Электросвязь — понятие и классификация. Системы электрической связи. Общие сведения о системах электросвязи. Основные понятия и определения Электрическая связь определение

Коммуникация, связь, радиоэлектроника и цифровые приборы

Краткая информация о видах электросвязи Электросвязь - передача информации посредством электрических сигналов, распространяющихся по проводам (проводная связь), или (и) радиосигналов (радиосвязь). К электросвязи относят, кроме того, передачу информа...


А также другие работы, которые могут Вас заинтересовать

32496. ТРЕБОВАНИЯ К ПОДГОТОВКЕ СОВРЕМЕННОГО УЧИТЕЛЯ ИНФОРМАТИКИ 102.5 KB
03 Элементы абстрактной и компьютерной алгебры Понятие группы кольца поля булевой алгебры.04 Теория алгоритмов Понятие вычислимой функции. Понятие программы. Общее понятие исчисления.
32497. ОБОРУДОВАНИЕ ШКОЛЬНОГО КАБИНЕТА ИНФОРМАТИКИ 59.5 KB
Оборудование школьного кабинета информатики Введение в учебный план средней школы нового предмета Основы информатики и вычислительной техники потребовало разрешения проблемы обеспечения взаимодействия учащихся с ЭВМ. КВТ предназначен также для использования в преподавании различных учебных предметов трудового обучения в организации общественно полезного и производительного труда учащихся для эффективного управления учебновоспитательным процессом. КВТ может использоваться также и для организации компьютерных клубов учащихся других форм...
32498. УЧЕБНЫЕ И МЕТОДИЧЕСКИЕ ПОСОБИЯ ПО ИНФОРМАТИКЕ 90.5 KB
Теория и методика обучения информатики УЧЕБНЫЕ И МЕТОДИЧЕСКИЕ ПОСОБИЯ ПО ИНФОРМАТИКЕ. Некомпьютерные средства обучения информатике Понятие и дидактические функции технических средств обучения Еще основоположник классноурочной системы обучения Ян Амос Коменский отмечал: . Наиболее высокое качество усвоения достигается при непосредственном сочетании слова учителя и предъявляемого учащимся с помощью технических средств обучения ТСО изображения в процессе передачи учебной информации. Техническими средствами обучения называют проекционную...
32499. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ПО КУРСУ ИНФОРМАТИКИ 49.5 KB
В систему средств обучения наряду с учебниками учебными и методическими материалами и программным обеспечением для компьютеров входят и сами компьютеры образующие единую комплексную среду которая и позволяет учителю достигать поставленных целей обучения. Вот перечень основных компонентов рекомендуемой системы средств обучения информатике в школе: программнометодическое обеспечение курса информатики включающее как программные средства для поддержки преподавания так и инструментальные программные средства ИПС обеспечивающие учителю...
32500. ОСНОВНЫЕ ФОРМЫ ОРГАНИЗАЦИИ ОБУЧЕНИЯ ИНФОРМАТИКЕ В СРЕДНЕЙ ШКОЛЕ 68 KB
Все это приемлемо и на уроках по информатике. Применение ИКТ может существенно изменять характер школьного урока что делает еще более актуальным поиск новых организационных форм обучения которые должны наилучшим образом обеспечивать образовательный и воспитательный процесс. Главный признак урока это его дидактическая цель показывающая к чему должен стремиться учитель. Цель  тип урока  содержание урока  методы  форму познавательной деятельности учащихся  результат Основные типы уроков: урок формирования знаний; урок закрепления...
32501. МЕТОДЫ И ПРИЕМЫ ФОРМИРОВАНИЯ СИСТЕМНО-НАУЧНЫХ ПОНЯТИЙ НА УРОКАХ ИНФОРМАТИКИ И ВО ВНЕУРОЧНОЕ ВРЕМЯ 48 KB
Теория и методика обучения информатики МЕТОДЫ И ПРИЕМЫ ФОРМИРОВАНИЯ СИСТЕМНОНАУЧНЫХ ПОНЯТИЙ НА УРОКАХ ИНФОРМАТИКИ И ВО ВНЕУРОЧНОЕ ВРЕМЯ. Методы и приемы формирования системноинформационных понятий на уроках информатики и во внеурочной работе со школьниками Философские аспекты современного школьного курса информатики Проблема существования и бытия человека в полностью технизированном и информатизированном мире не могла не занимать философов что вызвало к жизни концепцию информационного общества. Пропедевтика методов системного анализа...
32502. ОБЩИЕ МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПРИ ИЗУЧЕНИИ ИНФОРМАТИКИ, МЕТОДЫ ОБУЧЕНИЯ С ИСПОЛЬЗОВАНИЕМ ИНФОРМАЦИОННО-КОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ 84.5 KB
Теория и методика обучения информатики ОБЩИЕ МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПРИ ИЗУЧЕНИИ ИНФОРМАТИКИ МЕТОДЫ ОБУЧЕНИЯ С ИСПОЛЬЗОВАНИЕМ ИНФОРМАЦИОННО-КОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ. Общие методические рекомендации и принципы обучения информатике. Принцип освоения методики самообучения. Методы обучения с использованием ИКТ Методы обучения система взаимодействия преподавателя и обучаемого с использованием ИКТ обеспечивающая усвоение образовательной программы.
32503. ОРГАНИЗАЦИЯ ПРОВЕРКИ И ОЦЕНКИ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ. ПРИНЦИПЫ ПОСТРОЕНИЯ СИСТЕМЫ И ХАРАКТЕРИСТИКА МЕТОДОВ КОНТРОЛЯ. ОСНОВНЫЕ ФОРМЫ КОНТРОЛЯ. МОДЕЛЬ НЕПРЕРЫВНОГО КОНТРОЛЯ. ШКАЛЫ ОЦЕНОК 92.5 KB
ПРИНЦИПЫ ПОСТРОЕНИЯ СИСТЕМЫ И ХАРАКТЕРИСТИКА МЕТОДОВ КОНТРОЛЯ. ОСНОВНЫЕ ФОРМЫ КОНТРОЛЯ. МОДЕЛЬ НЕПРЕРЫВНОГО КОНТРОЛЯ. В ходе контроля оценивается степень и уровень обученности.
32504. ПРЕПОДАВАНИЕ ПРОПЕДЕВТИЧЕСКОГО КУРСА ИНФОРМАТИКИ В НАЧАЛЬНЫХ КЛАССАХ СРЕДНИХ УЧЕБНЫХ ЗАВЕДЕНИЙ 58 KB
Целью курса информатики в начальной школе является формирование первоначальных базовых понятий информатики что обеспечит дальнейшее создание информационной картины мира представлений о свойствах информации способах работы с ней формирование представления о компьютере как универсальной информационной машине развитие информационной культуры ребенка и интеллектуальных способностей учащихся. В соответствии с целями обучения информатике в начальной школе выделяется ряд задач на которые нужно опираться при проведении уроков информатики в...

