Исследование подавителя импульсных помех. Подавление помех от импульсных источников питания

Специальность 221600

Cанкт-Петербург

1. ЦЕЛЬ РАБОТЫ

Целью настоящей работы является изучение принципа работы и опре­деление эффективности подавителя импульсных широкоспектральных помех.

2. КРАТКИЕ СВЕДЕНИЯ ИЗ ТЕОРИИ

Основными методами защиты радиоприемных устройств от импульс­ных широкоспектральных помех являются:

а) внеприемные - применение узконаправленных антенн, вынесение ан­тенны из зоны действия импульсных помех и подавление помех в месте их возникновения;

б) схемные - различные способы обработки смеси полезный сигнал - импульсная помеха с целью ослабления мешающего воздействия.

Одним из эффективных схемных способов борьбы с импульсными по­мехами является применение схемы широкая полоса - амплитудный ограни­читель - узкая полоса (схема ШОУ). Такая схема часто используется в радио­связи.

В настоящей работе исследуется схема ШОУ для двух случаев:

а) полезный сигнал представляет собой видеоимпульсы;

б) полезный сигнал является непрерывным радиосигналом с амплитуд­ной модуляцией.

Структурные схемы для этих случаев представлены на рис. 1 а и 1б со­ответственно. В первом случае схема ШОУ расположена после амплитудного детектора АД, во втором - в тракте радиочастоты до АД.

Схема ШОУ, представленная на рис. 1а, включает последовательно со­единенные широкополосный видеоусилитель, амплитудный ограничитель и узкополосный видеоусилитель. На вход схемы: с детектора поступает смесь сигнал - помеха (рис.2а), причем длительность сигнала намного превышает длительность помехи (tc>>tп), а амплитуда помехи существенно больше ам­плитуды сигнала (Uп>>Uc). Широкополосный усилитель предназначен для усиления входной смеси до уровня, обеспечивающего нормальную работу ограничителя. Полоса пропускания усилительного тракта до ограничителя выбирается такой, чтобы избежать существенного увеличения длительности импульса помехи (рис.2б). Порог ограничения немного выше уровня полез­ного сигнала, поэтому после ограничения уровни сигнала и помехи становят­ся почти равными (рис. 2в). Узкополосный видеоусилитель (или фильтр) вы­полняет роль интегратора, постоянная времени которого согласована с дли­тельностью сигнала и намного превышает длительность помехи. Ввиду того, что tc>>tп, сигнал на выходе фильтра успевает вырасти до своего амплитуд­ного значения, а помеха - нет (рис. 2г). Таким образом, отношение сиг­нал/помеха на выходе схемы ШОУ резко возрастает.

Оценим выигрыш в соотношении сигнал/помеха при использовании схемы ШОУ. На входе схемы присутствуют сигнал с амплитудой Uc и дли­тельностью tc и помеха с прямоугольной огибающей (Uп, tп). Роль интегри­рующей выполняет RC - цепь первого порядка с переходной характеристикой вида

h (t )=1- exp (- t п / t RC ) (1)

где tRC = RC - постоянная времени фильтра.

Из теории известно, что длительность нарастания сигнала до уровня 0.9 Uc для такой цепи определяется соотношением

tн =2.3 t RC (2)

Уровень помехи на выходе амплитудного ограничителя Uп = Uогр, где Uогр - порог ограничения, а уровень полезного сигнала и помехи на выходе схемы соответственно

Uc вых =0,9 UcK (3)

U пвых = U огр К (4)

где К - коэффициент усиления схемы. Отношение сигнал/помеха по напряжению на выходе схемы ШОУ

h вых =(Uc / U п )вых=0,9* U с /(U огр ) (5)

Выигрыш от использования схемы определяется соотношением

(6)

или, с учетом (5),

q 1 =0.9* U п /(U огр (1/)) (7)

Так как t п << t RC и t с =2,3 t RC , то

q 1 =(0.9* U п / U огр )*( t с /2,3 t п ) » 0.4( U п / U огр )*( t с / t п ) (8)

При выключенной схеме ШОУ (ограничитель отключен) уровень по­мехи на выходе

U пвых = U п K (9)

При этом отношение сигнал/помеха на выходе

h вых =(Uc / U п )вых=0,9* U с /(U п ) (10)

а выигрыш, получаемый за счет "узкополосности" выходного фильтра, согласованного по полосе с полезным сигналом, равен

q 2=[ h вых / h вх ]ШОУвыкл=0,9/ (11)

Относительный выигрыш, получаемый при использовании схемы ШОУ, определяется как соотношение

n = q 1/ q 2 (12)

