятся на две группы. Головка Edgeshooter, как становится ясно уже из названия, разбрызгивает чернильные капли перпендикулярно к направлению образования пузырьков. В головке Sideshooter, где пластина с соплами-распылителями находится поверх нагревательных элементов и каналов подачи чернил, пузырьки и капли движутся в одном направлении. Поскольку края сопел-распылителей в головках типа Sideshooter сделаны из однородного, а не из различных материалов, как в Edgeshooter, процесс изготовления распылителей с отверстиями определенного размера для Sideshooter значительно проще, чем для головок Edgeshooter. Кроме того, приходится учитывать неодинаковое смачивание разнородной поверхности головки Edgeshooter.

Требования к качеству чернил для любых систем струйной термопечати значительно выше, чем в пьезосистемах. Принцип функционирования и высокие температуры обусловливают применение только смешанных растворимых красителей на водяной основе. Красители должны соответствовать ряду требований:

  • быть химически нейтральными к материалам, из которых изготовлен механизм;
  • не образовывать отложений в каналах и распылителях, а также не расслаиваться;
  • храниться в течение длительного времени;
  • обладать определенными показателями плотности, вязкости и поверхностного натяжения при температурах 10 … 40°С;
  • не служить питательной средой для размножения бактерий и водорослей;
  • не содержать ядовитых или канцерогенных веществ и не возгораться.

Красители для струйной термопечати также должны образовывать пузырьки пара без отложения осадков и выдерживать кратковременное нагревание до 350 °С.

Печатающие головки могут конструктивно объединяться с чернильным картриджем и заменяться одновременно с ним, а могут быть установлены в принтере постоянно - при этом заменяется только картридж. Каждый из этих вариантов имеет свои достоинства и недостатки. Казалось бы, что чернильная емкость без печатающей головки должна стоить намного дешевле, чем в комбинации с печатающей головкой. На деле этого не происходит и заметного удешевления эксплуатации при постоянно установленной в принтере печатающей головке не наблюдается. В то же время легко сменяемая печатающая головка позволяет легко выйти из затруднений, связанных с засыханием чернил в ее каналах. Для того чтобы уменьшить рисунок засыхания чернил в каналах головки, предусматривается специальное положение парковки. В большинстве принтеров предусмотрена функция очистки сопел. Тем не менее все это-не дает полной уверенности, что при эксплуатации печатающую головку не придется менять.

Головка вместе с емкостями для чернил закрепляется на каретке, которая по направляющей совершает возвратно-поступательное движение поперек листа бумаги. Хотя способ объединения печатающей головки и емкости для чернил конструктивно наиболее прост и в силу этого получил самое широкое распространение, он не является оптимальным. Дело в том, что каретка должна достаточно быстро двигаться, а также достаточно быстро изменять направление Движения, ибо скоростью ее движения определяется скорость печати. Для этого подвижная каретка должна быть малоинерционной, то есть иметь возможно меньшую массу, и с этой целью уменьшают объем емкости для чернил. Поэтому предпочтительнее оказывается Размещение емкости для чернил на неподвижной части принтера, а подачу чернил к печатающим головкам осуществлять с помощью специальных трубопроводов.

Такая система позволяет повысить скорость печати и одновременно увеличить емкости для чернил, однако система трубопроводов конструктивно столь сложна, что такая конструкция используется редко.

Конструктивно устройство для подачи бумаги выполняется различно в разных типах принтеров, однако существуют две основные схемы.

Схемы с верхней подачей бумаги требуют наличия достаточной зоны обслуживания сверху корпуса принтера, поэтому такие принтеры мало пригодны для установки в нишах с ограниченной высотой. Расположенный снизу приемный лоток часто делается откидным, а иногда и вовсе отсутствует. При таком устройстве принтер занимает меньше места на рабочем столе, что иногда немаловажно. Такая конструкция используется в принтерах Epson, Canon.

В схемах с нижней подачей приемный лоток располагается над подающим, что обеспечивает большее удобство при эксплуатации. Такая схема расположения лотков характерна для большинства струйных принтеров, выпускаемых под торговой маркой HP. Ненужность верхней зоны обслуживания позволяет устанавливать этот принтер в нишах ограниченной высоты, равной высоте принтера. К недостаткам таких принтеров следует отнести то, что они занимают больше места на рабочем столе.

Цветные струйные принтеры

Цветные струйные принтеры имеют более высокое качество печати по сравнению с игольчатыми цветными принтерами и меньшую стоимость по сравнению с лазерными.

Печать цветных изображений на струйных принтерах происходит путем смешения четырех основных цветов - голубого, пурпурного, желтого и черного. В дорогих моделях принтеров используются дополнительно два цвета - либо светло-голубой и светло-пурпурный, либо оранжевый и зеленый (такие модели называют также фотопринтерами и отличаются повышенным качеством цветопередачи). Хороший струйный фотопринтер представляет собой приемлемую альтернативу дорогим цветным лазерным устройствам.

Отметим, что цветные струйные принтеры очень критичны к качеству бумаги, поэтому здесь следует придерживаться рекомендаций производителя принтера. Наивысшее качество струйной печати достигается на специальной фотобумаге, отличающейся достаточно высокой ценой.

Разрешение цветного принтера соответствует числу физических точек черного либо одного из основных цветов, наносимых на бумагу. Для печати промежуточных оттенков принтер прибегает к растрированию полутонов. С точки зрения пользователя это означает, что только 1-битовое черно-белое (либо бело-голубое, пурпурно-белое, желто-белое) изображение (bitmap) без полутонов может быть напечатано с разрешением, равным заявляемому разрешению принтера, а полутоновое изображение должно иметь разрешение в 6-8 раз лучшее. Иначе говоря, для качественной струйной печати полутонового или цветного изображения с разрешением 120 тнд необходим принтер с разрешением 720 тнд, а для изображения с разрешением 180 тнд - принтер на 1440 тнд. Заметим, что реальное физическое разрешение головок принтеров Epson составляет 720 тнд (1440 у высших моделей), а за счет половинного перемещения головки достигается разрешение 1440 х 720 тнд (соответственно у высших моделей 2880 х 1440 тнд).

Фотоэлектронные печатающие устройства

Фотоэлектронные способы печати основаны на освещении заряженной светочувствительной поверхности промежуточного носителя и формировании на ней изображения в виде электростатического рельефа, притягивающего частицы красителя, которые далее переносятся на бумагу.