Телефонная и телеграфная сети

Итак, электрическая связь позволяет людям передавать информацию по линиям связи или без них на любые расстояния через телефонную и телеграфную сети электросвязи, через сети радиовещания и телевидения.

Как протянуть, например, линии телефонной связи, чтобы можно было соединить каждый телефонный аппарат с любым другим? Для этого каждый аппарат подсоединяется к ближайшей станции связи. Несколько станций, расположенных недалёко друг от друга, присоединены линиями связи к одной центральной станции, называемой узлом связи. А узлы соединены линиями, каждый с каждым. Так образуется сеть телефонной связи.

В этой сети каждый абонент (т. е. владелец телефонного аппарата) может соединиться с другим абонентом, пройдя через свою станцию, через узлы связи и через другую станцию. Количество линий, соединяющих между собой станции и узлы, значительно меньше числа абонентов. Ведь одновременно разговаривает только часть абонентов.)

Соединение абонентов друг с другом осуществляется на станциях. Естественно, что при этом каждому телефонному аппарату должен быть присвоен номер, который отличался бы от всех других.; Раньше на станциях сидели телефонистки, которые отвечали абоненту, как только он снимал трубку, и соединяли его с другим абонентом. Теперь станция стала автоматической и называется АТС - автоматическая телефонная станция. Когда человек снимает трубку телефонного аппарата и набирает номер, он приводит в действие большое количество механизмов, расположенных на многих станциях и узлах связи. Аналогичным образом строится сеть телеграфной связи, только здесь друг с другом соединяются телеграфные аппараты.

Для создания сети электросвязи надо иметь:

1) аппараты, которые преобразуют информацию (звук, текст телеграммы, изображение) в электрические сигналы или, наоборот, электрические сигналы превращают в информацию (их называют оконечными);

2) проводные или радиолинии связи, которые позволяют передавать электрические сигналы на далекое расстояние;

3) автоматические коммутационные станции, оборудованные специальными устройствами, соединяющими абонентов друг с другом.

