Какие телефоны поддерживают usb 3 1. USB Type-C: что это и чем отличается от Micro USB. USB Type-C и обратная совместимость


Инвестиции в знания всегда дают наибольшую прибыль.
Бенджамин Франклин


ШКАТУЛКА КАЧЕСТВЕННЫХ ЗАДАЧ ПО ФИЗИКЕ
ЭЛЕКТРИЧЕСТВО

Предлагаю вниманию читателей 50 качественных задач по физике на тему: «Электричество» , а также немножечко занимательных фактов…
Атмосферное электричество:
Молнии над извергающимся вулканом .
Биологическое электричество:
Электрические рыбы .
Физика и военная техника:
Гальваноударная мина .
И по традиции… маленечко живописи:-)
Задачи условно разделены на три группы:
1) Электризация тел;
2) Проводники и диэлектрики. Электрический ток;
3) .

Бенджамин Франклин (17.01.1706–17.04.1790) – политический деятель, дипломат, учёный, изобретатель, журналист, издатель. Первый американец, ставший иностранным членом Российской академии наук.
Бенджамин Франклин назвал один вид заряда положительным «+», а другой отрицательным «–»; объяснил принцип действия лейденской банки , установив, что главную роль в ней играет диэлектрик, разделяющий проводящие обкладки; установил тождество атмосферного и получаемого с помощью трения электричества и привёл доказательство электрической природы молнии ; установил, что металлические острия, соединённые с землёй, снимают электрические заряды с заряженных тел даже без соприкосновения с ними и предложил в 1752 году проект молниеотвода .
Выдвинул идею электрического двигателя и продемонстрировал «электрическое колесо», вращающееся под действием электростатических сил; впервые применил электрическую искру для взрыва пороха…
Дэвид Мартин (David Martin; 01.04.1737–30.12.1797) – британский живописец, гравёр.

Электризация тел

Задача №1
Почему между ремнём и шкивом, на который он надет, при работе время от времени проскакивает искра?

Задача №2
С какой целью на взрывоопасном производстве приводные ремни должны быть обработаны антистатической (проводящей) пастой, а шкивы заземлены?

Задача №3
Может ли в ременной передаче электризоваться только ремень, а шкив оставаться незаряженным? Почему? Считайте, что шкив не заземлён.

Задача №4
На текстильных фабриках нередко нити прилипают к гребням чесальных машин, путаются и рвутся. Для борьбы с этим явлением в цехах искусственно создаётся повышенная влажность. Объясните физическую сущность этой меры.

Задача №5
Почему два разноимённо заряженных шарика, подвешенные на нитях, притягиваются друг к другу, но после контакта сразу же отталкиваются?

АТМОСФЕРНОЕ ЭЛЕКТРИЧЕСТВО
Молнии над извергающимся вулканом

К возникновению молний над извергающимся вулканом приводят как сейсмологические процессы , так и процессы, идущие в облаках при обычных грозах. Электрические заряды могут возникать за счёт пьезоэлектрических, трибоэлектрических и подобных явлений при разломах и подвижках горных пластов, сопровождающих извержение вулкана.
Возникают заряды и при трении между частицами пепла, вылетающими из жерла вулкана . При обычных грозах разница потенциалов, разряжающаяся затем в молнии, возникает потому, что более тяжёлые капельки или льдинки из-за своего веса скапливаются в нижних слоях грозового облака, а мелкие, лёгкие поднимаются восходящими потоками воздуха в верхнюю часть. Они накапливают противоположные заряды, которые после определённой величины напряжения пробивают слой воздуха. Сумма этих пока не до конца изученных «земных» и «небесных» явлений и вызывает молнию над извергающимся вулканом .

Везувий зев открыл – дым хлынул клубом – пламя
Широко развилось, как боевое знамя.
Земля волнуется – с шатнувшихся колонн
Кумиры падают! Народ, гонимый страхом,
Под каменным дождём, под воспалённым прахом,
Толпами, стар и млад, бежит из града вон.
август–сентябрь 1834 г., Александр Сергеевич Пушкин



Последний день Помпеи
Брюллов Карл Павлович, 1830–1833 год



О том, что извержения вулканов иногда сопровождаются ударами молний, известно почти 2000 лет. В 79 году нашей эры Плиний Младший , наблюдая извержение Везувия , записал, что над кратером собрались тёмные тучи и сверкали молнии.

Брюллов Карл Павлович (23.12.1799–23.06.1852) – русский живописец, монументалист, яркий представитель академизма.
Помпеи – древнеримский город недалеко от Неаполя, погребённый под слоем вулканического пепла в результате извержения Везувия 24 августа 79 года нашей эры.

Задача №6
Зачем электромонтёры во время работы по ремонту электрических сетей и установок надевают резиновые перчатки, резиновую обувь, становятся на резиновые коврики, пользуются инструментами с ручками из пластмассы?

Задача №7
Рабочие типографий, перекатывающие рулоны бумаги, работают в резиновых перчатках и резиновых сапогах. Объясните почему.

Задача №8
Электрическое поле мы не можем видеть, слышать, осязать и т.д., так как оно не действует непосредственно на органы чувств. Каким же способом можно обнаружить существование электрического поля?

Для любознательных: Термин электричество («янтарность»: др.-греч. ηλεκτρον – электрон, «янтарь» , англ. electron) был введён в 1600 году английским естествоиспытателем Уильямом Гилбертом в его сочинении «О магните, магнитных телах и о большом магните – Земле», в котором объясняется действие магнитного компаса и описываются некоторые опыты с наэлектризованными телами.

Задача №9
Поглаживая шерсть кошки ладонью, можно заметить в темноте небольшие искорки, возникающие между рукой и шерстью. Какова причина возникновения искр?

Задача №10
К тонкой струе воды поднесите наэлектризованную трением расчёску. Наблюдаемое зафиксируйте в виде рисунка, сопроводите комментарием.

Задача №11
Вопрос для аккуратных и внимательных хозяек;-) Где у вас дома быстрее всего собирается пыль? Почему?

Задача №12
Почему при расчёсывании волос пластмассовым гребнем, волосы как бы «прилипают» к нему (иногда слышно лёгкое потрескивание; в темноте проскакивают маленькие искорки)?

Задача №14
Почему мельчайшие капельки, из которых состоит душистая струя одеколона, духов, лака для волос, получаемая при помощи пульверизатора, оказываются наэлектризованными?

Задача №15
Капли дождя, и снежинки почти всегда электрически заряжены. Почему?

