Как отличить smd диод от стабилитрона. Как проверить различные типы диодов тестером – полная инструкция. Цветовая маркировка стабилитрона

Для многих покупателей тока требуются стабилизированные источники питания. Стержневой деталью схем, дающих на выходе стабильное напряжение, является полупроводниковый стабилитрон. Данный элемент обеспечивает идентичную величину выходного напряжения, само­стоятельную от величины потребляемой нагрузкой тока. Проверить исправность и типичную работу этой детали дозволено несколькими методами.

Вам понадобится

  • Лабораторный автотрансформатор (ЛАТР), резистор 10 кОм, выпрямитель на напряжение 120 Вольт, мультиметр.

Инструкция

1. Включите мультиметр в режим проверки диодов. Для этого поверните ручку прибора до того расположения, которое показано на рисунке. Коснитесь итогов стабилитрона щупами мультиметра. После этого поменяйте местами щупы и вновь коснитесь ими итогов стабилитрона. В одном из расположений мультиметр должен показать сопротивление стабилитрона 300 – 600 Ом, в ином расположении на дисплее должна быть цифра 1 в крайнем левом регистре (что обозначает, что измеряемое сопротивление прибора безмерно огромно для данного диапазона измерений мультиметра). В этом случае стабилитрон исправен.

2. Стабилитрон неисправен, если мультиметр в обоих случаях измерений показывает безграничное сопротивление (внутренний обрыв), дюже низкое сопротивление (пробой) либо сопротивление порядка 30 – 500 Ом (полупробой).

3. Для проверки работоспособности стабилитрона соберите такую схему: сетевую вилку выпрямителя на 120 Вольт подключите к лабораторному автотрансформатору. Регулятор лабораторного автотрансформатора поставьте в расположение, соответствующее минимальному напряжению на его выходе. К выходным контактам выпрямителя ступенчато с резистором на 10 кОм подключите стабилитрон (катодом к правильному итогу выпрямителя), параллельно стабилитрону подключите мультиметр, включенный в режим измерения непрерывного напряжения в диапазоне 200 Вольт.

4. Включите лабораторный автотрансформатор. Поворачивая ручку регулировки выходного напряжения автотрансформатора, плавно увеличивайте напряжение на стабилитроне. Единовременно следите за показаниями величины напряжения на дисплее мультиметра. Напряжение должно добиться определенной величины и перестать возрастать. Эта величина и будет напряжением стабилизации стабилитрона. Если она поменьше 20 Вольт, переключите мультиметр в расположение измерения непрерывного напряжения в диапазоне 20 Вольт. Считайте с дисплея мультиметра больше точные показания напряжения стабилизации данного стабилитрона.


Для многих радиолюбительских самоделок необходимы стабилизированные источники питания. Основным их элементом является стабилитрон, который способен обеспечить постоянное выходное напряжение. Проверить работоспособность и функционирование этого радиоэлемента можно несколькими способами.


Полностью его проверить и со 100% уверенностью сказать, что этот стабилитрон исправный цифровым мультиметром нельзя. Его конечно можно проверить , но можно ошибочно посчитать рабочий стабилитрон испорченным. Это разве возможно?.

Проведем небольшой практический эксперимент, возьмем любой стабилитрон с маленьким напряжением стабилизации, например 2,4 вольт. И подсоединим к цифровому мультиметру, а он в обоих направлениях звонится. А весь фокус в том, что на щупах цифрового мультиметра присутствует около 5 вольт, и поэтому в обратном направление его просто пробивает. Поэтому не стоит проверять стабилитроны с низким напряжением стабилизации цифровыми мультиметрами, лучше используйте старый аналоговый тестер, а если его нет можно собрать небольшую схему ниже.

Основным узлом схемы является преобразователь преобразующий 9 вольт в 45 выполненный на микросхеме МС34063. Эта микросхема специально применяется в повышающих, понижающих и инвертирующих преобразователях с минимумом элементов. Напряжение на выходе МС34063, получаемое повышающим преобразователем, задается резисторами R2 и R4. Резистор R5 ограничивает выходной ток до трех миллиампер, чтобы не повредить тестируемый стабилитрон. Вольтметр предназначен для измерения напряжения стабилизации.

Вся схема монтируется на печатной плате. Для подключения к мультиметру приспособил вилку от старого зарядного устройства. Запитал схему от батарейки типа "Крона", которую разместил в боксе и закрепил на плате. Индуктивность намотал на пластмассовой катушке с размерами: внешний диаметр - 15мм, внутренний - 5мм, расстояние между щёчками - 15мм. Провод использовал ПЭЛ, ПЭВ диаметром 0,2мм, наматываем до заполнения.