Оконечные аппараты

Телеграфные аппараты

Телеграфный аппарат Морзе был одним из первых устройств, позволивших передать сообщение на далекое расстояние. В этом аппарате каждая буква передается с помощью ключа, к контакту которого подключена электрическая батарея и линия связи.) Нажал ключ - и в линию пошел ток, отпустил -ток прекратился" (рис. 1). На другом конце линия подсоединяется к электромагниту, который при прохождении через него тока притягивает к себе рычаг, на конце которого сидит колесико, погруженное в жидкую краску. Около колесика специальным пружинным механизмом (как в часах) протягивается лента. Нажал ключ - пошел ток, рычаг притянулся, колесико отпечатало след на ленте. Быстро отпустил ключ - получилась точка, задержался немного -получилось тире. Каждая буква алфавита обозначается кодовой комбинацией из точек и тире, образующих всем известную азбуку Морзе. Чтобы быстрее передать сообщение, самые распространенные в тексте буквы обозначаются самой короткой комбинацией. Например, буква Е (самая распространенная буква в английском языке) обозначена одной точкой. Буква III, которая встречается редко, обозначена четырьмя тире. Аппарат Морзе прожил свыше 100 лет, а его код все еще очень нужен людям. Ведь сигналы бедствия на море до сих пор передаются азбукой. Морзе.

Три точки - три тире - три точки (SOS) - этот сигнал знают все люди на Земле.

Современный телеграфный аппарат, применяемый на автоматических телеграфных станциях, называется телетайп, т. е. "печатающий на расстоянии". Он, конечно, отличается от аппарата Морзе. В нем нет ключа, а имеется клавиатура, такая же, как у пишущей машинки, и вместо точек и тире аппарат печатает сразу буквы. Интересно отметить, что Б. С. Якоби еще в 1850 г. построил буквопечатающий аппарат. Но он опередил время - только в XX в. такие аппараты нашли применение.

Телеграфные аппараты бывают разных конструкций, однако их можно разделить на два основных типа: одни печатают буквы на ленте - ленточные аппараты, а другие - прямо на листе бумаги, намотанном на рулон,- это рулонные аппараты (рис. 2). В современных аппаратах вместо азбуки Морзе используется другой - пятизначный код. Каждая буква изображается набором точек (импульсов тока) или пропусков между точками. Сумма точек или пропусков всегда равна 5. Если обозначить точку "1", а пропуск - "0", то буква Б выглядит так: 10011, буква X - 00101 и т. д. Легко подсчитать, что этим кодом можно передать 32 буквы. Чтобы передать в линию импульсы тока, соответствующие каждой букве, под клавишами аппарата имеется 5 подвижных стальных линеек с зубьями, как у пилы. При этом некоторые зубья на линейках отсутствуют. Линейки расположены так, что клавиша, опускаясь, нажимает сразу на все 5 линеек. Когда под клавишу попадает зуб, то линейка сдвигается в сторону. Если зуба нет, то линейка остается на месте. Линейка, которая сдвинулась в сторону, нажимает на пружинку и включает ток.

Рис. 1. Принцип действия аппарата Морзе.

Рис. 2 Современный рулонный телеграфный аппарат (без кожуха).

Расположение зубьев соответствует кодовой комбинации каждой буквы. Каждой единице кодовой комбинации буквы соответствует зуб, нулю - отсутствие "зуба". Специальный "распределитель" по очереди подключает линию к пружинкам и создает импульсы тока. Эти импульсы идут в линию и попадают в электромагниты приемного аппарата. Специальное сложное электромеханическое устройство "расшифровывает" эти импульсы, заставляя печатающий механизм печатать соответствующую букву на рулоне бумаги или на ленте.

Телефонные аппараты

Главные части любого телефонного аппарата -микрофон, телефон и номеронабиратель (рис. 5).

Микрофон преобразует звуковые волны в колебания электрического тока, а телефон эти электри-"ческие колебания преобразует опять в звуковые волны.

Микрофон - это металлическая коробка с угольным порошком. Сверху коробка закрыта тонкой пластинкой (мембраной), сделанной из проводящего электрический ток материала. Пластинка изолирована от коробки и лежит прямо на порошке. Действие микрофона основано на свойстве угольного порошка менять электрическое сопротивление в зависимости от давления, с которым его сжимают. Звуковые волны речи заставляют колебаться мембрану, и она сильнее или слабее сдавливает порошок. Если к микрофону (рис. 4, а) присоединить электрическую батарею так, чтобы ток проходил через порошок, то сила тока будет изменяться в зависимости от сопротивления порошка. Звуковые волны превратились в электрические колебания.

Чтобы эти колебания преобразовать обратно в звуковые, применяется телефон. Он представляет собой электромагнит, около которого находится стальная мембрана. В зависимости от силы тока она притягивается к электромагниту то сильнее, то слабее и создает воздушные колебания (рис. 4, б).