Проводники и диэлектрики. Электрический ток

Задача №16
Почему можно наэлектризовать трением стеклянную палочку, держа её в руке, а металлический стержень нельзя?

Задача №17
Как надо поступить, чтобы наэлектризовать металлический предмет, например ложку?

Задача №18
Почему присоединение к водопроводному крану может служить одним из способов заземления?

Задача №19
Почему мокрые волосы не электризуются при расчёсывании?

Задача №20
Почему в сырую погоду или при большой влажности в помещении опыты по электричеству оказываются чаще всего неудачными?

Один опыт я ставлю выше, чем тысячу мнений,
рождённых только воображением…
Михаил Васильевич Ломоносов



Фёдоров Иван Кузьмич (1853–1915?) – русский исторический живописец, жанрист.

В июне 1764 года Екатерина II посетила дом Михаила Ломоносова и в течение двух часов смотрела «работы мозаичного художества, новоизобретённые Ломоносовым физические инструменты и некоторые физические и химические опыты ».
На картине Ивана Кузьмича Фёдорова перед императрицей Екатериной II стоит электростатическая машина со стеклянным цилиндром, вращавшимся с помощью педального механизма и натиравшимся кожаными подушечками, прижимавшимися к стеклу с помощью пружин. Подушечки отделывались конским волосом и с помощью проволоки соединялись с землёй. Машина давала столь сильные искры, что ими можно было воспламенить эфир.

Задача №21
Опыты показали, что чёрная хлопчатобумажная нитка проводит ток лучше, чем белая! Как вы можете прокомментировать этот факт?

…Грянул гром. Чашка неба расколота.
Разорвалися тучи тесные.
На подвесках из лёгкого золота
Закачались лампадки небесные…
«Богатырский посвист». Сергей Александрович Есенин

Задача №22
Является ли электрическим током молния, возникающая между облаком и Землёй? между облаками? Почему молния может стать причиной пожара?

Задача №23
Молния чаще всего ударяет в деревья, имеющие большие, глубоко проникающие в почву корни. Почему?


Джордж Морланд (George Morland; 26.06.1763–29.10.1804) – английский художник.

Задача №24
Объясните, почему при ударе молнии в песчаную почву, образуются так называемые фульгуриты – неправильной формы куски плавленого кварца (песка).

Для любознательных: Ток в разряде молнии достигает 10–500 тысяч ампер, напряжение – от десятков миллионов до миллиарда вольт. Температура канала при главном разряде может превышать 20000–30000°C. Молнии также были зафиксированы на Венере, Юпитере, Сатурне и Уране…

…Ты небо недавно кругом облегала,
И молния грозно тебя обвивала;
И ты издавала таинственный гром
И алчную землю поила дождём…
«Туча». Александр Сергеевич Пушкин


Для любознательных: Гром возникает вследствие резкого расширения воздуха при быстром повышении температуры в канале разряда молнии. Вспышку молнии мы видим практически как мгновенную вспышку и в тот же момент, когда происходит разряд; ведь свет распространяется со скоростью 3·10 8 м/с . Что же касается звука, то он распространяется значительно медленнее. В воздухе скорость звука равна 330 м/с . Поэтому мы слышим гром уже после того, как сверкнула молния. Чем дальше от нас молния, тем, очевидно, длиннее пауза между вспышкой света и громом и, кроме того, слабее гром. Измеряя длительность этих пауз, можно приблизительно оценить, как далеко от нас в данный момент гроза , насколько быстро она приближается к нам, или напротив, удаляется от нас. Гром от очень далёких молний вообще не доходит – звуковая энергия рассеивается и поглощается по пути. Такие молнии называют зарницами . Заметим также, что отражением звука от облаков объясняется происходящее иногда усиление громкости звука в конце громовых раскатов. Впрочем, не только отражением звука от облаков объясняются раскаты грома ;-)

Александровская колонна (Александрийский столп) – один из известнейших памятников Петербурга. Воздвигнут в стиле ампир в 1834 году в центре Дворцовой площади архитектором Огюстом Монферраном по указу императора Николая I в память о победе его старшего брата Александра I над Наполеоном.
Раев Василий Егорович (1808–1871) – русский живописец, педагог.

Задача №26
Появление в атмосфере грозовых явлений затрудняет пользование магнитным компасом. Объясните это.

Задача №27
Во время грозы следует заземлять антенны радиоприёмников, телевизоров, особенно те, которые установлены высоко над землёй (например, крыши высотных зданий). Как, и с какой целью, это делается?

Для любознательных: В 1785 году голландский физик Ван Марум Мартин по характерному запаху свежести, а также окислительным свойствам, которые приобретает воздух после пропускания через него электрических искр , обнаружил озон – О 3 (от др.-греч. οζω - пахну) Однако как новое вещество он описан не был, Ван Марум считал, что образуется особая «электрическая материя» . Термин озон , за его пахучесть:-) был предложен немецким химиком Кристианом Фридрихом Шёнбейном в 1840 году.

Задача №28
«Страшная месть, 1832 г.,
Николай Васильевич Гоголь

«…Когда же пойдут горами по небу синие тучи, чёрный лес шатается до корней, дубы трещат и молния, изламываясь между туч, разом осветит целый мир – страшен тогда Днепр!».
Наблюдения показывают, что молния чаще всего ударяет во влажную землю у берегов озёр, рек, болот. Как это объяснить?

Васнецов Аполлинарий Михайлович (06.08.1856–23.01.1933) – русский художник, мастер исторической живописи, искусствовед.

Задача №29
Почему молния редко ударяет в открытые нефтехранилища («нефтяные озёра»)?

Задача №30
Почему нижний конец молниеотвода нужно закапывать поглубже, где слои земли всегда влажные?


Перун (др.-рус. Перунъ) – бог-громовержец в славянской мифологии, покровитель князя и дружины в древнерусском языческом пантеоне. После распространения христианства на Руси многие элементы образа Перуна были перенесены на образ Ильи-пророка (Ильи Громовника ). Имя Перуна возглавляет список богов пантеона князя Владимира в «Повести временных лет».


Шишкин Иван Иванович (25.01.1832–20.03.1898) – русский живописец-пейзажист, один из членов-учредителей Товарищества передвижников.
Саврасов Алексей Кондратьевич (12.05.1830–26.09.1897) – русский живописец-пейзажист, один из членов-учредителей Товарищества передвижников.