Для освещения поверхности промежуточного носителя используют:

  • в лазерных принтерах - полупроводниковый лазер;
  • в светодиодных - светодиодную матрицу;
  • в принтерах с жидкокристаллическим затвором - люминесцентную лампу.

Лазерные принтеры

Эти устройства обеспечивают более высокое качество, чем струйные принтеры. Наиболее известными фирмами-разработчиками лазерных принтеров являются Hewlett-Packard, Lexmark, Epson, Canon, Toshiba, Ricoh.

Принцип действия лазерного принтера основан на методе сухого электростатического переноса изображения, предложенном Ч. Ф. Карлсоном в 1939 году и используемом также в копировальных аппаратах.

Функциональная схема лазерного принтера приведена на рисунке. Основным элементом конструкции лазерного принтера является вращающийся барабан, служащий промежуточным носителем, с помощью которого производится перенос изображения на бумагу. Принтер является постраничным, то есть формирует для печати полную страницу. Барабан представляет собой цилиндр, покрытый тонкой пленкой светопроводящего полупроводника (оксид цинка или селен). По поверхности барабана равномерно распределяется статический заряд, это обеспечивается с помощью тонкой проволоки или сетки, называемой коронируюшим проводом.

  • а - общий вид;
  • б - схема процессов.

Лазер, управляемый микроконтроллером, генерирует тонкий световой луч, отражающийся от вращающегося зеркала. Развертка изображения происходит так же, как и в телевизионном кинескопе: есть движение луча по строке и кадру. С помощью вращающегося зеркала луч скользит вдоль барабана и изменяет его электрический заряд в точках падения. Размер заряженной точки зависит от фокусировки луча лазера с помощью объектива. Для некоторых типов принтеров в процессе подзарядки потенциал поверхности барабана изменяется с 900 до 200 В. Таким образом, на барабане, промежуточном носителе, возникает скрытая копия изображения в виде электростатического рельефа.

На следующем этапе на фотонаборный барабан наносится тонер - краска, состоящая из мельчайших частиц. Под действием статического заряда эти частицы притягиваются к поверхности барабана в точках, подвергшихся экспозиции, и формируют изображение в виде рельефа красителя.

Бумага втягивается из подающего лотка и с помощью системы валиков перемещается к барабану. Перед подходом к барабану бумаге сообщается статический заряд. Затем бумага соприкасается с барабаном и притягивает благодаря своему заряду частички тонера, нанесенные ранее на барабан.

Для фиксации тонера страница вновь заряжается и пропускается между двумя роликами с температурой около 180 °С. После окончания печати барабан полностью разряжается, очищается от прилипших лишних частиц, готовясь для печати следующей страницы.

Цветное изображение с помощью лазерного принтера получается по стандартной схеме CMYK, используемой также в струйных принтерах. Это фактически четыре черно-белых аппарата с одним общим фотобарабаном. В цветном лазерном принтере изображение формируется на светочувствительной фотоприемной ленте последовательно для каждого цвета (голубой, пурпурный, желтый и черный), имеются четыре емкости для тонеров и от двух до четырех узлов проявления.

В более старых аппаратах краски каждого из базовых цветов последовательно наносились на фотобарабан и бумагу, в результате лист печатался за четыре прогона. В более современных цветных принтерах краски наносятся отдельными прогонами только на барабан, а на бумагу с него переносятся все сразу.

Цветные лазерные принтеры оборудованы большим объемом памяти, процессором и, как правило, собственным винчестером. На винчестере располагаются образцы шрифтов и специальные программы, которые управляют работой, контролируют состояние и оптимизируют производительность принтера.

Характеристики

Уровень шума лазерного принтера составляет в среднем 40 дБ, причем в режиме off-line это значение меньше.

Разрешение лазерного принтера по горизонтали и по вертикали зависит от следующих факторов. Вертикальное разрешение определяется шагом вращения барабана и в основном 1/300-1/600 Дюйма. Горизонтальное разрешение определяется числом точек в одной строке и ограничено точностью фокусировки лазерного луча. Многие модели лазерных принтеров имеют «несимметричное разрешение», например 1200 х 600 тнд: точность перемещения лазерного луча составляет V1200 дюйма, а шаг вращения барабана 1/600 дюйма.

Скорость печати лазерного принтера измеряется в страницах в минуту и для обычных принтеров находится в диапазоне от 4 до 8 стр. /мин. При печати сложных графических изображений скорость печати лазерного принтера снижается. Высокопроизводительные сетевые принтеры обеспечивают скорость печати более 20 стр. /мин. Скорость печати лазерного принтера зависит от следующих факторов: времени механической протяжки бумаги, скорости обработки данных, поступающих от ЭВМ, и формирования растровой страницы для печати. Как правило, лазерный принтер оснащен собственным процессором. Скорость печати определяется не только работой процессора, но и существенно зависит от объема памяти, которой оборудован принтер.

Память лазерного принтера, который обрабатывает информацию постранично, должна обеспечивать большое количество вычислений. Например, при разрешении 300 х 300 тнд на странице формата А4 насчитывается почти 9 миллионов точек, а при разрешении 1200 х 1200 - более 140 миллионов. Минимальной величиной памяти лазерного принтера считается 1 Мбайт, а в основном используют память от 2 до 4 Мбайт, причем цветные лазерные принтеры обладают еще большей памятью.

Интерфейс более мощных лазерных принтеров выполнен в виде соединителя параллельного порта, называемого С-порт и отличающегося от обычного разъема Centronics более плотным расположением контактов, длиной кабеля, которая может составлять до 10 м, и лучшими возможностями двунаправленной скоростной передачи данных. При этом имеется возможность использования стандартного разъема Centronics. В отдельных моделях применяется беспроводный интерфейс на основе инфракрасных приемопередатчиков. В противоположность другим периферийным устройствам принтер практически всегда подсоединяется к персональному компьютеру.

Язык принтера является для него тем же, чем для персонального компьютера - командный язык операционной системы. Набор команд языка принтера обычно содержится в ROM принтера и соответственно интерпретируется его центральным процессоров. Наиболее распространенными языками для лазерных принтеров являются: PCL6 PCL (Printer Control Language версии 6), HP-GL (Hewlett-Packard Graphic Language), PostScript - стандартизованный язык описания страниц, предполагает наличие соответствующего аппаратного обеспечения. К числу его преимуществ относится то, что значительная часть информации, которую должен печатать принтер, передается в математической форме.