Предлагаемая приставка к мультиметру позволит проверить главный параметр любого стабилитрона - напряжение стабилизации. Основа схемы блок преобразователя напряжения от калькулятора "Электроника МК-24", который вы врятли захотите использовать по прямому назначению. Блок имеет три вывода: "+", "-" и "VBbo", на корпусе надпись КФ-29. Если на его вход подать 1,5 В на выводе будет напряжение около 15 В. Резистор R1 вместе с тестируемым стабилитроном составляют параметрический стабилизатор напряжения.

К разъемам XS1 и XS2 подключают цифровой мультиметр например М-830 в режиме измерения напряжения. Пока стабилитрон не подключен, мультиметр показывает выходное напряжение преобразователя. Как только подключим испытуемый стабилитрон мультиметр покажет напряжение стабилизации. В случае если вы его подключите как диод, то вы увидете на дисплее 0,7 В. Если при обоих подключениях показывает почти ноль, то стабилитрон пробит. Учтите что стабилитроны с напряжением стабилизации выше 15 вольт проверить не получится.

Если блок-преобразователь от калькулятора найти не получится, можете использовать вот эту схему:


Основа схемы транзистор VT1 и трансформатор Т1 на которых собран блокинг-генератор. Импульсы с выхода транзистора VT1 выпрямляются диодом VD1, через резистор R1 поступают на разъемы XS1 и XS2. .

Трансформатора Т1 собран на ферритовом кольце К10*6хЗ мм магнитной проницаемостью 1000-2000. Первичная обмотка состоит из 20 витков, а вторичная - 10 витков провода ПЭВ-2 0,31

Диод 1N5817 можно заменить на 1N5818, 1N5819.

Схема устройства достаточно проста. Напряжение, поступающее со вторичных обмоток трансформатора на 24 вольта, выпрямляется и на выходе фильтра получается постоянное напряжение 80В, которое подается на стабилизатор напряжения, собранный на элементах (R1, R2, D1, D2 и Q1),с его выхода получается постоянное напряжение 52 Вольта, чтобы не превысить максимум порогового напряжения на микросхеме LM317AHV.



На микросхеме LM317AHV построен генератор постоянного тока, куда введен переключатель S2 с резистором R4, для выработки двух тестовых режимов (5мА и 15мА) в качестве источников тока для тестируемого стабилитрона.

Схему этого устройства для проверки стабилитрона легко повторить используя стандартные и дешевые радиоэлементы. Готовый импульсный блок питания можно позаимствовать из ненужного DVD , а качестве вольтметра можно применить один из дешевых китайских мультиметров, например D-830.

Здравствуйте уважаемые посетители. За сорок лет увлечения радиотехникой скопилась целая куча стабилитронов и отечественных, и импортных, и с маркировкой и без, в связи с этим появилась необходимость в изготовлении приставки для мультиметра для определения целостности и параметров стабилитронов. По крайней мере напряжения стабилизации. На изготовление приставки ушло пару часов, это с травлением платы. За основу взял схемку стабилизатора тока (см. рис. 1)из документации на микросхему LM431, аналог 142ЕН19.

Схема получившейся приставки представлена на рисунке 2. На транзисторе VT1 и микросхеме DA1 142ЕН19 собран стабилизатор тока, при номиналах резисторов, указанных на схеме, ток стабилизации равен примерно семнадцати миллиамперам. В качестве индикатора прохождения тока при измерении с схему включен светодиод. Можно использовать любой светодиод с прямым током не менее 20ма. Для изготовления приставки потребуется сетевая вилка от какой ни будь не нужной китайской хрени(см. фото 1, 2).


Вернее запчасть от нее, показанная на фото 2. Приставка собрана на небольшой печатной платке из стеклотекстолита. Внешний вид платы показан на фото 3 и 4. Конструкция приставки надеюсь тоже понятна. Что бы контактные штыри бывшей сетевой вилки свободно входили в гнезда прибора, припаивают их к платке будучи вставленными в них.