Телефон в аппарате подключен через трансформатор. Микрофон подключен к " середине первичной обмотки трансформатора и питается током от батареи на станции, когда рычаг поднят. Когда рычаг телефона нажат (опущен вниз), телефон и микрофон от линии отключены, а к линии в это время подключен звонок, который звонит, когда с линии поступает сигнал вызова (рис. 6).

Рис. 4. Принцип действия телефонного аппарата.

Рис. 5. Телефонные аппараты с дисковым номеронабирателем.

Рис. 6. Упрощенная электрическая схема телефонного аппарата.

Рис. 7. Штриховой фототелеграфный аппарат.

Когда трубку снимают, рычаг поднимается и в линию включается и телефон и микрофон, абонент может разговаривать с другим абонентом. Для вызова другого абонента в телефонном аппарате имеется номеронабиратель. Когда его диск повернут по часовой стрелке, контакт 1 замыкается и отключает микрофон и телефон от линии. Когда номеронабиратель под воздействием пружины возвращается в исходное положение, контакт 2 разомкнется и замкнется столько раз, сколько единиц в цифре, которая будет набрана. А в результате этого ток в линии будет состоять из коротких импульсов, число которых равно набранной цифре. В будущем набор номера будет осуществляться не диском, а кнопками, причем каждая кнопка будет посылать в линию ток определенной частоты (рис. 3).

Фототелеграфные аппараты

Фототелеграфный аппарат передает на далекие расстояния неподвижные изображения - рисунки, фотографии, письменные тексты и др. Принцип его работы идентичен принципу телевизионной передачи. Как и в телевидении, изображение раскладывается на большое количество мелких точек, и эти точки последовательно, одна за другой, превращаются в электрические сигналы, передаваемые в ли-нию. Для этого в передающем аппарате фототелеграмму закрепляют на вращающемся барабане и освещают узким - диаметром до 0,2 мм - пучком света (рис. 8). Луч света за каждый оборот барабана сдвигается на 0,2 мм и таким образом последовательно "обходит" все изображение. Любое изображение состоит из светлых и темных частей. От светлых частей луч отражается лучше, от темных -хуже, т. е. при прохождении луча по изображению яркость отраженного света все время изменяется. Отраженный луч попадает на фотоэлемент, который изменяет силу тока в цепи в зависимости от его яркости. На выходе фотоэлемента электрический сигнал представляет собой серию различных по амплитуде импульсов, и каждый из этих импульсов соответствует определенной точке фототелеграммы.

Рис. 8. Фототелеграфный передающий аппарат.

Рис. 9. Фототелеграфный приемный аппарат.

После усиления сигнал поступает в линию связи и по ней попадает на специальную осветительную лампу в приемном аппарате (рис. 9). В зависимости от силы тока, поступающего с линии, лампа светится ярче или слабее. С помощью специального объектива свет этой лампы проектируется в точку на барабане, на котором навернута фотобумага. Этот барабан вращается с той же скоростью, что и барабан передатчика, а лампа вместе с объективом медленно движется вдоль оси барабана. На рулоне появляется негативное изображение, которое надо проявить и отпечатать. (Попробуйте сообразить, почему изображение будет негативным.)

Есть фототелеграфные аппараты, в которых изображения принимаются на специальную электрохимическую бумагу. Такую фототелеграмму сразу же, без дополнительной обработки, можно вручить адресату. Есть аппараты, в которых специальное электромагнитное устройство - "перо" воспроизводит рисунок на обычной бумаге. Такой штриховой фототелеграфный аппарат показан на рисунке 7.

Линии и каналы связи

Простые двухпроводные линии

Чтобы соединить друг с другом два аппарата (телефонных, телеграфных, фототелеграфных или других), достаточно проложить между ними пару изолированных друг от друга проводников.

Однако, чтобы соединить абонентов, которых разделяют тысячи километров, этот способ не годится.

Электрический ток, проходя через такую линию, ослабляется настолько, что его и не услышишь ни в какой телефон: энергия электрического сигнала по дороге растрачивается на нагревание проводов (это, конечно, не значит, что можно ощущать этот нагрев - он очень незначителен: чтобы от мощности микрофонных сигналов могла гореть обычная электрическая лампа в 25 Вт, должны одновременно работать 25 тыс. микрофонов). К тому же в каждой линии кроме электрических сигналов, несущих информацию, имеются различные случайные электрические сигналы (их называют помехами): наводки от грозовых разрядов, плохих контактов в электросетях, хаотического движения электронов в проводнике и т. д.