Для любознательных:
Правда ли, что молния предпочитает ударять в дубовые деревья?
Если дерево влажное, ток разряда молнии проходит через воду, и дерево остаётся невредимым. В сухом дереве ток может пройти в ствол и по древесному соку уйти в землю. При этом сок может нагреваться, испаряться и, расширяясь, «взрывать» дерево. Дуб страдает от молнии чаще, чем другие деревья, так как его кора очень неровная. Если молния ударит в дуб в начале грозы, то может оказаться, что намокнуть успеет только верхняя часть дерева, тогда как дерево с гладкой корой быстро становится мокрым сверху донизу. Поэтому при ударе молнии дуб может «взорваться», а дерево с гладкой корой − остаться целым. Лесной пожар возникает в тех случаях, когда в канале молнии происходит несколько разрядов, но в промежутках между основными разрядами в канале продолжает течь ток.


Перед грозой
Васильев Фёдор Александрович
1870 год


После грозы
Васильев Фёдор Александрович
1868 год



Васильев Фёдор Александрович (22.02.1850–06.10.1873) – русский живописец-пейзажист.


Дети бегущие от грозы
Маковский
Константин Егорович
1767 год


Для любознательных: Гроза – атмосферное явление , при котором внутри облаков или между облаком и земной поверхностью возникают электрические разряды – молнии, сопровождаемые громом . Как правило, гроза образуется в мощных кучево-дождевых облаках и связана с ливневым дождём, градом и шквальным усилением ветра. Одновременно на Земле действует около полутора тысяч гроз, средняя интенсивность разрядов оценивается как 46 молний в секунду .
По поверхности планеты грозы распределяются неравномерно. Над океаном гроз наблюдается приблизительно в десять раз меньше, чем над континентами.
Интенсивность гроз следует за солнцем : максимум гроз (в средних широтах) приходится на летнее время и послеполуденные дневные часы. Минимум зарегистрированных гроз приходится на время перед восходом солнца. На грозы влияют также географические особенности местности: сильные грозовые центры находятся в горных районах Гималаев и Кордильер.

Маковский Константин Егорович (20.06.1839–30.09.1915) – русский живописец, один из ранних участников Товарищества передвижников.

Задача №31
Получится ли гальванический элемент, если в водный раствор какой-либо кислоты или соли мы опустим две пластинки из одинакового металла (например, цинковые)?

Задача №32
Почему гальванометр показывает наличие тока, если к его зажимам присоединить стальную и алюминиевую проволоки, вторые концы которых воткнуты в лимон или свежее яблоко?

Для любознательных: Итальянский физик, химик и физиолог – Александро Вольта , в ходе изучения «животного электричества» , повторив и развив опыты Луиджи Гальвани , установил, что электрический ток можно «попробовать на вкус» – при протекании электрического тока через медный провод язык ощущает кислый привкус, причём, чем больше ток, тем сильнее ощущение кислоты; получается, что наш с Вами язык может выступать в роли весьма своеобразного амперметра;-) В 1800 году Вольта построил первый генератор электрического тока – «вольтов столб» . Это изобретение доставило ему всемирную славу.

Задача №33
Говорят, что в Заполярье зимой, когда температура воздуха –50°C, мир там становится «ужасно электрическим». Объясните это или опровергните.

Задача №34
Почему в очень сырых помещениях возможно поражение человека электрическим током даже при прикосновении к стеклянному баллону электрической лампочки?

Задача №35
Используя химическое действие тока, можно покрыть металлическим слоем изделие не только из проводящих материалов, но и из диэлектриков – воска, пластмассы, гипса, дерева, пластилина и др. Как это сделать?

БИОЛОГИЧЕСКОЕ ЭЛЕКТРИЧЕСТВО
Электрические рыбы

Ещё древним грекам было известно, что скаты обладают удивительной способностью поражать на расстоянии проплывающих вблизи мелких рыб, крабов, осьминогов. Оказавшись случайно поблизости от ската, они вдруг начинали конвульсивно дёргаться и тут же замирали. Их убивали электрические разряды , которые генерировали специальные органы скатов. У обыкновенных скатов эти органы находятся в хвосте, а у обитающих в тёплых морях электрических скатов – в области головы и жабер. Обыкновенные скаты создают напряжение около 5 В , электрические до 50 В . Древние греки использовали электрогенные свойства электрических скатов для обезболивания при операциях и деторождении.

В 1775 году британский физик и химик Генри Кавендиш пригласил семерых выдающихся учёных, чтобы продемонстрировать сконструированного им искусственного электрического ската , и дал каждому ощутить электрический разряд , абсолютно идентичный тому, каким настоящий скат парализует свои жертвы. Модель электрического ската , была «запитана» от батареи лейденских банок и погружена в подсолённую воду. По завершении показа Генри Кавендиш , опередивший своих современников Гальвани и Вольта , торжественно объявил приглашённым, что именно эта, продемонстрированная им новая сила когда-нибудь революционизирует весь мир!

Электрические скаты (лат. Torpediniformes) – отряд хрящевых рыб, у которых по бокам расположены почкообразные электрические органы . У них, однако, отсутствуют слабые электрические органы, имеющиеся в наличии у семейства ромбовых по обе стороны хвоста. Морская лисица , или колючий скат (лат. Raja clavata) – наиболее распространённый европейский вид скатов (семейство: Ромбовые; род: Ромбовые скаты).


Pierre Moulin du Coudray de La Blanchere (1821–1880) – французский натуралист, художник-иллюстратор.
Wilhelm Richard Paul Flanderky (1872–1937) – немецкий художник-иллюстратор.

Электрический сом (лат. Malapterurus electricus) – вид придонных пресноводных рыб, обитающих в тропических и субтропических водоёмах Африки. У электрического сома электрические органы расположены по всей поверхности тела, непосредственно под кожей. Они составляют 1/4 массы тела сома. В зависимости от размера, электрический сом способен вырабатывать напряжение , достигающее 350–450 В , при силе тока 0,1–0,5 А .
У многих электрических рыб (электрического угря; гимнарха; гнатонемуса – рыбы-слона; аптеронотуса – рыбы-ножа) хвост заряжается отрицательно, голова положительно, а вот у электрического сома , наоборот, хвост заряжается положительно , голова отрицательно .


Электрический сом (Malapterurus electricus),
Нильский многопёр, или бишир (Polypterus bichir),
Электрическая щука (Mormyrus oxyrhynchus).

Фридрих Вильгельм Кунерт (Friedrich Wilhelm Kuhnert; 1865–1926) – немецкий живописец, писатель и иллюстратор.