После подстановки (7) и (11) в (12) и, учитывая соотношения

n << t RC и t с =2,3 t RC , , имеем

n = q 1/ q 2 = U п / U огр (13)

В схеме ШОУ (рис. 16) широкополосным усилителем являются резо­нансные каскады усилителя промежуточной частоты (УПЧ) с полосой про­пускания много шире ширины спектра полезного сигнала. УПЧ расположен до ограничителя. В качестве интегратора используется каскад УПЧ после ог­раничителя, причем полоса пропускания этого каскада согласована с шири­ной спектра полезного сигнала. Чтобы избежать ухудшения помехоустойчи­вости приемника из-за расширения полосы пропускания каскадов УПЧ до ог­раничителя, схему ШОУ располагают как можно ближе ко входу приемника.

3. ОПИСАНИЕ ЛАБОРАТОРНОЙ УСТАНОВКИ

Структурная схема лабораторной установки для исследования подави­теля помех представлена на рис. 3. В состав лабораторной установки входят:

1. Генератор стандартных сигналов (ГСС);

2. Осциллограф;

3. Лабораторный макет подавителя помех.

Структурная схема установки приведена на рис. 4. Схема содержит имитатор смеси сигналов и помех и схему ШОУ. Амплитудно-модулированное колебание (АМК) от ГСС подается на вход имитатора смеси сигнала и импульсной помехи. АМК имеет следующие параметры:

а) амплитуда Um = 100 мВ;

б) несущая частота fo == 100КГц;

в) частота модуляции fm = 1 КГц. Имитатор вырабатывает следующие сигналы:

Sam - полезное АМК;

Sи - импульсный полезный сигнал;

Sп - импульсная помеха прямоугольной формы;

Spп - радиоимпульсная помеха с прямоугольной формой огибающей.

СИНХР - синхроимпульс осциллографа. На передней панели лабораторного макета предусмотрена возможность включения имитируемых сигналов и помех тумблерами "Сигнал вкл" и "По­меха вкл" соответственно. Полезный импульсный сигнал смешивается с им­пульсной помехой в сумматоре å1, а непрерывный полезный сигнал с AM и радиоимпульсная помеха - в сумматоре å2. Смесь полезного сигнала с поме­хой поступает на две схемы ШОУ, предназначенных для работы, как на ви­деочастоте, так и на радиочастоте. Переключение схем осуществляется пере­ключателем "Saм-Sи", расположенном на передней панели макета. Первая схема содержит широкополосный видеоусилитель (ШВУ), ограничитель, на диодах VD1, VD2 и узкополосный фильтр (УФ1), реализованный RC-цепочкой. Вторая схема содержит широкополосный усилитель, ограничи­тель, узкополосный фильтр (УФ2) и детектор АМК. УФ2 представляет собой колебательный контур L1 Ск1 Ск2, полоса пропускания которого согласована с

шириной спектра АМК. Ограничитель включается тумблером "ВКЛ ПП". Переключатель контрольных точек на три положения (1, 2, 3) позволяет при помощи осциллографа наблюдать сигналы на входе схемы ШОУ, на входе ограничителя и на выходе схемы.

4. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

3.1. Ознакомиться с принципом работы подавителя помех и составом ис­пользуемой аппаратуры.

3.2. Исследование подавителя помех при наличии импульсного полезного сигнала.

3.2.1. Подготовка к работе:

Установить на выходе ГСС сигнал со следующими параметрами:

а) амплитуда - 100 мВ;

б) частота - 100 КГц;

в) глубина модуляции - 30 %.

Включить макет, установить переключатель "Sам-Sи" в положение Sи, переключатели "Помеха вкл", "Сигнал вкл" - в положение включено, переключатель контрольных точек - в положение 1.

3.2.2. Измерения:

Измерить при помощи осциллографа параметры сигнала и помехи на входе схемы (амплитуды сигнала Uc и помехи Uп; длительность сигна­ла tс и помехи tп);

Вычислить отношение сигнал/помеха по напряжению на входе схемы;

Наблюдать сигнал в контрольных точках схемы при включенном и вы­ключенном подавителе помех, отключая ограничитель тумблером "Вкл ПП";

Измерить отношение сигнал/помеха на выходе схемы при включенном и выключенном подавителе помех;

По результатам измерений определить относительный выигрыш и сравнить с расчетным;

Зарисовать осциллограммы в контрольных точках схемы при включен­ном и выключенном подавителе.

3.3.Исследование подавителя помех при приеме непрерывного сигнала сAM.