Сигнал, прошедший очень длинный путь, ослабнет настолько, что он будет во много раз меньше этих помех, и мы услышим в телефоне только шум. Поэтому по дороге сигнал надо много раз усиливать и не давать ему становиться слабее шума. Для этого длинную линию делят на несколько более коротких частей, между которыми и включаются промежуточные усилители (см. ст. "Усилители"),

Следует заметить, что усилитель должен обладать способностью усиливать токи, приходящие к нему с разных сторон. Слабый ток, подведенный к усилителю слева, должен усилиться и пойти дальше направо; слабый ток, подведенный справа, должен усилиться и пойти налево. Но такой усилитель сделать невозможно! Поэтому в линию либо включаются два усилителя (рис. 10), либо делают две линии и в каждую включают по одному усилителю, которые усиливают токи, идущие в разные стороны (рис. 11). Только в первом случае усилители отделяют друг от друга с помощью специального дифференциального трансформатора, разделяющего токи разных направлений. Если построить линию связи из медной проволоки на столбах, то усилители придется устанавливать через 250 км. Однако линии, позволяющие разговаривать только двум абонентам, были бы очень дорогими. Ведь на 1000 км для двух медных проводов при диаметре каждого 4 мм требуется 100 т меди. И это на одну связь! А у нас в стране сейчас больше 15 млн. телефонных аппаратов, через которые за один год осуществляется свыше 500 млн. междугородных разговоров!

Рис. 10. Схема включения двух усилителей: 1 - усилители; 2 - дифференциальные трансформаторы.

Рис. 11. Схема включения двух усилителей в две линии связи.

Мы уже говорили, что сократить количество линий связи помогают телефонные станции. (Ведь не все абоненты разговаривают одновременно!) Но для соединения станций друг с другом все равно надо много линий. Если бы каждый разговор между станциями велся только по паре проводов, то для линий связи не хватило бы всей меди, имеющейся в мире. Выход был найден тогда, когда были изобретены многоканальные линии связи.

Многоканальные линии связи
Электрические колебания, в которые микрофон превращает звуковые колебания, имеют спектр частот примерно до 4000 Гц. Оказалось, что линия может пропускать электрические колебания с любой частотой, даже до десятков миллионов герц. Поэтому стали подавать в линию электрический ток с большой (обычно говорят - высокой) частотой колебаний и сопровождать его, т. е. модулировать, токами с колебаниями, характерными для человеческой речи. В результате модуляции в линии окажется "несущая" высокая частота, сопровождаемая двумя "боковыми" спектрами, расположенными немного выше и немного ниже, чем несущая частота (рис. 12). На другом конце линии с помощью детектирования можно восстановить человеческую речь (см. ст. "Заглянем в радиоприемник"). Для этого даже не надо иметь два боковых спектра. Достаточно, и это обычно делается, оставить только один из спектров (безразлично - более высокий или более низкий). Если взять несколько "несущих" частот, сдвинутых относительно друг друга больше, чем на ширину одного "бокового" спектра (4 кГц), то на каждую из них можно наложить электрические токи, полученные от разных абонентов, и таким образом через одну линию передавать много разговоров.

Проблема заключается только в том, как на конце линии отделить все эти токи друг от друга. Ведь они смешаются! Эта проблема была решена в 20-х годах нашего века, когда был изобретен электрический фильтр. Можно, например, на выход линии включить такой фильтр, который, будет пропускать только токи, имеющие частоты от 60 до 64 кГц, а все остальные токи через него ле пойдут. Если на выход линии включить параллельно много фильтров, каждый из которых пропускает только свои частоты, то с помощью разных несущих частот через линию можно пропустить много разговоров одновременно. Получается, что на линии создается много каналов, по каждому из которых идет свой разговор. Вот по такому принципу устроены многоканальные системы связи с частотным разделением каналов. В настоящее время у нас в стране очень широкое применение получили системы, дающие возможность получить 60 каналов, 300 каналов и даже 1920 каналов по двум парам проводов. Две пары потому, что, как мы показали раньше, нам надо включать усилители для разных направлений передачи. В многоканальных системах усилители приходится ставить значительно чаще, чем через 250 км. Дело в том, что чем больше каналов имеет система, тем более высокие частоты надо передавать. А чем выше частоты электрического тока, тем больше сила тока ослабевает ("затухает") при прохождении через кабель. Так что 60-ка-нальная система требует в 60 раз большей полосы частот, чем полоса одного канала (4 кГц). Спектр 60-канальной системы лежит в диапазоне от 12 до 252 кГц. И здесь усилители надо ставить через каждые 18 км. А система на 1920 каналов занимает полосу частот от 0,3 до 8 МГц. При этом вместо пары обычных проводов применяют так называемые коаксиальные пары. (рис. 13). Одним проводом в ней служит центральный проводник, а другим - трубка, изолированная от центрального проводника с помощью полиэтиленовых шайб. Особенность коаксиального кабеля в том, что у него очень малы потери тока. Все же и на этом кабеле усилители приходится ставить через 6 км. Усилители делают на лампах или полупроводниках, помещают в цистерны и зарывают в землю (рис. 14). Усилители управляются и снабжаются электроэнергией дистанционно со станций, расположенных на расстоянии свыше 100 км друг от друга. Они должны работать очень надежно. Ведь, например, на линии связи Москва - Хабаровск связь проходит через 1600 усилителей, каждый из которых усиливает токи от 1920 одновременных разговоров. Если хотя бы один усилитель повредится - вся связь остановится. Обычно междугородный коаксиальный кабель содержит 4-6-8 и больше коаксиальных трубок под одной общей свинцовой оболочкой. Таким образом, по одному кабелю из 8 коаксиальных трубок можно одновременно передать 1920*8/2=7680 телефонных разговоров.