Обладающие электрическими свойствами рыбы используют эти свойства не только для нападения, но также для того, чтобы отыскивать потенциальную добычу, опознавать опасных противников и ориентироваться в неосвещённой или мутной воде. Электрическое поле вокруг электрической рыбы приводит также к электролизу воды , в результате которого происходит обогащение воды кислородом , что приманивает рыб и лягушек, облегчая тем самым электрическим рыбам поиски добычи.

Не все рыбы обладают электрическими свойствами. Число живых существ, имеющих специальные органы для генерации и восприятия электрических полей , не так уж велико. Тем ни менее в любом живом организме и даже в отдельных живых клетках создаются электрические напряжения ; их называют биопотенциалами . «Биологическое электричество» является неотъемлемым свойством всей живой материи. Оно возникает при функционировании нервной системы, при работе желёз и мышц. Так, работающая сердечная мышца создаёт на поверхности тела ритмично изменяющиеся электрические потенциалы . Изменение этих потенциалов со временем может быть зафиксировано в виде электрокардиограммы , позволяющей специалисту судить о работе сердца.

Продолжаем решать задачи ;-)

Сила тока. Напряжение. Сопротивление

Задача №36
Две разнородные металлические пластинки, опущенные в водный раствор соли, щёлочи или кислоты, всегда образуют гальванический элемент. Можно ли получить гальванический элемент из двух одинаковых металлических пластинок, но погружённых в различные растворы?

Задача №37
Последовательно с аккумулятором соединили лампу и амперметр и замкнули эту цепь концами проводников, опущенных в раствор медного купороса. Изменится показание амперметра, если раствор подогреть?

Задача №38
При растворении цинка в водном растворе серной кислоты раствор сильно нагревается. Почему в замкнутом во внешнюю цепь гальваническом элементе Вольта растворение цинка не сопровождается сильным нагреванием электролита?

Задача №39
Можно ли с помощью ртути, водного раствора серной кислоты, ножа и куска изолированной алюминиевой проволоки изготовить источник электрического тока?

Задача №40
В Вашем распоряжении имеются: поваренная соль, кусок мыла, вода, куски изолированной медной проволоки, нож, деревянная палочка, алюминиевая кастрюля и большой стеклянный сосуд. Длина палочки немного больше диаметра сосуда. Покажите, как используя данные материалы, можно изготовить источник электрического тока (гальванический элемент). Непосредственный контакт между медью и алюминием исключить.

ФИЗИКА И ВОЕННАЯ ТЕХНИКА
Гальваноударная мина образца 1908 года

«Под водой», 1915 г., Алексей Николаевич Толстой
«…Андрей Николаевич забарабанил пальцами по стеклу. Оставаться под водой было невозможно, появиться на поверхности – значит выдать себя и подвергнуться обстрелу. Всё же это был единственный выход определить точно место нахождения. Он скомандовал медленный подъём и вернулся к иллюминатору. Тени ушли вниз. Вода заметно светлела. И вдруг сверху, навстречу, стал опускаться тёмный шар. «Мина… Сейчас коснёмся…» – подумал Андрей Николаевич и, преодолев давящее мозг оцепенение, крикнул: «Левее, как можно левее!» Шар отдалился, а слева приближался второй. Не поднимаясь, продвинулись вперёд. Но и там, в зеленоватом полумраке, возникали чугунные шары, поджидая, когда их коснётся стальная обшивка лодки. «Кэт» заблудилась в минных заграждениях…»
Как устроена морская гальваноударная мина?

В представлении подавляющего большинства людей морская мина – это большой и страшный рогатый чёрный шар, свободно плавающий по волнам или закреплённый на якорном тросе под водой. Если проплывающий корабль заденет один из «рогов» такой мины, произойдёт взрыв и корабль вместе со всей командой отправится на дно морское. Рогатые чёрные шары это самые распространённые мины – якорные гальваноударные .


1 – прибор потопления; 2 – гальваноударный колпак; 3 – запальный патрон; 4 – запальный стакан; 5 – лапа якоря; 6 – роульс; 7 – вьюшка с минрепом; 8 заряд BB; 9 – груз со штертом; 10 – предохранительный прибор.

Как устроена морская гальваноударная мина?

Эта мина являлась дальнейшим развитием гальваноударных мин образца 1898 и 1906 годов. В гальваноударной мине предохранитель размещался в крышке единственной монтажной горловины сверху мины, пружинный буфер смягчал рывки минрепа, пять гальванических свинцовых колпаков – «рогов» мины размещались по периметру её корпуса. Каждый рог-колпак содержал в себе сухую угольно-цинковую батарею с электролитом в стеклянной ампуле – «склянке».
При ударе корабля о мину свинцовый колпак сминался, «склянка» разбивалась и электролит активизировал батарею. Ток от батареи поступал на запальное устройство и воспламенял детонатор.
В качестве взрывчатого вещества вместо пироксилина стал использоваться тротил, якорь установили на 4 ролика, для удержания мины при качке предусмотрели рельсовые захваты. Мина была оборудована противотральными патронами – минными защитниками конструкции П.П. Киткина.
Для постановки мины на заданное углубление использовался автоматический штерто-грузовой способ. Порядок приготовления мины к постановке состоял из двух этапов. Предварительный этап: установка гальваноударных колпаков, «склянок» с электролитом, предохранительного прибора, приращивание проводников и проверка всех электрических цепей. Окончательный этап предусматривал лишь установку запальной принадлежности.

Конструкция гальваноударной мины оказалась настолько удачной, что, после незначительной модернизации в 1939 году, под шифром «образца 1908/39 гг.» она оставалась на вооружении отечественного флота вплоть до середины 60-х годов.


Бордачёв Иван Васильевич (13.08.1920…) Член Союза художников СССР с 1957 года. Участник Великой Отечественной войны. Награждён орденами Красной Звезды, Отечественной войны II степени, медалью «За победу над Германией в Великой Отечественной войне 1941–1945 гг.» и другими медалями СССР.

Русский флот с первых дней своего существования стал настоящей кузницей всевозможных новинок и передовых новшеств. Ярче всего это проявилось в сфере минного оружия. Русским морякам принадлежит приоритет в создании морской мины, противоминного трала, надводных и подводных минных заградителей и минного тральщика. Первые опыты в этой области в России начались в начале XIX века, а уже 20 июня 1855 года на поставленных у Кронштадта морских минах подорвались четыре судна англо-французской эскадры. В память об этом событии день 20 июня с 1997 года отмечается как День специалистов минно-торпедной службы ВМФ России .