3.3.1. Подготовка к работе:

Установить переключатели в следующие положения:

a)"Sам-Sи"-Sам

б) "Сигнал вкл" - включено;

в) "Помеха вкл" - выключено;

г) контрольных точек - 3;

изменяя частоту генератора в пределах 100кГц, добиться мак­симального сигнала на выходе детектора. Наблюдение вести по экра­ну осциллографа.

3.3.2 Измерения:

Наблюдать сигнал в контрольных точках схемы при включенном и вы­ключенном подавителе помех, отключая ограничитель тумблером "Вкл ПП",

Измерить отношение сигнал/помеха на входе схемы (контрольная точка 1);

Измерить отношение сигнал/помеха на выходе схемы (контрольная точка 3) при включенном и выключенном подавителе;

Примечание, уровни полезного сигнала и помех на входе и выходе схемы измеря­ются раздельно (включение сигнала и помехи осуществляется тумблерами "сигнал вкл" и "помеха вкл");

По результатам измерений определить выигрыш в отношении сиг­нал помеха при использовании схемы ШОУ и относительный выиг­рыш.

структурная схема исследуемого подавителя помех;

осциллограммы сигналов в контрольных точках схемы;

расчет ожидаемого выигрыша в отношении сигнал/помеха при приеме видеосигналов;

экспериментальные данные об эффективности подавителя помех для видео и радиосигналов.

ЛИТЕРАТУРА

Защита от радиопомех. , и др.; Под ред. М.: Сов. радио, 1976

Фильтр подавления электромагнитных помех (10+)

Фильтр высокочастотных электромагнитных помех

Причина возникновения высокочастотных импульсных помех банальна. Скорость света не бесконечна, и электромагнитное поле распространяется со скоростью света. Когда у нас есть устройство, как-то преобразующее сетевое напряжение путем частых переключений, мы ожидаем, что в проводах питания, идущих к сети, будут возникать пульсации токов, направленных навстречу друг другу. По одному проводу ток втекает в прибор, по другому - вытекает. Но все совсем не так. За счет конечности скорости распространения поля импульс втекающего тока сдвинут по фазе относительно вытекающего. Таким образом, на некоторой частоте высокочастотные токи в сетевых проводах текут сонаправленно, синфазно.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!

Импульсные блоки питания (ИБП), построенные на основе преобразователей постоянного (выпрямленного сетевого) напряжения в переменное, генерируют нежелательные помехи. На коллекторах (стоках) силовых ключей контролеров ИБП присутствует напряжение, близкое по форме к прямоугольному, размахом, достигающим 600...700В. Кроме того, в ИБП существуют замкнутые цепи, по которым циркулируют импульсные токи с достаточно крутыми фронтами и спадами (0,1... 1 мкс) и амплитудой до 3...5А и более.

Вообще говоря, ШИМ-преобразователи, которые работают с постоянной частотой переключений, генерируют помехи в известной полосе частот, что облегчает задачу их подавления и является одной из причин их широкого применения в схемах импульсных БП бытовой техники .

Однако, импульсные блоки питания , независимо от типа применяемого ШИМ-преобразователя, должны быть оснащены схемами подавления двух основных видов помех. Этими помехами являются входная несимметричная (дифференциальная) и входная симметричная (синфазная) помехи.

Механизмы возникновения, распространения и методы борьбы в импульсных блоках питания с данными помехами рассмотрим на примере соответствующих эквивалентных схем преобразователей.

Рис.1 Возникновение несимметричной помехи

Входная несимметричная помеха является шумовым током, протекание которого обусловлено разностью напряжений Vin между двумя входными проводниками (рис. 1). Ключевой транзистор преобразователя представлен на рисунке в виде переключателя Fs, который последовательно включается и выключается с частотой пдэекточения преобразователя. Нагрузка изображена в виде переменного резистора R L , сопротивление которого изменяется в зависимости от тока нагрузки. Пассивные элементы L и С соответствуют входному фильтру, встроенному в преобразователь. Кроме того, практически все преобразователи оснащены входным конденсатором Cь, а некоторые также имеют, по крайней мере, небольшую последовательную индуктивность (дроссель), учитываемую в импедансе источника Zs (в Zs также учтена собственная индуктивность сглаживающего электролитического конденсатора сетевого выпрямителя).

Эффективное подавление несимметричной помехи достигается посредством шунтирующего действия конденсатора Сь, который должен иметь высокое качество и характеризоваться малыми эквивалентными последовательными индуктивностью (ЭПИ) и сопротивлением (ЭПС) в соответствующем диапазоне частот (обычно в области частот переключения и выше). В реальных схемах Сь обычно представляет собой конденсатор постоянной емкости 0,1... 1,0 мкф, шунтирующий электролитический конденсатор сетевого выпрямителя. В выпрямителе одновременно стремятся применять высококачественные, как правило, танталовые, электролитические конденсаторы с малыми ЭПИ и ЭПС.