Светодиодные принтеры , или LED принтеры (Light Emitting Diode), основаны на том же принципе действия, что и лазерные. Конструктивным различием является то, что барабан освещается не лучом лазера, развертка которого обеспечивается с помощью механически управляемых зеркал, а неподвижной диодной строкой, состоящей из 2500 светодиодов, которая описывает не каждую точку, а целую строку. На основе этой технологии работают принтеры фирмы OKI.

В принтерах с жидкокристаллическим затвором в качестве источника света служит люминесцентная лампа. Свет лампы управляется жидкокристаллическим затвором, прерывателем света, который выполняет команды драйвера. Скорость печати такого принтера ограничена скоростью срабатывания жидкокристаллического затвора и не превышает 9 листов в секунду.

Принтеры других технологий

Несмотря на то что лазерные и струйные принтеры доминируют на рынке, существуют и другие технологии печати. Технология твердых чернил занимает значительную долю рынка, так как предлагает продукцию хорошего качества в широком ассортименте, в то время как термовоск и сублимация красок играют важную роль в специализированных областях печати.

Твердые чернила

Твердочернильные (Solid Ink) принтеры были разработаны в попытке устранить основные недостатки цветных лазерных принтеров, а именно низкую скорость печати за счет совершения четырех проходов барабана по бумаге. Отпечаток, сделанный на твердочернильном принтере, получается немного зернистым из-за физических свойств красителя (как правило, это окрашенный воск), зато очень насыщенным и хорошо передающим полутона. Типичными представителями этого типа являются устройства Tektronix фирмы Xerox.

Восковые чернильные палочки расплавляются, а затем смесь впрыскивают на передающий барабан, откуда она через отверстия попадает на бумагу, где практически мгновенно застывает (в этом состоит их существенное отличие от струйных принтеров, в которых краситель растекается по бумаге, за счет этого изображение может получаться более темным, чем необходимо). После разогрева восковые тепловые принтеры не следует передвигать, иначе воск может повредиться. Они должны находиться в защищенном месте и их целесообразно использовать в качестве сетевых.

Твердые струйные принтеры дешевле, чем аналогичные цветные лазерные принтеры, и экономичны из-за политики Tektronix, предоставляющей черные чернила бесплатно. Хорошее качество продукции поддерживается высококачественными моделями принтеров. Однако они не так хороши, как цветные лазерные принтеры для графики и текста или хороший чернильный принтер для фотографий. Разрешение начинается с обычных 300 тнд, повышаясь до максимального значения 450-850 тнд. Скорость цветной печати обычно составляет 4 страницу минуту при стандартном разрешении и повышается до 6 страниц в минуту при меньшем разрешении.

  • а - твердые чернила;
  • б - сублимация красок;
  • в - термовоск.

Сублимация красок

В основу действия сублимационных (Dye-Sublimation) принтеров положен термоперенос красителя с помощью испарения с последующим его внедрением в специальную бумагу с полистирольным покрытием. При этом получается довольно высокое качество, близкое к фотографическому, а главное - без заметной глазу дискретности. Поэтому сублимационные принтеры принято относить к устройствам, печатающим непрерывными тонами.

Процессы печати, используемые принтерами сублимации красок и чернильными, различаются. Вместо того чтобы распылять чернила через сопло на страницу, как это делают струйные принтеры, принтеры сублимации красок используют для переноса краски пластиковую пленку. Она имеет форму рулона или ленты и содержит последовательные изображения составных цветов - синего, бордо, желтого и черного (CMYK).

Передающая пленка проходит по тепловой печатающей головке, состоящей из тысяч нагревающихся элементов. Высокая температура заставляет краски на пленке сублимироваться - превращаться в газ, без жидкой фазы, и краска в форме пара поглощается бумагой. Управление количеством краски происходит посредством изменения интенсивности и продолжительности воздействия высокой температуры.

Когда чернила попадают на бумагу, они размываются. Этот эффект позволяет принтеру создавать непрерывные тона цвета, смешивая чернила. Движение бумаги увеличивает область непрерывного цвета.

Принтеры сублимации красок используют систему с тремя этапами: слои синей, бордовой и желтой красок наносятся поверх друг Друга. Затем помещается прозрачный слой, защищающий печать от Ультрафиолетового света.

Существует также ряд струйных принтеров, способных к сублимации красок. Технология, по которой эти принтеры печатают, отличается от исходной технологии испарения красок, здесь чернила находятся в картриджах, которые могут за один проход напечатать только часть страницы. Чернила нагреваются до испарения, до 500 °С (что выше, чем в обычных принтерах сублимации красок). Данный гибридный метод используется в принтерах Alps и относится к технологии Micro Dry. Эти устройства работают в диапазоне разрешения 600-1200 тнд, и некоторые стандартные картриджи могут быть заправлены специальными фоточернилами для высококачественной печати.

Термоавтохром

Термоавтохром (ТА - thermo autochrome) появился сравнительно недавно. Этот процесс печати более сложен, нежели при струйной или лазерной технологиях. Он используется в принтерах, продаваемых в виде сопутствующих устройств к цифровым камерам. Бумага ТА содержит три слоя пигмента - синий, бордовый и желтый, каждый из которых обладает чувствительностью к специфическому диапазону температур. Из этих пигментов желтый имеет самую низкую температурную чувствительность, далее идут синий и бордовый. Принтер оборудован тепловыми и ультрафиолетовыми головками, печать производится в три этапа. При первом этапе бумага нагревается до температуры, необходимой для активизации желтого пигмента, далее облучается ультрафиолетом перед прохождением на следующий цвет (бордо). Хотя последний проход (синий) не следует обрабатывать ультрафиолетом, результат, как утверждают, является более надежным, чем при сублимации красок.

Термовоск

Тепловой воск (thermal wax) - технология, родственная сублимации красок и является подходящей для печати диапозитивов. Принтеры используют рулоны пластиковой пленки CMY или CMYK, покрытой красителями на основе воска.

Тысячи нагревательных элементов на печатающей головке заставляют воск таять и покрывать бумагу или прозрачный материал. Разрешение и скорость печати низкие: обычно 300 тнд и около 1 страницы в минуту

Объемная печать активно вошла в жизнь обывателей в 2005 году. Именно тогда появились первые устройства, которые обладали полным функционалом для создания трехмерного образа. Но и на настоящий день не многие пользователи знают, в чем особенность этого прибора. В этой статье мы расскажем, что печатает 3Д (3D) принтер, как с ним работать и что можно распечатать на нем.