На схеме указано максимально возможное входное напряжение для данных элементов – 35В. Но если при этом напряжении проверять, например стабистор КС107А, то на нем упадет напряжение 0,7В, а 34,3В — I Ur2 упадет на транзисторе VT1. Где I Ur2 – падение напряжения на резисторе R2 = 0,017А 200 = 3,4В. 34,3 – 3,4 = 30,9В – это такое напряжение упадет на транзисторе VT1, отсюда мощность коллектора транзистора составит U I = 30,9В 0,017А? 0,525Вт. Мощность коллектора транзистора КТ503 – 0,35Вт. Так, что замер надо производить очень быстро или заменить транзистор более мощным, или уменьшить напряжение питания приставки, что уменьшит количество марок проверяемых стабилитронов. Ну я думаю вы для себя это решите. Скачать рисунок печатной платы.

Да, ток стабилизации зависит от номинала резистора R2, R2 = 2,5/Iст, где Iст – величина тока стабилизации. До свидания. К.В.Ю.

Еще одно дополнение. С помощью этой приставки можно определять диоды с барьером Шоттки, у которых, как известно маленькое прямое падение напряжения. На снимке показана проверка 1N5819 — с барьером Шоттки. Uпр. = 0,24В. Отлично!

Всех приветствую на станицах сайта посвящённых электроники, сегодня изучим способ, как определить номинал стабилитрона . Это статья немного дополняет , не менее важную страницу. Для определения рабочего напряжения стабилитрона, маркировка которого не вида, затёрта или просто очень мелко написана, задача выполнимая любому начинающему ремонтнику электроники.

Как узнать напряжение стабилизации неизвестного стабилитрона

Перебирая скопившиеся радиоэлементы, я набрал внушительное количество стабилитронов, некоторые были без опознавательных знаков. Подобная незадача и подтолкнула, написаю данной инструкции. Для внесения порядка на рабочем столе. Сегодня рассмотрим пару способом определения номинала стабилитрона.

Устройство для определения напряжения стабилизации неизвестного стабилитрона

Схема данного устройства, очень проста в использовании и изготовлении, сейчас поясню принцип её работы.
Для этого нам необходимо, блок питания с регулировкой напряжения и его индикации, если такого нет в наличии, ниже рассмотрим способ проверки без него. Плюс ко всему необходим ограничительный резистор номиналом от 1 до 2 кОм и соединительные провода.

На фото все видно наглядно, к блоку питания с регулировкой последовательно подключается ограничительный соответствующего номинала, далее подключаем сам испытуемый стабилитрон, катодом к плюсу. После, замыкаем цепь на отрицательный вывод блока питания. Параллельно неизвестному стабилитрону, подключаем в режиме измерения напряжения.

Будет очень хорошо, если ваш лабораторный блок питания имеет встроенную защиту от короткого замыкания, в некоторых случаях это, спасёт вас от лишнего ремонта. Начинаем потихоньку, добавлять выходное напряжение, и смотрим за изменением на дисплее мультиметра.

Для определения напряжения стабилитрона, мы возьмём 1N4742A очень распространённая модель. Для любопытных, его аналогом является С12 5Т, они стабилизируют 12 вольт. Подключаем всё согласно схеме и регулируем источник питания, мой имеет придел 14 вольт. Всё работает отлично и небольшими погрешностями приборов, но в целом всё нормально.


Подобным способом можно проверить любой стабилитрон, насколько вам позволит выбранный источник питания. Способ действительно хороший и простой.

Как узнать, насколько стабилитрон без регулируемого блока питания

Это действительно сложнее, но в некоторых случаях под силу. Можно использовать зарядное устройство для сотового телефона, или , зарядное устройство для автомобильного аккумулятора. Но лучше всего, иметь в наличии несколько батареек, из них постепенно собираем батарею и меряем напряжение на них и сравниваем с напряжением на стабилитроне, бюджетный вариант, но рабочий. Главное условие, без мультиметра, не обойтись. Интересуйтесь подобными вопросами, и сложности станут под силу.

Сегодня мы научились способам, как определить номинал стабилитрона, у кого есть соображения поэтому и другим вопросам, пишите, все почитаем и обсудим.

Стабилизаторы напряжения – это электронные приборы со сложным устройством, а значит, они имеют разные накладки в функционировании и возможные неисправности. Существуют разные казусы в их работе, которые связаны с наибольшими нагрузками, а есть и настоящие поломки. Эти понятия следует отличать, для чего существует несколько советов.

В первую очередь, рассмотрим, чем можно произвести качественную проверку работы этого устройства. Наиболее верным методом контроля качества устройства является обычный вольтметр, которым можно измерить напряжение в сети квартиры, а также напряжение на выходе прибора. В домашней розетке напряжение способно колебаться в интервале 170-240 вольт, а на выходе стабилизирующего прибора оно должно равняться .