Симметричная помеха подавляется с помощью симметрирующего трансформатора, который представляет собой катушку индуктивности с двумя обмотками, имеющими одинаковое число витков. Она обладает высоким импедансом для симметричного тока, но практически нулевым для несимметричного.

Несимметричный ток (включающий потребляемый ток) втекает в верхнюю обмотку трансформатора и вытекает из нижней. Поскольку токи через эти обмотки равны по величине и противоположны по направлению, а число витков в обмотках одинаково, результирующий магнитный поток в сердечнике, обусловленный несимметричным током, оказывается равным нулю, хотя величина потребляемого тока может быть очень велика. Благодаря этому в симметрирующем трансформаторе обычно используют сердечник с высокой магнитной проницаемостью без воздушного зазора. Причем он имеет достаточно высокую индуктивность для симметричного тока при использовании обмоток всего в несколько витков. Значительно меньший по величине ток симметричной помехи протекает в основном через нижнюю обмотку, а также и через верхнюю в одном и том же направлении. Следовательно, симметрирующий трансформатор обладает высоким импедансом для токов симметричной помехи.

В качестве дополнительных мер подавления помех в импульсных БП применяются следующие :

Перечисленных мер, как правило, оказывается достаточно, и поэтому в бытовой аппаратуре импульсные БП обычно применяются без экранирующих кожухов.

Рис.3 Типовая схема сетевого фильтра и выпрямителя

Некоторые из рассмотренных способов борьбы с помехами в ИБП иллюстрируются на примере типовой схемы сетевого выпрямителя (рис. 3), применяемого в конструкциях ВМ и ТВ. Конденсаторы С5...С8, установленные параллельно диодам Д1...Д4 мостового выпрямителя сетевого напряжения служат для подавления несимметричных помех. Эту же роль выполняют конденсаторы С1,2, которые симметрируют потенциалы сетевого провода относительно шасси радиоэлектронной технике.

Под импульсными наводками понимаются различные виды помех, создаваемых скачками постоянного или переменного напряжения или тока, происходящими в любых цепях и приборах. К импульсным наводкам относятся:

непосредственная наводка видеоимпульсов;

ударноевозбуждениевысокочастотных устройстввидеоимпульсами или прохождение через них спектра частотвидеоимпульсов, получающихсявспециальныхгенераторах, подсобных цепях различных устройстви телевизорах;

ударноевозбуждениевысокочастотных устройств, возникающее при работе коллекторных моторов, реле, выключателей, телефонных аппаратови другой контактнойаппаратуры;

ударноевозбуждениевысокочастотных устройстввидеоимпульсами, получающимися в результате детектирования импульсов высокой

частоты в перегруженных усилительных каскадах и в других нелинейных сопротивлениях.

Источники и пути прохождения таких наводок были рассмотрены в § 1-7, 1-8, 1-9, 1-10, 1-11, 1-12.

Первым этапом работы по подавлению импульсных наводок является выяснение конкретных их источников и путей связи с приемником наводок.

Для этого необходимо:

а) Поочередно выключать всевозможные цепи и части устройств до полного исчезновения помехи или ее уменьшения.

б) Уменьшать крутизну скачков, подключая сглаживающие фильтры к различным точкам, в которых наблюдаются скачки, добиваясь этим уменьшения наводки и измененияформынаводимогоимпульса.

в) Увеличивать длительность импульсов в различных цепях, наблюдая, как они искажаются на выходе приемника наводки с тем, чтобы выяснить, не происходит ли их дифференцирование или интегрирование (если они поступают непосредственно на видеоусилитель) или разделение на два (если они проходят через усилитель высокой или промежуточной частоты и де-

тектор), рис. 1-18 и1-29.

г) Выключать в приемнике наводки последовательно, начиная от входа (антенны), различные каскады и другие цепи, добиваясь исчезновения наводки.

д) Шунтировать конденсатором большой емкости с короткими выводами различные цепи, по которым может передаваться наводка, и добиваться ее

уменьшения.

В результате первого этапа работы должна быть составлена четкая схема, хотя бы одного канала связи, по которому проходит помеха. При этом должны быть известны источник наводки, его выход, цепи связи, вход приемника, цепииметодыпрохожденияимпульсавприемникенаводки.

Вторым этапом работы является внесение в прибор изменений, необходимых для подавления наводки. При этом нужно иметь в виду, что в зависимости от характера импульсных наводок они подавляются следующими способами.