Продолжаем решать задачи ;-)

Сила тока. Напряжение. Сопротивление

Задача №41
Ученик по ошибке включил вольтметр вместо амперметра при измерении величины тока в лампе. Что при этом произойдёт с накалом нити лампы?

Задача №42
Требуется вдвое уменьшить ток в данном проводнике. Что для этого нужно сделать?

Задача №43
Кусок проволоки разорвали пополам и половинки свили вместе, как изменилось сопротивление проводника?

Задача №44
Проволоку пропустили через волочильный станок, в результате чего её сечение уменьшилось вдвое (объём не изменился). Как изменилось при этом сопротивление проволоки?

Задача №45
Почему медные провода не используются для изготовления реостатов?

Задача №46
Почему для изготовления электрических проводов применяют обычно медную или алюминиевую проволоку?

Задача №47
С какой целью провода покрывают слоем резины, пластмассы, лака и т.п. или обматывают бумажной пряжей пропитанной парафином?

Задача №48
Как можно определить длину медного провода в пластмассовой изоляции, свёрнутого в большой моток, не разматывая его?

Задача №49
Почему не убивает током птицу, садящуюся на один из проводов высокого напряжения?

Задача №50
Почему окраска небольших предметов методом разбрызгивания краски экономически выгодна, а также безвредна для здоровья работающего, если между пульверизатором и предметом создать высокое напряжение?

Важным и вполне закономерным шагом на пути изучения электрических явлений был переход от качественных наблюдений к установлению количественных связей и закономерностей, к разработке основ теории электричества . Наиболее значительный вклад в решение этих проблем внесли петербургские академики Михаил Васильевич Ломоносов , Георг Вильгельм Рихман и американский учёный Бенджамин Франклин .
§ Виртуальная физическая лаборатория «Начала электроники»: Выпуск №1
Решение расчётных задач по физике .
+ Установочный файл программы «Виртуальная лаборатория НАЧАЛА ЭЛЕКТРОНИКИ» (с проверкой файла антивирусом Dr.WEB )
+ Увлекательные эксперименты на виртуальном монтажном столе;-)

§ Виртуальная физическая лаборатория «Начала электроники»: Группа С

Желаю Вам успехов в самостоятельном решении
качественных задач по физике!


Литература:
§ Лукашик В.И. Физическая олимпиада
Москва: издательство «Просвещение», 1987
§ Тарасов Л.В. Физика в природе
Москва: издательство «Просвещение», 1988
§ Перельман Я.И. Знаете ли вы физику?
Домодедово: издательство «ВАП», 1994
§ Золотов В.А. Вопросы и задачи по физике 6-7 класс
Москва: издательство «Просвещение», 1971
§ Тульчинский М.Е. Качественные задачи по физике
Москва: издательство «Просвещение», 1972
§ Кириллова И.Г. Книга для чтения по физике 6-7 класс
Москва: издательство «Просвещение», 1978
§ Ердавлетов С.Р., Рутковский О.О. Занимательная география Казахстана
Алма-Ата: издательство «Мектеп», 1989.

День добрый, Geektimes! Все уже слышали про USB Type-C? Тот самый, который двухсторонний, быстрый-модный-молодёжный, заряжает новый макбук, делает волосы гладкими и шелковистыми и обещает стать новым стандартом подключения на следующие лет десять?

Так вот, во-первых, это тип разъёма, а не новый стандарт. Стандарт называется USB 3.1. Во-вторых, говорить нужно именно о новом стандарте USB, а Type-C лишь приятный бонус. Чтобы понять, в чём разница, что скрывается за USB 3.1, а что - за Type C, как заряжать от USB-кабеля целый ноутбук и что ещё можно сделать с новыми USB Type-C:

Коротко о главном

USB как стандарт появился почти двадцать лет назад. Первые спецификации на USB 1.0 появились в 1994 году и решали три ключевых проблемы: унификацию разъёма, по которому подключалось расширяющее функции ПК оборудования, простоту для пользователя, высокую скорость передачи данных на устройство и с него.

Не смотря на определённые преимущества USB-подключения перед PS/2, COM и LPT-портами, популярность пришла к нему не сразу. Взрывной рост USB испытал в начале двухтысячных: сначала к нему подключались камеры, сканеры и принтеры, затем флеш-накопители.

В 2001 году появились первые коммерческие реализации того USB, который нам привычен и понятен: версии 2.0. Им мы пользуемся вот уже 14-й год и устроен он сравнительно просто.

USB 2.0

Любой кабель USB версии 2.0 и ниже имеет внутри 4 медных проводника. По двум из них передаётся питание, по двум другим - данные. Кабели USB (по стандарту) строго ориентированы: один из концов должен подключаться к хосту (то есть системе, которая будет управлять соединением) и называется он Type-A , другой - к устройству, он называется Type-B . Разумеется, иногда в устройствах (таких, как флешки) кабеля нет вообще, разъём типа «к хосту» располагается прямо на плате.

На стороне хоста существует специальный чип: контроллер USB (в настольных компьютерах он может быть как частью системной логики, так и вынесен в качестве внешней микросхемы). Именно он инициализирует работу шины, определяет скорость подключения, порядок и расписание движения пакетов данных, но это всё детали. Нас больше всего интересуют разъёмы и коннекторы классического USB-формата.

Самый популярный разъём, которым все пользовались - USB Type-A классического размера: он расположен на флешках, USB-модемах, на концах проводов мышей и клавиатур. Чуть реже встречаются полноразмерные USB Type-B: обычно таким кабелем подключаются принтеры и сканеры. Мини-версия USB Type-B до сих пор часто используется в кардридерах, цифровых камерах, USB-хабах. Микро-версия Type-B стараниями европейских стандартизаторов стала де-факто самым популярным разъёмом в мире: все актуальные мобильники, смартфоны и планшеты (кроме продукции одной фруктовой компании) выпускаются именно с разъёмом USB Type-B Micro.

Ну а USB Type-A микро и миниформата наверное никто толком и не видел. Лично я навскидку не назову ни одного устройства с такими разъёмами. Даже фотографии пришлось из википедии доставать:

Скрытый текст



Все эти разъёмы объединяет одна простая вещь: внутри находится четыре контактных площадки, которые обеспечивают подключаемое устройство и питанием, и связью:

С USB 2.0 всё более-менее понятно. Проблема стандарта заключалась в том, что двух проводников для передачи данных мало, да и разработанные в середине первого десятилетия спецификации не предусматривали передачу больших токов по цепям питания. Сильнее всего от подобных ограничений страдали внешние жёсткие диски.