Но простым методом проверки действия стабилизатора напряжения пользуются далеко не все, так как доверяют данным по индикатору. Но это доверие не всегда оправдывается, а иногда на китайских приборах цифровой индикатор просто подключен непосредственно к реле. В этом случае реле имеют достаточно большой шаг, и он всегда будет показывать 220 В. По факту на выходе будет совсем другое значение.

Как проверить электрический стабилизатор

Эта проверка выполняется довольно просто. Для этого необходимо взять следующие устройства:

  • Две настольные лампы.
  • Стабилизатор.
  • Электрическую плитку.
  • Удлинитель питания с 3-мя гнездами.

Порядок проверки:

  1. Вставить вилку удлинителя в домашнюю розетку.
  2. Стабилизатор подключить к удлинителю.
  3. К стабилизатору подключить настольную лампу на 60 Вт.
  4. Подключить электрическую плитку к удлинителю.

Если стабилизатор функционирует нормально, то работа плитки не повлияет на свет лампочки, а ели лампу подключить напрямую к удлинителю, то при включении плитки свет станет слабее. Это объясняется тем, что мощный потребитель в виде плитки значительно снижает напряжение и лампа, подключенная к сети до прибора, станет выдавать меньше света. Но лампа, питающаяся после стабилизатора напряжения, не будет реагировать на повышение нагрузки.

Поэтому может возникнуть такая ситуация, что при уменьшении напряжения на выходе стабилизатора напряжения мощности будет достаточно для вращения барабана, но недостаточно для нагревания воды. В этом случае необходимо выключить все лишние потребители и налить в машину, отдельно нагретую воду.

Проверка стабилитрона мультиметром

Такой электронный элемент, как стабилитрон, внешне похож на диод, но использование его в радиотехнике несколько другое. Чаще всего стабилитроны применяют для стабилизации питания в маломощных схемах. Они включаются по параллельной схеме к нагрузке. При работе с чрезмерно высоким напряжением стабилитрон через себя пропускает ток, сбрасывая напряжение. Эти элементы не способны работать при больших токах, так как они начинают греться, что приводит к тепловому пробою.

Порядок проверки

Весь процесс сводится к тому, как проверяют диоды. Это делается обычным мультиметром в режиме проверки сопротивления или диода. Исправный стабилитрон может проводить ток в одном направлении, по аналогии с диодом.

Рассмотрим пример проверки двух стабилитронов КС191У и Д814А, один из них неисправный.

Сначала проверяем диод Д814А. При этом стабилитрон по аналогии с диодом пропускает ток в одну сторону.

Теперь проверяем стабилитрон КС191У. Он заведомо неисправен, так как совсем не может пропускать ток.

Проверка микросхемы стабилизатора

Требуется собрать стабилизирующие цепи для питания устройства на микроконтроллере PIC 16F 628, который нормально работает от 5 В. Для этого берем , и на ее базе по схеме из даташита выполняем сборку. Подается напряжение, а на выходе получается 4,9 В. Этого хватает, но упрямство берет верх.

Достали коробку с интегральными стабилизаторами, и будем измерять их параметры. Чтобы не сделать ошибки, кладем перед собой схему. Но при проверке микросхемы оказалось, что на выходе всего 4,86 В. Здесь необходим какой-либо пробник, чем и займемся.

Схема пробника для проверки микросхемы КРЕН

Эта схема уступает предыдущей компоновке.

Конденсатор С1 удаляет генерацию при ступенчатом подключении входного напряжения, а емкость С2 предназначена для защиты от импульсных помех. Величину ее берем 100 микрофарад, напряжение по величине стабилизатора напряжения. Диод 1N 4148 не дает возможность конденсатору разрядиться. Входное напряжение стабилизатора должно превышать напряжение выхода на 2,5 В. Нагрузку следует выбирать в соответствии с тестируемым стабилизатором.

Остальные элементы пробника выглядят следующим образом:

Контактные площадки стали местом монтажа элементов схемы. Корпус получился компактным.

На корпусе установили кнопку питания для удобства пользования. Штыревой контакт пришлось доработать путем изгибания.

На этом пробник готов. Он является своеобразной приставкой к мультиметру. Вставляем в гнезда штыри пробника, границу измерения устанавливаем на 20 В, провода соединяем с блоком питания, регулируем напряжение на 15 В и нажимаем кнопку питания на пробнике. Прибор сработал, на экране отображается 9,91 вольта.