Для подавления наводки от видеоимпульсов и других скачков постоянного напряжения, поступающих непосредственно на видеоусилители, усилители низкой частоты и другие устройства без резонансных усилителей высокой частоты по одной из схем рис. 1-28, необходимо ввести дополнительные детали, ослабляющиесвязьмеждуисточником и приемником наводки

2. Наводка от стробирующих видеоимпульсов, подаваемых на усилители высокой частоты для управления усилением, получается вследствие резких скачков анодного тока управляемых ламп, приводящих к ударному возбуждению контуров усилителя. Для подавления такой наводки необходимо снижать крутизну краев стробирующих импульсов. Если такое сглаживание управляющего импульса недопустимо, то единственным способом подавления наводки будет применение в управляемых каскадах усилителя высокой частоты двухтактных схем сподачей стробимпульсанасреднюю точку сеточнойобмоткитрансформатора.

3. Все другие виды ударного возбуждения усилителей высокой частоты (радиоприемников) видеоимпульсами и любыми скачками постоянного напряжения возникают большей частью путем проникновения помех на входные цепи усилителя (антенну) вместе с полезными сигналами. Подавление таких наводок производится у источника в первую очередь включением фильтров в цепи питания источника наводки и экранированием в

нем сети питания, как разобрано в предыдущем параграфе.

В редких случаях близкого расположения источника подобной наводки с ее приемником (на расстояниях 1 м и менее), кроме фильтров, может понадобиться полное экранирование источника помещением его в металлический кожух (например, экранирование реле, находящегося у антенного ввода радиоприемника) или частичное экранирование внутренних элементов источника (например, экранирование графитового покрытия электроннолучевой трубки в телевизорах, рекомендуемое в литературе

туре.

4. При подавлении наводки высокочастотных импульсов, поступающих на усилитель высокой частоты, не настроенный на несущую частоту импульсов, необходимо, чтобы в элементах приемника наводки не происходило детектирования мешающих импульсов, т. е. чтобы приемник наводки не перегружался и работал в линейном режиме. Для этого нужно снижать напряжение помехи в цепи, находящейся перед первым нелинейным элементом приемника (лампой или полупроводниковым детектором). Избирательность преселектора, состоящего из одного или двух контуров, оказывается недостаточной при подаче на него высокочастотных импульсов большоймощности.

Если радиоприемник заново проектируется для совместной работы с мощными импульсными генераторами высокой частоты, то он должен быть снабжен специальным многоконтурным преселектром, обеспечивающим большое ослабление сигналов любых частот, кроме входящих в полосу пропускания приемника. Если же требуется приспособить готовый радиоприемник дляуказанной цели, то можно получить хороший результат, если добавить в вод антенны одноили двухячеечный фильтр, рассчитанный на ослабление несущей частоты мешающих импульсов.

Трудности в разработке такого фильтра заключаются в том, что он должен одновременно удовлетворять двум требованиям: не ухудшать показатели приемника и давать достаточно большое ослабление помехи. Если мешающие импульсы имеют весьма высокую несущую частоту, то достаточно незначительной емкостной связи внутри приемника между любыми проводами, входящими в приемник извне, и деталями высокочастотной части приемника, чтобы мешающий импульс поступил помимо преселектора или ан-

тенного фильтра. Поэтомув приемниках, работающих в таких условиях, необходимо иметь фильтрующие ячейки в местах ввода любых проводов, включая телефонный шнур в приемнике радиосвязи.

5. Уровень ударного возбуждения высокочастными импульсами весьма невысок (§ 1-10 и 1-11). Поэтому такая помеха поступает на приемник наводки только через антенный ввод на тех же частотах, что и полезные сигналы. Единственным способом подавления этой наводки является ограничение спектра частот, излучаемого импульсным генератором высокой частоты.

4-9. ПРИМЕНЕНИЕ ДВОЙНЫХ ЛАМП

Среди собранных в одном баллоне двойных ламп имеется большое число триодов (буква Н на втором месте условного обозначения) и несколько типов триод-пентодов (букваФ на втором месте условного обозначения). Конструкции отдельных типов двойных ламп выполнены различно. В некоторых типах ламп между частями лампы имеется экран с отдельным выводом, в других конструкциях экран соединен с одним из катодови

в третьих - экран отсутствует вовсе.

В технических условиях на двойные лампы большей частью оговаривается емкость между анодами или между анодом одной половины и сеткой другой половины. Величина этих емкостей колеблется в пределах 0,02- 0,5 пф в зависимости от типа лампы. Они являются звеном, связывающим цепи, в которые включены различные половины одной лампы. В технических условиях на некоторые типы двойных ламп величины связывающих емкостей не оговорены вовсе. При этом они могут быть довольно велики и могут изменяться от экземпляра к экземпляру в широких пределах.