История возникновения технологии

Идея создавать объекты в пространстве появилась еще в далеком 1953, когда появились первые обыкновенные плоскостные АЦПУ. Тогда они были еще черно-белыми, но уже тогда разработчики задумывались о моделировании в объеме.

Над созданием проекта и его воплощением в жизнь работали ученые из разных стран на протяжении полувека. Первый прорыв принадлежит Чаку Халлу, который сделал машину, основанную на лазерной стереолитографии. Суть проекта в использовании лазера и жидких фотополимеров. Перемещающаяся платформа основания помогает по заданным вычислениям направлять луч и выстраивать осевые вертикальные полосы. После этого накладываются горизонтальные пластины, образуя фактуру.

Полимер затвердевает под воздействием высоких температур в слои не шире 0,2 мм. Для ровного застывания вещества на постоянной основе работают механические щеточки, обеспечивая высыхание поверхности. Уже объемный объект погружают в специальный раствор для сглаживания шероховатостей и устранения излишков. На финальной стадии образец повторно облучают. Минусом технологии был несбалансированный состав смолы – фотополимер застывал недостаточно крепко или, наоборот, моментально. Преимущество SLA-принтеров – их скорость работы, но само оборудование и расходный материал имеет высокую цену.

Скотт Крамп в конце 80-х создал абсолютно новый метод, который заключался в послойном наплавлении – FDM. Именно он лежит в основе современных приборов. Вещество, задействованное в работе, – термопластинки. Они выглядят как моток твердых нитей. Именно они наносятся слоями, повторяя контур цифровой модели.

Первый вошедший в продажу принтер появился в 1995 году. Его анонсировала компания «3D Systems». Но изделие «Actua 2100» работало медленно, в чем был его основной недостаток. И только спустя 10 лет была разработана модель «Reprap», в которой были устранены распространенные ошибки предыдущей партии. С этого момента в мире науки и производства начался этап трехмерного моделирования.

3D принтер: что это такое и как работает чертеж 3Д

Объемная печать, в зависимости от сфер применения, может использовать различные принципы работы и состав полимеров, но основной технологией остается послойное наращивание пластов на объект.

Этапы проектирования:


Разновидности технологий 3Д принтеров

На данный момент соревнуются три вида аппаратов:

  • FDM (fused deposition modeling);
  • LOM (laminated object manufacturing);
  • SLA и STL (Stereolithography).

Также есть такие варианты, как:

  • Polyjet;
  • LENS;
  • LS (laser sintering);
  • 3DP (three dimensional printing).

Рассмотрим некоторые из них более подробно.

Стереолитографические установки – что это такое для 3D печати


SLA или просто SL – это усовершенствованная система-прародитель. Ее истоки были положены Чаком Халлом, но на настоящий момент многие компании производят технику, основанную на принципе стереолитографии. В основу положены все те же материалы – жидкий фотополимер, запекающийся в пластик, и лазер. Луч как бы фиксирует определенные точки в емкости с жидкостью, постепенно поднимаясь снизу вверх слой за слоем. Оставшийся раствор стекает, оставляя необходимость шлифовки объекта.

Это очень эффективный, с точки зрения точности, метод. Он позволяет быстро достигнуть результата с погрешностью всего в 10 микрон. Но оборудование редко устанавливают дома, так как работа с едким веществом без соблюдения должных норм и предосторожностей чревато ожогами и токсическим отравлением организма.

Лазерное спекание – LS (laser sintering)


Метод аналогичен предыдущему, но усовершенствован за счет использования не жидкого полимера, а его сыпучего варианта. Преимущества новшества:

  • В растворе нередки случаи поломки объекта еще в процессе построения, так как еще неокрепшую, но уже тяжелую конструкцию ничего не поддерживает. В порошке все иначе – деталь не может сломаться, так как она опирается на твердое вещество.
  • Помимо полимера можно использовать измельченные частицы бронзы, стали, нейлона, титана.

Недостатки:

  • Температура плавления очень высока, поэтому предмет долго будет остывать.
  • Поверхность получается менее монолитная, в ней больше воздуха.
  • Некоторые смеси опасно хранить вне камеры с азотом.

Что такое 3Д печать методом послойного наплавления термопласта

Технология LOM предусматривает наложение вырезанных по лекалу пластов из бумаги, пластмассы или алюминия и их последующее склеивание. Точные очертания рассчитываются в специализированных САПРах, которые работают с 3D моделями. Функция структурирования простых и сложных объектов в софте от компании «ЗВСОФТ» позволяет создавать органичные формы за счет нанесения эскиза на простую сетку и последующего детального сглаживания линий, проработки деталей вручную или автоматически.

С использованием специализированных платформ моделирование по системе LOM становится легким и удобным.


С термопластом работает также технология FDM. Ее структура заключается в подаче материала (нить из пластика) через экструдер – печатающую головку механизма. Направленный слой запекается за счет специального сопла. Так послойно происходит создание объекта снизу вверх.

Из чего создаются изделия

Вещество-основа может различаться. Самый популярный и начальный элемент – это фотополимер. Он легок в обращении, имеет низкую температуру плавления и удобен на стадии последующей обработки – шлифовки. На его замену пришел термопластик (видов ABS и PLA) – усовершенствованный материал с рядом преимуществ, в частности, он более безопасный и экологически чистый.


Также могут использоваться:

  • нейлон – высокая прочность и износостойкость;
  • поликарбонат – широкий спектр комфортных для изделия температур от -100 до +115 градусов;
  • полиэтилен;
  • поливиниловый спирт – быстро схватывается, но растворяется при соприкосновении с водой;
  • целлюлоза;
  • полипропилен – нетоксичный и недорогой;
  • флекс – очень гибкий и эластичный;
  • HIPS – удобен при необходимости многоуровневых конструкций со сложными спайками и поддержками;
  • glassfil – прозрачный и невосприимчивый к ультрафиолету, механическим воздействиям и бактерицидной атаке, поэтому часто применяется в медицине;
  • керамический состав – содержит только частицы керамики, но при печати создает эффект камня;

  • PVA – быстрорастворяемый полимер, который подходит для временного склеивания элементов конструкции;
  • PVD – тонкий пластик, который подходит для упаковочной вентилируемой продукции;
  • PETG – полупрозрачный материал, образующий красивую глянцевую поверхность, подходит для элементов декора;
  • полиоксиметилен – прочный как металл, но удобный в обращении и легкий;
  • WOOD – достоверная имитация дерева с сохранением свойств материала-оригинала, то есть с сильными влаговпитывающими характеристиками;
  • ABS Antistatic – обычный полимер с эффектом антистатика для изоляции от электричества;
  • GLOW – люминесцентное вещество, способное впитывать и отдавать свет;
  • металл – состав содержит в себе элементы бронзы, алюминия и других веществ, на выходе предмет, напоминающий настоящее металлическое изделие.