Рис. 12. Принцип работы многоканальной линии связи.

Спектр телеграфного сигнала значительно (примерно в 20 раз) уже, чем спектр телефонного. По одному телефонному каналу можно одновременно передать 24 телеграфных сообщения. Многоканальные системы связи позволяют передавать и телевизионное изображение. Но спектр телевизионного изображения требует полосы частот около 6,5 МГц. А это соответствует полосе частот для 1620 телефонных каналов. Таким образом, когда по коаксиальному кабелю из одного города в другой передаются телевизионные программы, в кабеле вместо 1920 остается всего 300 каналов. Поэтому ученые работают над тем, чтобы увеличить пропускную способность системы многоканальной связи. Разрабатываются более "мощные" системы, имеющие по 3600 и даже по 10 800 каналов в двух коаксиальных трубках. Но при этом расстояние между усилителями приходится уменьшать до 3 и даже до 1,5 км.

Рис. 13. Отрезок коаксиального кабеля и коаксиальная трубка (разрез).

Рис. 14 . Цистерна для необслуживаемой усилительной станции (разрез).

Рис. 15. Башни радиорелейной линии связи.

Радиорелейные линии
Рассказывая о многоканальных линиях, нельзя не сказать и о радиорелейных линиях связи, которые выполняют те же задачи, что и линии, построенные на кабелях,- создают много каналов. Обычно на конце радиорелейных линий устанавливается та же аппаратура, что и у кабельной линии. Все разговорные токи переносятся в спектр частот кабельной линии. Но в кабель эти токи не идут. Вместо этого они модулируют очень высокую несущую частоту (от 5 до 11 ГГц). Эта модулированная частота подводится к радиопередатчику и через антенну, установленную на башне, узким лучом излучается в пространство (рис. 15). Радиоволны такой частоты распространяются, как луч света, т. е. не огибая земной повэрхности. Антенна устроена так, чтобы радиоволны фокусировались в луч и направлялись на другую башню - ретранслятор,- расположенную на расстоянии примерно 50 км. Там луч будет принят приемником, усилен (опять усилители!) и передан с помощью радиопередатчика на следующую башню. И так дальше. Естественно, что здесь требуется иметь два луча (как в кабеле две пары проводов).

Сейчас имеются радиорелейные линии на 1800 каналов. Расстояние 50 км между башнями выбрано исходя из условий прямой видимости башен, высота которых порядка 80 м. Если бы башни были выше, можно было бы ставить их дальше друг от друга. Ну а если приемник, усилитель и передатчик установить на спутник Земли, то можно будет обойтись совсем без башен (см. ст. "Радиосвязь - мост из радиоволн").

Радиорелейные линии так же, как и линии связи через искусственные спутники Земли, позволяют передавать и телефонную речь, и телеграммы, и телевизионные передачи - словом, все то же, что передается через кабель.

Одновременно разрабатываются новые виды линий: волноводы и световоды. Волновод - это трубка диаметром примерно 6 см, в которую вводятся электромагнитные волны, модулируемые сигналами различной информации. По волноводным линиям связи можно одновременно организовать сотни тысяч телефонных каналов и сотни телевизионных передач. При этом усилители ставятся на расстоянии 20-25 км друг от друга.