Кроме емкостной связи, между отдельными частями двойной лампы может существовать связь за счет электронного потока, проникающего через щели и отверстия в конструкции лампы из одной половины на электроды другой половины. Этот вид связи техническими условиями не предусмотрен, хотя иногда и может оказаться недопустимым.

В результате разбора влияния обоих видов связи можно дать следующие рекомендации по применению двойных ламп. Лучше всего такие лампы работают в схемах с сильной связью обеих частей друг с другом: мультивибраторы, кипп-реле, триггеры, блокинг-генераторы с пусковой лампой, двухфазные и двухтактные усилители, преобразователи частоты, состоящие из смесителя и гетеродина, и т. д. Хорошо работают двойные лампы в двух соседних усилительных каскадах на не очень высоких частотах. При ис-

Применение двойных ламп в двух разных каналах радиоприбора в принципе нежелательно и к нему следует прибегать только в случаях крайней необходимости. При этом следует сравнить уровни переменных напряжений и мощностей в обоих совмещаемых элементах. Чем меньше отличаются друг от друга эти уровни, тем более вероятно, что применение двойной лампыпройдет безболезненно.

ными проводами также представляет собой СВЧ резонансный контур, настроенный емкостью сетка- катод.

Оба контура связаны через емкость сетка - экранирующая сетка Сg1,2 , играющую здесь роль проходной емкости.

Таким образом, схема цепей катода, эк- Рис. 4-23. Генерация усилительного ранирующей и управляющей сеток экви-каскада на СВЧ.

валентна схеме генератора на триоде со связью через внутриламповую проходную емкость. При благоприятном (с

возникаетгенерация.

Возникнув в промежуточных каскадах, эта генерация может явно не проявиться, а повлиять на такие обычно редко контролируемые параметры, как анодный ток отдельных ламп, линейность амплитудной характеристики т. д. Иногда эта же генерация, изменяя режим работы усилителя, может послужить причиной обратных связей по основной частоте. С уничтожением такой генерации одновременно пропадет искажение частотных характеристик усилителя.

Подобная

генерация

особенно

возникает в выходных каскадах усилителей

видеоусилителей,

собираемых

на мощных

пентодах или

родах при параллельном соединении двух и

с анодной

катодной

нагрузкой.

Здесь (рис. 4-24)

соединительные провода между управляющими

и экранирующими сетками обеих ламп пред-

Рис. 4-24. Генерация усили-ставляют собой

симметричной

тельного каскада на СВЧ при нии,

включенной

по двухтактной схеме,

параллельномсоединенииламп.

применяемой обычно в генераторах ультрако-

роткихволн.

Такую же схему двухтактного генератора СВЧ легко увидеть в схеме катодного повторителя с параллельным выключением ламп, если учесть индуктивности и емкости соединительных проводов между анодами и между сетками.

Несколько легче обнаруживается генерация на СВЧ в мощных усилительных каскадах низкой частоты по свечению неоновой лампы. Для проведения такого эксперимента лампочку небольших размеров прикрепляют к

Импульсные источники питания, тиристорные регуляторы, коммутаторы, мощные радиопередатчики, электродвигатели, подстанции, любые электроразряды вблизи линии электропередач (молнии, сварочные аппараты, и т.д.) генерируют узкополосные и широкополосные помехи различной природы и спектрального состава. Это затрудняет функционирование слаботочной чувствительной аппаратуры, вносит искажения в результаты измерений, вызывает сбои и даже выход из строя как узлов приборов, так и целых комплексов оборудования.

В симметричных электрических цепях (незаземленные цепи и цепи с заземленной средней точкой) противофазная помеха проявляется в виде симметричных напряжений (на нагрузке) и называется симметричной, в иностранной литературе она называется «помехой дифференциального типа» (differential mode interference). Синфазная помеха в симметричной цепи называется асимметричной или «помехой общего типа» (common mode interference).

Симметричные помехи в линии обычно преобладают на частотах до нескольких сотен кГц. На частотах же выше 1 МГц преобладают асимметричные помехи.

Довольно простым случаем являются узкополосные помехи, устранение которых сводится к фильтрации основной (несущей) частоты помехи и ее гармоник. Гораздо более сложный случай — высокочастотные импульсные помехи, спектр которых занимает диапазон до десятков МГц. Борьба с такими помехами представляет собой довольно сложную задачу.