Области применения 3D печати

Сфер, где реализуется новая технология очень много, самые популярные из них:

  • Медицина. Давно началось производство протезов по индивидуальным параметрам. Такие искусственные части тела по виду и ощущениям практически идентичны натуральным.
  • Лекарственные препараты. За материал берется биологически активная добавка. Таким образом восполняется в точном количестве необходимый элемент.
  • Машиностроение и техника. Запасные части и сложные в производстве узлы стало легче сделать с помощью печати, чем задействовать несколько цехов.
  • Элементы одежды и обуви. Ранее было налажено производство застежек и декоративных частей, но с появлением тончайшего полимера начали выпускать целые модели.
  • Предметы искусства.
  • Биопечать – новое веяние в медицине. Работы проводятся с использованием аналогичных живым тканей.

Все о программном обеспечении для 3Д принтера

Моделирование и печать невозможны без специализированного САПРа. Компания «ЗВСОФТ» предлагает несколько программ для эффективной работы с 3D моделями:

– базовый CAD с широкими возможностями для расчета и проектирования объемных чертежей. Среди возможностей:

  • Создание и редактирование моделей привычными инструментами.
  • Взгляд на объект в перспективе – функция DVIEW.
  • Рендеринг части сцены.
  • Визуализация.
  • Интеграция большого количества форматов.
  • Удобный интерфейс.
  • Работа с динамическими блоками.
  • Возможность установки дополнительных надстроек.
  • Экспорт в форматы, поддерживаемые 3д принтерами (через дополнительные приложения).

– специализированный САПР для трехмерного конструирования. Достоинства:

  • Выгрузка объемных чертежей с трудной геометрией.
  • Реверсивный инжиниринг.
  • Принцип гибридного моделирования.
  • Расположение слоев на различных уровнях в одном файле.
  • Совместимость с большинством форматов.
  • Библиотека готовых и пополняемых деталей.
  • Поддержка всех форматов файлов 3d принтеров.

– приложение, которое идет к базовой платформе. Оно предназначено для проектирования объемных объектов и создания дизайна, поэтому большое внимание уделено проработке деталей. Преимущества:

  • Интуитивно понятный интерфейс.
  • Структурирование.
  • Работа с рельефами поверхности в RenderZone.
  • Округление линий.
  • Визуализация с поддержкой освещения.
  • Инструмент анализа NURBZ.
  • Прямой экспорт в STL.

В статье мы рассказали вам о принтере 3Д – как он выглядит, что из себя представляет и для чего нужен. Начиная работу в трехмерном пространстве, выбирайте удобное и многофункциональное программное обеспечение.

На работе или дома мы постоянно распечатываем всевозможные документы – от текстов до фотографий. Просто отсылаем документ на печать, а потом забираем его из принтера . А вы не задумывались, каким образом всевозможные принтеры наносят изображения и тексты на бумагу? Струйные, лазерные, матричные принтеры – все они работают по-разному, у каждого есть свои плюсы и минусы. Давайте разберемся в разных технологиях печати.

Куча мала

А так ли сложно разобраться в способах печати? Много ли их? На самом деле, основных, то есть тех, которые используются повсеместно и беспрерывно, всего лишь две: офисная и домашняя. Пугает градация? Тогда обозначим более формально: офисная – в 99 процентах случаев оказывается лазерной печатью, домашняя – струйной. Конечно, есть и исключения, о них поговорим подробней при описании каждого метода печати.

Зачем нам все это знать? Дело в том, что мы привыкли выбирать принтеры по своим привычкам – «был у меня всю жизнь струйный аппарат компании N, вот и куплю такой же, только посвежее». Согласитесь, такой подход к выбору техники не всегда логичен – принтер не холодильник, он устроен гораздо сложнее, да и возможности у разных моделей различны.

Основные технологии печати принтеров

Название Основные плюсы Основные минусы Сфера применения
Лазерная Высокая скорость печати, хорошее качество, низкая стоимость отпечатков Вредна для здоровья, сами принтеры достаточно дорогие Офисная печать
Светодиодная Безвредная технология, очень низкая стоимость отпечатков и самих принтеров Качество печати немного хуже, чем у лазерных принтеров, ниже скорость Офисная и домашняя печать
Струйная Очень высокое качество цветных распечаток (фотографий), низкая стоимость принтера Низкая скорость печати, высокая цена расходных материалов Домашняя печать, дизайнерская деятельность
Матричная Очень низкая стоимость отпечатков, малотребовательны к обслуживанию Высокая цена принтеров, высокий уровень шума во время печати Специализированное применение
Твердочернильная Очень низкая стоимость отпечатков, безупречное качество печати Очень большая цена принтеров Офисная печать в дизайнерских студиях
Сублимационная Отличное качество фотопечати, удобство пользования Невозможность распечатки текстовых документов Домашняя и офисная фотопечать

Чтобы не заблудиться в лесу терминов и понятий, связанных с технологиями печати, давайте разберемся в каждой из них по порядку. Начнем, естественно, с самой популярной – лазерной печати.

Луч света

Самая старая из всех технологий, именно она стоит в основе всех копировальных аппаратов – лазерная печать. Благодаря ее существованию, все офисные трудящиеся могут за несколько секунд распечатать текстовый документ (иногда, даже цветной) отличного качества.

Лазерные принтеры печатают очень быстро и четко, потому их и любят в офисах.
Посмотрите на принтер, который стоит у вас в офисе – скорее всего, он является наглядным примером этого раздела нашего обзора. Достаточно большой серый ящик, который выплевывает готовые распечатки с достаточно большой скоростью, практически не задумываясь. Что же у него внутри? Почему он так быстро и качественно печатает?
Внутри у такого аппарата находится барабан, на который наводится электрический заряд, соответствующий выводимому отпечатку. Этот заряд притягивает к себе тонер – специальный порошок (черный, или цветной в зависимости от типа принтера). Затем этот порошок переносится на лист бумаги (или на какой-либо промежуточный носитель, а только потом на бумагу). Чтобы картинка не осыпалась, лист проходит через печку – специальный нагреватель, который запекает тонер на бумаге. Из-за него во время долгой печати появляется неприятный запах. Впрочем, не только печка «портит атмосферу» - лазерные принтеры во время своей работы выделяют вредный газ озон.