Еще большие перспективы открывает использование лучей света, создаваемых лазером. Эти лучи могут модулироваться миллионами телефонных каналов. Луч света от лазера передается через тонкую стеклянную иить (стекловолокно) толщиной в несколько десятков микрометров. При этом по двум нитям, используемым для передачи сигналов в прямом и обратном направлениях, можно одновременно передавать миллионы телефонных разговоров и тысячи телевизионных передач. На световодах тоже нужны усилители, но они усиливают световые волны и ставятся на расстоянии примерно 2 км друг от друга.

Волноводы и световоды - это линии связи будущего.

Все эти средства связи могут быть соединены друг с другом, образуя единые каналы связи от одной станции связи до другой.

Рис. 17. Схема городской телефонной сети связи.

Автоматические коммутационные станции

Из предыдущих статей вы узнали, как устроены и как работают оконечные аппараты и линии связи. В этой статье вы познакомитесь с третьим необходимым звеном сети электрической связи - с автоматическими телефонными станциями. (АТС).

Основная задача АТС - находить абонентов по номерам их телефонов.

Обычно все номера абонентов имеют одинаковое количество цифр. Если, например, в городе 100000 телефонов, то номер каждого абонента должен иметь 5 цифр. Первый абонент будет иметь номер 00000, а последний - 99999. Если же в городе будет хотя бы на одного абонента больше, придется применить номера из 6 цифр.

Есть много разных типов АТС. Принцип работы АТС легче всего объяснить на примере работы станции, которая соединяет абонентов с помощью так называемых декадно-шаговых искателей (ДШИ) (рис. 16).

Основные части искателя - цилиндрическое контактное поле и ось с контактными щетками.

Контактное поле расположено на внутренней поверхности цилиндра. Оно представляет собой комплект контактных пластинок, размещенных в 10 горизонтальных рядах, по 10 пластинок в каждом.

Ось с изолированно укрепленными на ней контактными щетками расположена в центре цилиндра. На оси жестко закреплен барабан, имеющий поперечные и продольные зубья. При срабатывании подъемного электромагнита А подъемная собачка упирается в один из поперечных зубьев и поднимает ось вместе со щеткой на один шаг. Аналогично срабатывает вращающий электромагнит Б, он заставляет ось повернуться на один шаг по часовой стрелке.

Всем контактным пластинкам присвоены двузначные номера, первые цифры которых соответствуют номеру горизонтального ряда, а вторые - номеру пластинки в этом ряду. Так, пластинки нижнего ряда имеют номера - 11, 12, 13, 14, 15, 16, 17, 18, 19, 10; второго ряда - 21, 22, 23, 24, 25, 26, 27, 28, 29, 20; пластинки верхнего ряда - 01, 02, 03, 04, 05, 06, 07, 08, 09, 00. Если электромагнит А сработает, например, 6 раз, то ось со щеткой поднимется на уровень 6-го ряда и остановится. Если после этого магнит Б сработает 4 раза, то ось повернется на 4 шага и щетка соединится с пластинкой, числящейся под номером 64. Количество срабатываний каждого магнита определяется числом импульсов, посылаемых с телефонного аппарата с помощью номеронабирателя. Если к щетке искателя присоединить линию вызывающего абонента, а к контактным пластинкам поля - линии, идущие к другим абонентам АТС, то мы можем осуществить соединение первого абонента с любым из остальных 99, присоединенных к ДШИ. Для этого на каждой АТС имеется огромное количество реле. Кроме того, реле используются для выполнения всевозможных операций по включению и выключению различных вспомогательных устройств на АТС. Чтобы любой абонент мог соединиться с любым другим, для каждого из них нужно иметь свой ДШИ. Таким образом, АТС на 100 номеров содержит 100 ДШИ, контактные поля которых соединены друг с другом в соответствии с их нумерацией.

Но что же делать, если количество абонентов станции не 100, а больше? Например, 10 000. В этом случае требуется четырехзначный номер. В контакты поля ДШИ включаются уже не абоненты, а другие ДШИ. Когда набираются первые две цифры, абонент присоединяется к ДШИ второй ступени искания, который работает уже от третьей и четвертой цифр номера. При шестизначном номере вводится еще третья ступень искания и т. д.

Оборудование АТС становится еще более сложным. Обычно в больших городах районные АТС делаются на 10 000 номеров, но таких АТС может быть много - столько же, сколько и районов. Так что при соединении абонента одной АТС с абонентом другой АТС надо сначала с помощью двух цифр найти нужную АТС (это при числе абонентов в городе меньше миллиона), а потом с помощью 4 цифр найти абонента. В Москве, где абонентов больше миллиона, нужная районная АТС находится уже тремя цифрами. При этом надо пройти через промежуточную, узловую АТС. В современных АТС вместо ДШИ используются специальные механизмы, называемые координатными, соединителями. Эти механизмы управляются с помощью целого ряда устройств, действия которых похожи на работу электронной вычислительной машины. В будущем на каждой АТС установят ЭВМ, которая будет соединять абонентов друг с другом с помощью сотен тысяч маленьких контактов. Каждый из контактов запаян в тоненькую стеклянную трубку, из которой выкачан воздух. АТС, построенная с помощью этих герметизированных контактов - герконов, называется квазиэлектронной (почти электронной) АТС.