Устранить сильные комплексные помехи поможет только системный подход, включающий в себя перечень мер по подавлению нежелательных составляющих питающего напряжения и сигнальных цепей: экранирование, заземление, правильный монтаж питающих и сигнальных линий и, конечно же, фильтрацию. Огромное количество фильтрующих устройств различных конструкций, добротности, области применения и т.д. выпускаются и используются во всем мире.

В зависимости от типа помех и области применения, различаются и конструкции фильтров. Но, как правило, устройство представляет собой комбинацию LC-цепей, образующих фильтрующие каскады и фильтры П-типа.

Важной характеристикой сетевого фильтра является максимальный ток утечки. В силовых приложениях этот ток может достигать опасной для человека величины. Исходя из значений тока утечки, фильтры классифицируются по уровням безопасности: применения, допускающие контакт человека с корпусом устройства и применения, где контакт с корпусом нежелателен. Важно помнить, что корпус фильтра требует обязательного заземления.

Компания TE-Connectivity, основываясь на более чем 50-летнем опыте компании Corcom в проектировании и разработке электромагнитных и радиочастотных фильтров, предлагает широчайший спектр устройств для применения в различных отраслях промышленности и узлах аппаратуры. На российском рынке представлен ряд популярных серий от этого производителя.

Фильтры общего назначения серии B

Фильтры серии В (рисунок 1) — надежные и компактные фильтры по доступной цене. Большой диапазон рабочих токов, хорошая добротность и богатый выбор типов присоединения обеспечивают широкую область применения этих устройств.

Рис. 1.

Серия B включает в себя две модификации — VB и EB, технические характеристики которых приведены в таблице 1.

Таблица 1. Основные технические характеристики сетевых фильтров серии B

Наименование Максимальный
ток утечки, мА
Рабочий диапазон частот, МГц Номинальное напряжение, В Номинальный ток, А
~120 В 60 Гц ~250 В 50 Гц «проводник-корпус» «проводник-проводник»
VB 0,4 0,7 0,1…30 2250 1450 ~250 1…30
EB 0,21 0,36

Электрическая схема фильтра приведена на рисунке 2.

Рис. 2.

Ослабление сигнала помехи в дБ приведено на рисунке 3.

Рис. 3.

Фильтры серии T

Фильтры этой серии (рисунок 4) — высокопроизводительные радиочастотные фильтры для силовых цепей импульсных источников питания. Преимуществами серии являются превосходное подавление противофазных и синфазных помех, компактные размеры. Малые токи утечки позволяют применять серию T в устройствах с низким энергопотреблением.

Рис. 4.

Серия включает две модификации — ET и VT, технические характеристики которых приведены в таблице 2.

Таблица 2. Основные технические характеристики сетевых фильтров серии T

Наименование Максимальный
ток утечки, мА
Рабочий диапазон частот, МГц Электрическая прочность изоляции (в течение 1 минуты), В Номинальное напряжение, В Номинальный ток, А
«проводник-корпус» «проводник-проводник»
ET 0,3 0,5 0,01…30 2250 1450 ~250 3…20
VT 0,75 (1,2) 1,2 (2,0)

Электрическая схема фильтра серии T приведена на рисунке 5.

Рис. 5.

Ослабление сигнала помехи в дБ при нагрузке линии на согласующий резистор сопротивлением 50 Ом приведено на рисунке 6.

Рис. 6.

Фильтры серии К

Фильтры серии К (рисунок 7) — силовые фильтры радиочастотного диапазона общего назначения. Они ориентированы на применение в силовых цепях с высокоомной нагрузкой. Отлично подходят для случаев, когда на линию наводится импульсная, непрерывная и/или пульсирующая помеха радиочастотного диапазона. Модели с индексом EK соответствуют требованиям стандартов для применения в портативных устройствах, медицинском оборудовании.

Рис. 7.

Фильтры с индексом С оснащены дросселем между корпусом и заземляющим проводом. Основные электрические параметры сетевых фильтров серии К приведены в таблице 3.

Таблица 3. Основные электрические параметры сетевых фильтров серии К

Наименование Максимальный
ток утечки, мА
Рабочий диапазон частот, МГц Электрическая прочность изоляции (в течение 1 минуты), В Номинальное напряжение, В Номинальный ток, А
~120 В 60 Гц ~250 В 50 Гц «проводник-корпус» «проводник-проводник»
VK 0,5 1,0 0,1…30 2250 1450 ~250 1…60
EK 0,21 0,36

Электрическая схема фильтра серии К приведена на рисунке 8.

Рис. 8.