USB 3.0

Для улучшения характеристик стандарта была разработана новая спецификация USB 3.0, которая содержала следующие ключевые отличия:
  • Пять дополнительных контактов, четыре из которых обеспечивают дополнительные линии связи;
  • Увеличение максимальной пропускной способности с 480 МБит/с до 5 Гбит/с;
  • Увеличение максимального тока с 500 мА до 900 мА.

Кроме того, появилось ещё 4 разъёма, электрически и механически совместимые с USB Type-A версии 2.0. Они позволяли как подключать USB 2.0-устройства к 3.0-хостам, так и 3.0-устройства к 2.0-хостам или по 2.0-кабелю, но с ограничением по питанию и скорости передачи данных.

USB 3.1

С осени 2013 года приняты спецификации на обновлённый стандарт USB 3.1, который и принёс нам разъём Type-C , передачу до 100 Вт питания и удвоение скорости передачи данных по сравнению с USB 3.0. Однако стоит отметить, что все три новшества - это лишь части одного нового стандарта, которые могут быть как применены все вместе (и тогда девайс или кабель получит сертификацию USB 3.1), либо по отдельности. Например, технически внутри Type-C кабеля можно организовать хоть USB 2.0 на четырёх проводах и двух парах контактов. К слову, такой «финт» провернула компания Nokia: её планшет Nokia N1 имеет разъём USB Type-C, но внутри используется обычный USB 2.0: со всеми ограничениями по питанию и скорости передачи данных.

USB 3.1, Type-C и питание

За возможности по передаче действительно серьёзных мощностей отвечает новый стандарт USB PD (Power Delivery). Согласно спецификациям, для сертификации USB PD устройство и кабель должны обеспечивать передачу тока с мощностью до 100 Ватт, причём в обе стороны (как к хосту, так и от него). При этом передача электроэнергии не должна мешать передаче данных.

Пока существует только два ноутбука, полностью поддерживающие USB Power Delivery: новый макбук и Chromebook Pixel.

Ну а потом, кто знает, может, будем дома вот такие розетки ставить?

USB Type-C и обратная совместимость

USB как стандарт силён своей обратной совместимостью. Найдите древнюю флешку на 16 мегабайт, поддерживающую только USB 1.1, вставьте её в порт 3.0 и работайте. Подключите современный HDD в разъём USB 2.0, и если ему хватит питания - всё заведётся, просто скорость будет ограничена. А если не хватит - существуют специальные переходники: они используют цепи питания ещё одного порта USB. Скорость не увеличится, но HDD будет работать.

Та же история и с USB 3.1 и разъёмом Type-C, с одной лишь поправкой: новый разъём геометрически никак не совместим со старыми. Впрочем, производители активно начали производство как проводов Type-A <=> Type-C, так и всевозможных переходников, адаптеров и разветвителей.

USB Type-C и туннелирование

Скорость передачи данных стандарта USB 3.1 позволяет не только подключать накопители и периферию, заряжать ноутбук от сети через Type-C-кабель, но и подключить, скажем… монитор. Одним проводом. И USB hub с несколькими 2.0-портами внутри монитора. 100 Вт питания, скорость, сравнимая с DisplayPort и HDMI, универсальный разъём и всего один проводок от ноутбука к монитору, блок питания которого и дисплей обеспечит электричеством, и ноутбук зарядит. Разве это не прекрасно?

Что сейчас есть на USB Type-C

Так как технология молодая, на USB 3.1 девайсов совсем немного. Устройств же с кабелем / разъёмом USB Type-C немногим больше, но всё равно недостаточно, чтобы Type-C стал таким же распространённым и естественным, как Micro-B, который есть у любого пользователя смартфона.

На персональных компьютерах Type-C ждать можно уже в 2016, но некоторые производители взяли и обновили линейку имеющихся материнских плат. Например, USB Type-C с полной поддержкой USB 3.1 есть на материнской плате MSI Z97A Gaming 6 .


Не отстаёт и компания ASUS: материнские платы ASUS X99-A и ASUS Z97-A поддерживают USB 3.1, но, к сожалению, лишены разъёмов Type-C. Кроме того, анонсированы специальные платы расширения для тех, кому не хочется ни обновлять материнскую плату, ни отказываться от пары USB 3.1-портов.


Компания SanDisk не так давно представила 32 Гб флеш-накопитель с двумя разъёмами: классическим USB Type-A и USB Type-C:


Разумеется, не стоит забывать про недавний MacBook с пассивным охлаждением и всего одним разъёмом USB Type-C. Про его производительность и прочие прелести поговорим как-нибудь отдельно, а вот про разъём - сегодня. Apple отказалась как от своей «волшебной» зарядки MagSafe, так и от других разъёмов на корпусе, оставив один порт для питания, подключения периферии и внешних дисплеев. Разумеется, если вам мало одного разъёма, можно купить официальный переходник-разветвитель на HDMI, классический USB и разъём питания (всё тот же Type-C) за… 80 долларов. :) Остаётся надеяться, что Type-C придёт и на мобильные девайсы Apple (и на этом зоопарк с проводами для смартфонов закончится окончательно), хотя шансы на такой апдейт минимальные: зря что ли разрабатывали и патентовали Lightning?


Один из производителей периферии - LaCie - уже успел выпустить для нового макбука стильный внешний накопитель с поддержкой USB 3.1 Type-C.

Что такое USB 3.1 Gen 1 (USB 3.0)?

USB 3.0, третья полноценная версия стандарта Universal Serial Bus (USB), которая была переименована в USB 3.1 Gen 1 организацией USB Implementers Forum (USB-IF). При этом технические характеристики не изменились. USB 3.1 Gen 1 (USB 3.0) обеспечивает простоту использования и подключения без необходимости дополнительной настройки конфигурации, как и предыдущие поколения технологии USB, и при этом отличается в десять раз более высокой скоростью работы и оптимизированным управлением электропитанием. Для пользователей USB 3.1 (SuperSpeed USB) функции подключения устройств к ПК или ноутбукам не отличаются от функций USB 2.0 (Hi-Speed USB).

Какую скорость обеспечивает USB 3.1 Gen 1 (USB 3.0)?


Технология USB 3.1 Gen 1 значительно повышает скорость работы и позволяет осуществлять многопотоковую передачу данных; пиковая пропускная способность достигает 5Гбит/с по сравнению с 480Мбит/с для USB 2.0. Несмотря на то, что в технических характеристиках указана скорость 5Гбит/с, скорость передачи зависит от контроллера и конфигурации флеш-памяти NAND.