К безусловным преимуществам лазерной печати можно отнести очень высокое качество и скорость печати.

Аналогом лазерных принтеров являются светодиодные. Работают они фактически так же, только вместо лазеров для формирования картинки на барабане используется ряд светодиодов. Метод имеет только один недостаток – качество и скорость печати чуть уступают лазерным. По всем остальным параметрам светодиодные принтеры ушли далеко вперед – они мало стоят, их расходные материалы тоже дешевле (хотя и лазерные тонеры тоже стоят мало), а самое главное, они считаются менее вредными для здоровья, чем лазерные.

В струе

Полная противоположность лазерной печати – печать струйная. Как правило, это медленное нанесение высококачественной цветной картинки на бумагу, а вовсе не молниеносная распечатка черного текста. Давайте рассмотрим такой принтер изнутри.

Светодиодные принтеры – идеальные выбор для домашней печати текстов
Аналогом лазерных принтеров являются светодиодные. Работают они фактически так же, только вместо лазеров для формирования картинки на барабане используется ряд светодиодов. Метод имеет только один недостаток – качество и скорость печати чуть уступают лазерным. По всем остальным параметрам светодиодные принтеры ушли далеко вперед – они мало стоят, их расходные материалы тоже дешевле (хотя и лазерные тонеры тоже стоят мало), а самое главное, они считаются менее вредными для здоровья, чем лазерные.

Внутри у струйного принтера очень свободно. Очевидно, устройство такого аппарата куда проще, чем у лазерного. Нет здесь ни барабана, ни лазеров, ни печки. Только лишь одинокий картридж (или несколько) болтается внутри практически пустого корпуса. Итак, всего лишь два главных элемента в струйном принтере – картридж и печатающая головка. Кстати говоря, у некоторых производителей картриджи оборудованы встроенной печатающей головкой. Зачем же это нужно?
Струйных технологий человечество изобрело несколько. В зависимости от ваших потребностей та или иная технология печати будет подходить больше. Существует термоструйная и пьезоэлектрическая технология.

Термоструйная технология предполагает применение дешевых печатающих головок. Сделано это для того, чтобы иметь возможность их менять при первой же необходимости. Производители принтеров разделились во мнениях насколько часто следует менять печатающую головку – кто-то считает, только в случае глобального засора, а кто-то – всякий раз при смене картриджа.

Сама технология основывается на том, что для нанесения картинки или текста на бумагу чернила резко нагревают, и они, расширяясь, вылетают наружу, отпечатывая на бумаге заветные точки. Дешевая печатающая головка здесь нужна именно для того, чтобы обеспечить спокойствие пользователя – а вдруг чернила намертво засохнут в соплах головки, не успев выйти из нее?

Основатели пьезоэлектрической технологии утверждают, что их печатающие головки буквально вечны и не требуют замены. Истинно ли так, вы узнаете, когда принтер откажется печатать всего лишь одну или две точки. Впрочем, сопла поддаются очистке – либо с помощью драйвера и большого количества свежих фирменных чернил, либо с помощью сервисного центра.

Зачем такие жертвы? Во-первых, картридж , представляющий из себя только лишь чернильницу в прямом смысле этого слова, стоит достаточно мало. А это радует безусловно всех пользователей. Во-вторых, технология действительно позволяет наносить на бумагу четкие микроскопические точки: на стадии зарождения этот метод печати был действительно самым лучшим (справедливости ради, стоит сказать, что сейчас обе технологии отлично справляются со своей задачей).

Итак, с печатающими головками мы разобрались. А что же из себя представляют чернила? Уж точно, не ту цветную водичку, которой заправляют перьевые ручки. Чернила любого принтера по современным меркам должны удовлетворять как минимум двум условиям – быть влаго- и светостойкими, кроме того, желательно, чтобы из них можно было формировать микроскопические капли.
В настоящее время величина капли в некоторых принтерах не превышает одного пиколитра (по толщине эту величину можно приравнять одной десятой толщины человеческого волоса, то есть порядка 1/100 мм). Стоит заметить, что не все компании делают главную ставку на величину капли. Так, некоторые производители (к примеру, HP) стараются повысить качество за счет более качественного смешения цветов, а не уменьшения размеров неточных капель.
Вообще говоря, минимальные размеры капли чернил колеблются от 1-1,5 до 4-5 пиколитров.

В целом чернила делятся на две группы – пигментные и водорастворимые. Считается, что водорастворимые чернила лучше передают цвета картинки и фотографии, хотя в настоящее время оба варианта заслуживают очень теплых слов. Пигментные чернила являются водостойкими, хотя и водорастворимые (если их не вымачивать в воде) оказываются порой очень крепкими.

Кому-то мало?

Несомненно, две описанные технологии печати – это еще только начало. Есть множество методов печати, используемых либо по старой памяти, либо по профессиональной необходимости. Итак…

Матрица

Самый дешевый метод нанести изображение или текст на бумагу – использовать матричный принтер. Помните пишущие машинки середины прошлого века? Такие тяжелые, с жесткими кнопками, по которым надо долбить пальцами в полную силу. Практически ничем устройство матричного принтера от тех машинок не отличается. Именно поэтому, кстати, работают они так шумно.

Внутри принтера протянута красящая лента или несколько разноцветных лент в случае нанесения цветного узора. Для отображения картинки на бумаге, по ленте проходит печатающая головка, снабженная жесткими иголочками. Каждая из иголочек в нужный момент ударяет по ленте и на бумаге отпечатывается точка. Кстати говоря, матричными принтеры назвали из-за того, что иголки на головке образуют своеобразную матрицу, иностранцы же предпочитают такие аппараты называть «точечными».

Главное достоинство таких принтеров – в очень низкой себестоимости отпечатков: красящие ленты стоят копейки, а хватает их надолго.

Засохшие чернила

Существуют принтеры, внешним видом очень сильно напоминающие лазерные.
Стиль работы, быстродействие – все в них подразумевает наличие лазера.
Впрочем, качество печати у них слишком хорошее, сравнимое с настоящей полиграфией, а цена самих аппаратов испугает даже искушенных печатников.
Речь идет о твердочернильной технологии печати.