Ослабление сигнала помехи в дБ при нагрузке линии на согласующий резистор сопротивлением 50 Ом приведено на рисунке 9.

Рис. 9.

Фильтры серии EMC

Фильтры этой серии (рисунок 10) — компактные и эффективные двухступенчатые силовые фильтры радиочастотного диапазона. Обладают рядом преимуществ: высоким коэффициентом ослабления синфазных помех в области низких частот, высоким коэффициентом ослабления противофазных помех, компактными размерами. Серия EMC ориентирована на применение в устройствах с импульсными источниками питания.

Рис. 10.

Основные технические характеристики приведены в таблице 4.

Таблица 4. Основные электрические параметры сетевых фильтров серии EMC

Номинальные токи фильтра, А Максимальный
ток утечки, мА
Рабочий диапазон частот, МГц Электрическая прочность изоляции (в течение 1 минуты), В Номинальное напряжение, В Номинальный ток, А
~120 В 60 Гц для токов 3; 6; 10 А (15; 20 А) ~250 В 50 Гц для токов 3; 6; 10 А (15; 20 А) «проводник-корпус» «проводник-проводник»
3; 6; 10 0,21 0,43 0,1…30 2250 1450 ~250 3…30
15; 20; 30 0,73 1,52

Электрическая схема фильтра серии EMC приведена на рисунке 11.

Рис. 11.

Ослабление сигнала помехи в дБ при нагрузке линии на согласующий резистор сопротивлением 50 Ом приведено на рисунке 12.

Рис. 12.

Фильтры серии EDP

2. Corcom Product Guide, General purpose RFI filters for high impedance loads at low current B Series, TE Connectivity, 1654001, 06/2011, p. 15

3. Corcom Product Guide, PC board mountable general purpose RFI filters EBP, EDP & EOP series, TE Connectivity, 1654001, 06/2011, p. 21

4. Corcom Product Guide, Compact and cost-effective dual stage RFI power line filters EMC Series, TE Connectivity, 1654001, 06/2011, p. 24

5. Corcom Product Guide, Single phase power line filter for frequency converters FC Series, 1654001, 06/2011, p. 30

6. Corcom Product Guide, General purpose RFI power line filters — ideal for high-impedance loads K Series, 1654001, 06/2011, p. 49

7. Corcom Product Guide, High performance RFI power line filters for switching power supplies T Series, 1654001, 06/2011, p. 80

8. Corcom Product Guide, Compact low-current 3-phase WYE RFI filters AYO Series, 1654001, 06/2011, p. 111.

Получение технической информации, заказ образцов, поставка — e-mail:

Сетевые и сигнальные EMI/RFI-фильтры от TE Connectivity. От платы до промышленной установки

Компания TE Connectivity занимает лидирующие позиции в мире по разработке и производству сетевых фильтров для эффективного подавления электромагнитных и радиочастотных помех в электронике и промышленности. Модельный ряд включает в себя более 70 серий устройств для фильтрации как цепей питания от внешних и внутренних источников, так и сигнальных цепей в широчайшей сфере применений.

Фильтры имеют следующие варианты конструктивного исполнения: миниатюрные для установки на печатную плату; корпусные различных размеров и типов присоединения питающих линий и линий нагрузки; в виде готовых разъемов питания и коммуникационных разъемов сетевого и телефонного оборудования; индустриальные, выполненные в виде готовых промышленных шкафов.

Сетевые фильтры выпускаются для AC и DC приложений, одно- и трехфазных сетей, перекрывают диапазон рабочих токов 1…1200 А и напряжений 120/250/480 VAC, 48…130 VDC. Все устройства характеризуются низким падением напряжения — не более 1% от рабочего. Ток утечки, в зависимости от мощности и конструкции фильтра, составляет 0,2…8,0 мА. Усредненный частотный диапазон по сериям — 10 кГц…30 МГц. Серия AQ рассчитана на более широкий диапазон частот: 10 кГц…1 ГГц. Расширяя области применения своих устройств, TE Connectivity выпускает фильтры для цепей нагрузки с низким и высоким импедансом. Например, высокоимпедансные фильтры серий EP, H, Q, R и V для низкоимпедансных нагрузок и низкоимпедансные серии B, EC, ED, EF, G, K, N, Q, S, SK, T, W, X, Y и Z для высокоимпедансных нагрузок.

Коммуникационные разъемы со встроенными сигнальными фильтрами выпускаются в экранированном, спаренном и низкопрофильном исполнении.

Каждый фильтр производства TE Connectivity подвергается двойному тестированию: на этапе сборки и уже в виде готового изделия. Вся продукция соответствуют международным стандартам качества и безопасности.