В настоящее время в накопителях USB 3.1 Gen 1 используются различные варианты архитектуры и каналов. Чем больше количество каналов, тем выше скорость передачи данных.

Сравнение USB 3.1 Gen 1 и USB 3.1 Gen 2

Организация USB-IF предложила новую спецификацию SuperSpeed USB 10 Gbps под названием USB 3.1 Gen 2. Эта спецификация повышает скорость передачи данных до теоретически доступной скорости 10Гбит/с (или 1,2ГБ/с).


Зачем нужна такая большая скорость?

Накопители USB 3.1 экономят время, передавая файлы быстрее, чем накопители USB 2.0. Разница во времени зависит от количества каналов, скорости передачи и типа передаваемых файлов.


Рис. 1: Сравнение передачи данных при использовании хост-устройства USB 3.1 Gen 1 (USB 3.0) относительно USB 2.0

Зачем мне нужен накопитель USB 3.1, если я использую только разъемы USB 2.0?

Из-за широкой распространенности на рынке устройств USB 2.0 устройства USB 3.1 должны иметь обратную совместимость. При использовании накопителей USB 3.1 с хост-устройствами USB 2.0 все равно будет наблюдаться повышение производительности.


Рис. 2: Сравнение HyperX Savage USB с DTSE9 (USB 2.0)

Накопители USB 3.1 Gen 2 имеют обратную совместимость с портами и разъемами USB 3.0/3.1 Gen 1 и USB 2.0. Даже при использовании накопителей USB 3.1 с хост-устройствами USB 2.0 вы все равно экономите время.

ОГОВОРКИ ОБ ОТКАЗЕ ОТ ОТВЕТСТВЕННОСТИ
*Информация может быть изменена без предварительного уведомления. На основании внутреннего тестирования. Скорости могут отличаться. Накопители отформатированы под NTFS.

БВ чем разница между USB 3.1 и Type-C?

Разница в том, что один является стандартом (USB 3.1), а второй - типом разъема (Type-C). Сейчас постоянно используется несколько стандартных USB-разъемов: Type-A, Mini-B и Micro-B. Такие разъемы есть везде: от ПК и смартфонов до камер GoPro®. Используемый ими стандарт (USB 2.0, USB 3.1 и т.д.) показывает, насколько быстро эти устройства могут передавать файлы.

Вам приходилось встречать человека, который с восторгом говорил: «В моем смартфоне есть Type-C»?

Дебаты о современности и пользе нового интерфейса ведутся достаточно долго. Одни считают его будущим, другие - утопией. Вся беда в том, что обе стороны имеют весомые доказательства своей правоты. Чтобы разобраться в ситуации, необходимо всесторонне изучить вопрос.

Развитие

Не все помнят первый разъем USB Type-A, который по сей день используется в новейших компьютерах, ноутбуках и планшетах. В далеких 90-х годах он имел такую же физическую форму, но другой стандарт - USB 1.1. Если говорить более подробно, были ограничения по скорости передачи данных.

В 2001 году был разработан стандарт 2.0, который является самым распространенным на сегодняшний день. Он обеспечил скорость передачи данных до 480 Мбит/с. В этот момент началась эпоха создания универсального и скоростного разъема для подключения.

Первым общепринятым разъемом, получившим большую популярность и распространение, стал Type-B Mini. Он успешно применяется в телефонах, фотоаппаратах, видеокамерах и позволяет подключить устройства к компьютеру. Однако не стоит считать это большим прорывом, так изменилась только форма, стандарт остался прежним - USB 2.0. Другими словами, скорость передачи не увеличилась.

Стремление минимизировать габариты гаджетов привело к созданию нового Type-B Micro. Он продолжает оставаться главным героем подавляющего количества современной техники, но не может предложить пользователям больших преимуществ.

Настоящим прорывом стала спецификация USB 3.0, которая кардинально поменяла взгляд на многие вещи. Новый интерфейс позволил увеличить скорость передачи данных до 5 Гбит/с. Изменения коснулись и внутреннего строения. В новом 3.0 представлена 9-контактная группа (в 2.0 было всего 4 контакта).

Последним шагом на пути к появлению Type-C стало принятие стандарта 3.1, который остается самым быстрым и эффективным в наши дни. Пользователи получили возможность передавать данные со скоростью до 10 Гбит/с. Новый стандарт также позволяет передавать заряд мощностью в 100 Вт.

Стандарт состоит из 24 пинов: два ряда по 12 штук. 8 пинов интерфейса USB 3.1 применяются для обмена данными с высокой скоростью. Пины B8 и A8 (SUB1 и 2) используются для передачи аналоговых сигналов в наушники (правый и левый), A5 и B5 (СС1 и 2) необходимы для выбора режима питания. Также есть выводы земли (GND) и питания (V+).

Преимущества Type-C

Он не так уж и необходим, а просто является очередной физической модификацией, получившей поддержку USB 3.1. Но не стоит спешить с выводами, так как есть целый ряд преимуществ, которые предлагает новый разъем:

  • Безопасность . Разъем является двусторонним, т.е. можно подключать кабель в любом положении. Это обеспечивает полную безопасность и сохранность гаджета от поломок, которые сопровождаются загнутыми или сломанными контактами.
  • Универсальность . Обеспечена полная совместимость со всеми стандартами старого поколения, начиная с USB 1.1.
  • Независимость . Type-C, поддерживающий USB 3.1, может обеспечивать подключаемые устройства питанием до 100 Вт. Проще говоря, при подключении идет не просто полноценное энергоснабжение, но и подзарядка аккумуляторов других гаджетов, как от « ».
  • Компактность . Разъем имеет очень маленькие габариты, поэтому активно используется в производстве современных и планшетов.

Недостатки

С технической точки зрения USB Type-C практически совершенен. Так почему он до сих пор не стал самым популярным? Почему производители не спешат оснастить им свою технику? Для технического оснащения нет никаких препятствий, однако есть весомые причины, которые тормозят этот процесс.

В первую очередь, он имеет уникальную физическую структуру, поэтому для подключения большинства гаджетов необходимы кабели-переходники, всевозможные разветвители и адаптеры. Если подключаемое устройство не поддерживает USB 3.1, такое подключение просто теряет смысл, так как не будет обеспечена максимальная скорость передачи данных и поддержка питания.