Твердочернильные принтеры заправляются кусочками краски.

Здесь объединили несколько технологий в одну, взяв у каждой только лучшее. Итак, закладываем в отсеки разноцветные блочки чернил, похожие на засохшую гуашь, включаем принтер, нажимаем кнопку «Распечатать» на нужном документе и наблюдаем, как за считанные секунды из аппарата вылетает распечатка идеального полиграфического качества. Мечта? Нет, реальность.

Основа твердочернильной печати – в том, что чернила расплавляются непосредственно перед нанесением на бумагу. Главный компонент чернил – обычный воск, который очень быстро плавится, а попадая на бумагу сразу застывает. В целом же технология повторяет струйную: микроскопические разноцветные точки наносятся на бумагу и образуют на ней узор.
Главное и основное преимущество, повторим еще раз, в безупречном качестве печати. Причем, распечатки выглядят не просто хорошими, а профессиональными – воск блестит на свету, добавляя лоску.

Сублимация

Несомненно, в офисе, при наличии неограниченного количества дензнаков в бюджете, твердочернильный принтер станет незаменимым помощником. Существует и домашний вариант такого принтера: сублимационный фотопринтер. Увлеченным фотолюбителям понравится эта технология уже тем, что качество их отпечатков порой получается лучше, чем в фотолабораториях.

Сублимационные принтеры компактны и просты – их можно даже брать с собой в путешествие.
Вообще-то технологии сублимационных и твердочернильных принтеров можно объединить в единую – термопечать. Не сделали мы этого по той причине, что предназначение у аппаратов совершенно различное. Да и оптимальное качество отпечатков достигается не за счет четкости и правильности нанесения точек на бумагу, а напротив, за счет смешивания, наложения соседних точек друг на друга. Именно благодаря этому проявлению технологии, она так ценится фотолюбителями.

В основном, в сублимационных принтерах используются пленочные четырехслойные картриджи. В специальном ролике расположена пленка, на которую нанесены три основных цвета и защитный слой. Принтер разогревает последовательно каждый цветной слой пленки и чернила, испаряясь, попадают на фотобумагу. Чтобы слои не стерлись во время использования распечатки, поверх чернил наносится защитный слой – он стерпит и грязные руки смотрящего, и даже подводное плавание.

Каждому по потребностям

Конечно, существуют и другие технологии печати, а значит и другие сферы применения принтеров на работе или дома. Но даже из этого обзора главных методов печати можно сделать неутешительный вывод о том, что привычка использовать одну и ту же технологию на протяжении долгих лет просто нецелесообразно. Вам нужна дома только фотопечать? Замените струйный принтер на сублимационный. А если есть необходимость радовать клиентов красивыми фирменными брошюрами – задумайтесь о покупке твердочернильного аппарата.

В любом случае, краткое введение в основы печатных технологий должно облегчить не только выбор нового аппарата, но и лучшего взаимопонимания со старым.

Статья прочитана 1872 раза

__________________________________________________

Лазерные принтеры стали незаменимыми атрибутами офисной оргтехники. Такая популярность объясняется большой скоростью и невысокой себестоимостью печати. Чтобы понять, как работает эта техника, следует знать устройство и принцип работы лазерного принтера. На самом деле, вся магия аппарата объясняется простыми конструктивными решениями.

Еще в 1938 году Честером Карлсоном была запатентована технология, переносившая изображение на бумагу при помощи сухих чернил. Основным двигателем работы было статическое электричество. Электрографический метод (а это был именно он) получил большое распространение в 1949 году, когда корпорация Xerox взяла его за основу в работе самого первого своего аппарата. Однако до логического совершенства и полной автоматизации процесса потребовалось еще десятилетие работ – только после этого и появился первый «Ксерокс», который стал прообразом современных лазерных печатных устройств.

Первый лазерный принтер Xerox 9700

Сам же первый лазерный принтер появился только в 1977 году (им стала модель Xerox 9700). Тогда печать производилась со скоростью 120 страниц в минуту. Этот аппарат использовался исключительно в учреждениях и на предприятиях. А вот уже в 1982 году выходит первым настольный агрегат Canon. С этого времени к разработкам подключаются многочисленные бренды, которые и по сегодняшний день предлагают все новые варианты настольных лазерных печатающих помощников. Каждому человеку, решившему пользоваться подобной техникой, интересно будет узнать больше о внутреннем строении и принципе работы такого агрегата.

Что же внутри

Несмотря на большой ассортимент, устройство лазерного принтера всех моделей является схожим. За основу работы взята фотоэлектрическая часть ксерографии , а сам прибор поделен на следующие блоки и узлы:

  • блок лазерного сканирования;
  • узел, осуществляющий перенос изображения;
  • узел для закрепления изображения.

Первый блок представлен системой линз и зеркал . Именно здесь находится полупроводниковый тип лазера со способной фокусироваться линзой. Далее расположены зеркала и группы, которые могут вращаться, тем самым формируя изображение. Переходим к узлу, отвечающему за перенос изображения: в нем находятся сам тонерный картридж и ролик , переносящий заряд. Уже только в картридже присутствуют три основных формирующих изображение элемента: фотоцилиндр, вал с предварительным зарядом и магнитный вал (работающий совместно с барабаном устройства). И вот тут большую актуальность приобретает возможность фотоцилиндра менять свою проводимость под действием попавшего на него света. Когда фотоцилиндру придается зарядность, он сохраняет ее надолго, но при засвечивании уменьшается его сопротивление, что приводит к тому, что заряд начинает стекать с его поверхности. Так появляется необходимый нам оттиск.

В целом, существует два способа для создания картинки.

Попадая в агрегат, непосредственно перед будущим контактом с фотоцилиндром, соответствующий заряд получает и сама бумага. В этом ей помогает ролик переноса изображения. После переноса статический заряд исчезает при помощи специального нейтрализатора – так бумага перестает притягиваться в фотоцилиндру.

А как же фиксируется изображение? Это происходит за счет тех добавок, которые находятся в тонере. Они имеют определенную температуру плавления. Такая «печка» вдавливает в бумагу расплавленный порошок тонера, после чего он быстро застывает и становится долговечным.

Распечатанные на бумаге лазерным принтером изображения имеют отличную стойкость к многочисленным внешним воздействиям.

Как устроен картридж

Определяющим звеном в работе лазерного принтера является картридж. Он представляет собой небольшой бункер с двумя отсеками – для рабочего тонера и для уже отработанного материала. Также здесь находится светочувствительный барабан (фотоцилиндр) и механические шестеренки для его проворачивания.

Сам тонер представляет собой порошок мелкодиспенсерного вида, который состоит из полимерных шариков – они покрыты специальным слоем магнитного материала. Если речь идет о цветном тонере, то в его состав дополнительно входят еще и красящие вещества.

Важно знать, что каждый производитель выпускает собственные оригинальные тонера – всем им присуща своя магнитность, дисперсность и прочие свойства.

Вот почему ни в коем случае нельзя заправлять картриджи случайными тонерами – это может негативно сказаться на его работоспособности.

Процесс рождения оттиска

Появление изображения или текста на бумаге будет состоять из таких последовательных этапов:

  • заряд барабана;
  • экспонирование;
  • проявка;
  • перенос;
  • закрепление.

Как работает фотозаряд? Он формируется на фотобарабане (где, как уже понятно, зарождается и само будущее изображение). Для начала происходит снабжение зарядом, который может быть как отрицательным, так и положительным. Происходит это одним из следующих способов.

  1. Используется коронатор , то есть вольфрамовая нить с покрытием из углеродных, золотых и платиновых включений. Когда в дело вступает высокое напряжение, между этой нитью каркасом проносится разряд, который, соответственно, создаст электрическое поле, передающее заряд на фотобарабан.
  2. Однако использование нити приводило со временем к проблемам с загрязнением и ухудшением качества распечатанного материала. Гораздо лучше действует ролик заряда с аналогичными функциями. Сам он похож на металлический вал, который покрыт токопроводящей резиной или поролоном. Идет соприкосновение с фотоцилиндром – в этот момент ролик и передает заряд. Напряжение здесь значительно ниже, но и детали изнашиваются гораздо быстрее.

Это и есть работа освещения, в результате чего часть фотоцилиндра становится токопроводящей и пропускает заряд через металлическое основание в барабане. А участок, подвергшийся экспонированию, становится незаряженным (или приобретает слабый заряд). На этом этапе формируется еще невидимое изображение.

Технически это осуществляется так.

  1. Лазерный луч падает на поверхность зеркала и отражается на линзу, которая распределит его в необходимое место на барабане.
  2. Так система линз и зеркал формирует строчку вдоль фотоцилиндра – лазер то включается, то выключается, заряд то остается нетронутым, то снимается.
  3. Строка закончилась? Фотобарабан повернется, и экспонирование продолжится снова.

Проявка

В этом процессе большое значение имеет магнитный вал из картриджа , похожий на трубку из металла, внутри которой находится магнитный сердечник. Часть поверхности вала помещена в заправочный тонер бункера. Магнит притягивает к валу порошок, и он выносится наружу.

Важно регулировать равномерность распределения слоя порошка – для этого существует специальное дозирующее лезвие . Оно пропускает лишь тонкий слой тонера, отбрасывая остальное назад. Если лезвие установлено неправильно, на бумаге могут появиться черные полосы.

После этого тонер продвигается на участок между магнитным валом и фотоцилиндром – здесь он притянется к проэкспонированным участкам, а от заряженных оттолкнется. Так изображение становится уже более видимым.

Перенос

Чтобы изображение появилось уже на бумаге, в дело вступает ролик переноса , в металлическую сердцевину которого притягивается положительный заряд – он переносится на бумагу благодаря специальному прорезиненному покрытию.

Итак, частички отрываются от барабана и начинают перемещаться на страницу. Но удерживаются они здесь пока только из-за статического напряжения. Образно говоря, тонер просто насыпается там, где нужно.

Вместе с тонером могут попасть пыль и ворсинки бумаги, но они снимаются вайпером (специальной пластиной) и отправляются прямиком в отсек отходов на бункере. После полного круга барабана процесс повторяется.

Для этого используется свойство тонера расплавляться при высоких температурах. Конструктивно это в этом оказывают помощь два следующих вала:

  • в верхнем расположен нагревательный элемент;
  • в нижнем в бумагу вдавливается расплавленный тонер.

Иногда подобная «печка» представляет собой термопленку – специальный гибкий и термостойкий материал с нагревательной составляющей и прижимным роликом. Её нагрев контролируется датчиком. Как раз в момент прохода между пленкой и прижимной частью бумага и разогревается до 200 градусов, что позволяет ей легко впитать в себя ставшим жидким тонер.

Дальнейшее остывание идет естественным образом – в лазерных принтерах обычно не требуется установка дополнительной охлаждающей системы. Однако здесь еще раз проходит специальный очиститель – обычно его роль исполняет фетровый вал .

Фетр обычно пропитывают специальным составом, что помогает смазать покрытие. Поэтому другое название такого вала – масляной.

Как осуществляется цветная лазерная печать

А как же происходит цветная печать? В лазерном устройстве используется четыре таких основных колора – черный, пурпурный, желтый и голубой. Принцип печати такой же, как и в черно-белом случае, однако сначала принтер разобьет изображение на монохром для каждого цвета. Начинается последовательное перенесение каждым картриджем своего цвета, а в итоге наложения получается нужный результат.

Выделяют такие технологии цветной лазерной распечатки:

  • многопроходная;
  • однопроходная.

При многопроходном варианте в дело вступает промежуточный носитель – это вал или лента, переносящая тонер. Действует это так: за 1 оборот накладывается 1 цвет, потом в нужное место подается другой картридж, а поверх первой картинки ложится вторая. Достаточно четырех проходов, чтобы сформировалась полноценная картинка – она и перейдет на бумагу. Но и само устройство будет работать в 4 раза медленнее, чем его черно-белый собрат.

Как работает принтер с однопроходной технологией ? В этом случае все четыре отдельно печатающих механизма имеют общее управление – они выстроены в одну шеренгу, у каждого имеется свой собственный лазерный блок с переносным роликом. Так бумага и идет по барабану, последовательно собирая все четыре изображения картриджей. Только после этого прохода лист уходит в печку, где происходит закрепление картинки.

Достоинства лазерных принтеров сделали их фаворитами для работы с документацией, как в офисе, так и домашних условиях. А информация о внутренней составляющей их работы поможет любому пользователю вовремя заметить недочеты и обратиться в сервисную службу для технической поддержки функционирования устройства.