Большинство выпущенной компьютерной, мобильной, аудио- и видеотехники оснащено Type-A, Type-B Mini/Micro, которые не имеют поддержки USB 3.1 или даже 3.0. Массовый переход на USB Type-C снизит спрос на существующие товары, у которых он отсутствует. Независимо от желаний и надежд пользователей, производители осознанно отодвигают эффективную технологию и тормозят ее распространение.

Во-вторых, даже при наличии в двух подключаемых устройствах Type-C получение всех преимуществ может быть недоступно. Это связанно с несовершенной технологией обработки и передачи информации определенных категорий устройств. Например, можно синхронизировать смартфон и персональный компьютер/ноутбук через Type-C. Однако передача данных в обоих направлениях будет ограничена, так как максимальную скорость не сможет обеспечить винчестер.

Да, новая технология доступна, она используется, но до полного перехода пока далеко. Нужно понимать, что в случае полного перехода на USB Type-C придется отправить на утилизацию всю устаревшую технику.

Ежедневно прогресс в сфере информационных технологий только ускоряет свой темп. Растут объемы и скоростные показатели передаваемых данных. Однако, для обеспечения потребностей современного программного обеспечения не стоит забывать о совершенствовании и развитии аппаратной составляющей.

Для передачи данных между устройствами широкое распространение получил разъем USB , появившийся в 1996 году. Однако не все имеют представление, что на сегодняшний день многие современные устройства оснащены уже третьим поколением этого разъема – USB 3.0. В этой статье мы постараемся разобраться какие изменения и усовершенствования «вложили» разработчики в поколение 3.0 и в чем проявляются различия между USB 2.0 и USB 3.0.

Обратная совместимость

В теории устройства, оснащенные портами 3.0, обратно совместимы с тем устройствами, которые имеют разъемы USB предыдущего поколения. Единственным ограничением будет является показатель скорости . В то время как 2.0 будет работать на пределе своих скоростных возможностей, его «старший брат» не будет использовать и половину своих ресурсов.

Увеличение быстродействия

В устаревшем ныне, но все еще широко используемом стандарте USB 2.0 показатель скорости передачи данных был в пределах 460-490 Мбит/с . У нового стандарта 3.0 этот показатель может достигать в 8 раз большего значения – до 5 Гбайт в секунду . Что эти цифры означают для рядового пользователя? А вот что: теперь для передачи больших файлов, таки как фильмы, архивы и прочее, нужно будет затратить в 10 раз меньше времени. Однако, не все так просто. Эти показатели характеризуют только стандарт разъема 3.0, и чтобы передавать, например, файлы на флэш память на высоких скоростях необходима их поддержка так же и микросхемой-контроллером, самой «флешки».

Технические особенности

Как было написано выше, разъемы 2.0 и 3.0 совместимы друг с другом. Но все же существует ряд различий как в конструктивных особенностях, так и в технических характеристиках. Оба разъема, как и прежде имеют четыре контакта в целях взаимной обратной совместимости, однако шнур, используемый совместно с 3 поколение разъема, имеет два дополнительных контакта для организации работы на высоких скоростях, увеличения силы тока, используемую для питания различных устройств, а также для реализации других преимуществ. В результате этого шнур стал немного толще, а его рекомендуемая длина сократилась с пяти до трех метров. Кроме того, шнур стал немного жестче в следствие внедрения в кабель специального экранирующего покрытия для защиты от наводимых в нем электромагнитных полей.


Стоит так же отметить то, что теперь сила тока, присутствующая в разъеме, увеличилась до 950 мА, в то время как в разъеме 2.0 этот показатель составлял 500 мА. В результате чего для зарядки смартфонов и прочих устройств появилась возможность использовать больший ток заряда, что значительно сокращает время необходимое для полного заряда данного класса устройств. Кроме того, количество устройств, одновременно получающих заряд от одного разъема теперь может быть увеличено.

Внешние различия

На первый взгляд различить разъемы USB 2.0 и 3.0 на самом деле очень легко. Все дело в цвете пластмассовой вставки на которой закреплены четыре контакта разъема. В стандарте 3.0 эта пластмассовая вставка имеет синий цвет, иногда даже красный, в то время как в 2.0 – черный или серый. Других внешних различий эти два стандарта не имеют.

Стоимость

Средняя стоимость для флэш памяти, оснащенной USB разъемом стандарта 2.0, примерно составляет около 10$ за объем 8 Гбайт , и 5$ за 4 Гбайт . Эта цена является в принципе не очень дорогой и устраивает большую часть покупателей. Однако за увеличение скорости стоит заплатить и причем не очень-то и мало.

Цена на флэш накопитель с разъемом 3.0 на порядок дороже чем на 2.0. Средняя стоимость составляет 40$ и более . Вот тут-то и должен возникнуть вопрос, а готовы ли вы «выложить» из своего кармана такую сумму за прирост скорости. Если целью покупки является дешевый инструмент для передачи небольших по объему файлов, то выбор стоит все-таки сделать в пользу 2.0, но если скорость является основополагающим фактором использования «флешки» то тут уж не обойтись без возможностей 3.0

Как правильно выбрать

Конечно характеристики разъема 3.0 позволяют получить значительное увеличение скорости , но перед тем как выбрать его для приобретения, необходимо внимательно прочитать прилагаемое к устройству техническое описание. В некоторых случаях бывает так, что устройство оснащено разъемом 3.0, однако центральный процессор (микросхема-контроллер) совсем не рассчитана на работу с такими большими скоростями. Вот и получается вроде бы и разъем синего цвета, но значительного прироста скорости не наблюдается.

Кроме того, наибольшую скорость передачи данных разъем 3.0 может достигать при использовании такого же поколения USB разъема на другом конце провода. Если же с одной стороны работает устройство с разъемом 3.0, а с другой 2.0 то скорость будет ограничена возможностями разъема второго поколения.

Если вы планируете подключать к разъему 3.0, например, такие устройства как компьютерная клавиатура или «мышь», то никаких различий с 2.0 вы так и не почувствуете.

Вывод

Новое третье поколение предлагает массу новых технических возможностей, однако на сегодняшний день за них необходимо платить и платить не так уж и мало. Конечно с течением времени и по мере распространения стоимость на новое поколение разъемов будет снижаться и все устройства будут оснащаться только таким типом разъемов.

Прежде чем приобретать устройства, оснащенные разъемами 3.0, необходимо взвесить все «за» и «против». Нужно ли вам увеличение скорости или достаточно будет тех возможностей, которые предоставляет разъем USB 2.0.