Чтобы соединить АТС друг с другом, используются многопарные кабели связи. Для связи каждой районной АТС (10000 абонентов!) со всеми другими станциями обычно используются около 1000 пар проводов линий, ведь обычно на АТС одновременно разговаривают около 10% абонентов (рис. 17).

Для связи с другими городами создаются специальные автоматические междугородные телефонные станции (АМТС). Они устроены еще более сложно, чем АТС, так как кроме соединения они еще должны учитывать стоимость разговора в зависимости от расстояния между городами, времени разговора, срочности и т. д. Чтобы вызвать другой город, надо набрать цифру 8, которая присоединяет вас к АМТС, далее - 3 цифры, определяющие город, в который вы звоните, и потом только номер абонента. Свободные пути для соединения АМТС ищет по всей стране: если из Москвы в Ташкент нет пути через Куйбышев, он может быть найден через Ростов.

Автоматическая междугородная связь - это одно из самых сложных устройств, которое когда-либо создавали люди. Пока она существует не везде. Еще не все АМТС умеют определять номер абонента, который звонит, чтобы потом прислать счет за переговоры. Еще не все города имеют АМТС. Но в будущем автоматическая связь охватит все города страны.

Любой абонент сможет соединиться с любым другим и передать необходимую информацию. И не только речь, но и цифры для вычислительной машины и фототелеграмму. Недалеко и время, когда у абонента появится видеотелефон с экраном, на котором можно будет видеть собеседника.

Мы живем в эпоху широкого развития ЭВМ, и с каждым годом их количество растет и растут их возможности. Каждый человек с помощью телефона или видеотелефона сможет присоединиться к ЭВМ и получить какую-либо справку, решить сложную задачу, познакомиться с редкой книгой (ведь фотографии ее страниц могут храниться в "памяти" ЭВМ), посмотреть нужные чертежи. Наступит и такое время, когда каждый человек сможет кроме обычного иметь свой карманный радиотелефон с личным номером, по которому с ним можно будет связаться, в каком бы месте земного шара он ни находился. С помощью УКВ он соединится с ближайшей АТС и оттуда по линиям связи с любым другим человеком или с любой ЭВМ.

Все средства сети электросвязи: кабели, радиорелейные линии, искусственные спутники Земли - к услугам человека. Тысячи механизмов на АТС и АМТС будут соединять людей, живущих в самых отдаленных точках земного шара. И все это будет делаться невидимо для вас. Вы только поднимете трубку и наберете номер.

Содержание статьи

ЭЛЕКТРОННЫЕ СРЕДСТВА СВЯЗИ, техника передачи информации из одного места в другое в виде электрических сигналов, посылаемых по проводам, кабелю, оптоволоконным линиям или вообще без направляющих линий. Направленная передача по проводам обычно осуществляется из одной конкретной точки в другую, как, например, в телефонии или телеграфии. Ненаправленная передача, напротив, обычно используется для передачи информации из одной точки на множество других точек, рассеянных в пространстве, т.е. в широковещательных целях. Примером ненаправленной передачи может служить радиовещание.

Передачу сигналов по проводам можно рассматривать как протекание по проводу электрического тока, который прерывается или изменяется каким-либо образом, с передатчика, находящегося в одной из точек сети. Это прерывание или изменение тока, обнаруженное приемником в другой точке сети, и представляет собой сигнал, или элемент информации, посланной передатчиком.

Передача информации посредством радио- или оптических (световых) волн представляет собой электромагнитное излучение, которое может распространяться, не нуждаясь в какой-либо среде, т.е. способное распространяться и в вакууме. Такая передача осуществляется в результате колебаний электрического и магнитного полей. Волны радио и телевидения, микроволны, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские и гамма-лучи – все они представляют собой электромагнитное излучение. Каждый вид электромагнитного излучения характеризуется своей частотой колебаний, причем радиоволны соответствуют низкочастотному концу спектра, а гамма-лучи – высокочастотному.

Хотя в принципе сигналы можно передавать электромагнитным излучением любой частоты, для целей связи годятся не все участки электромагнитного спектра, поскольку атмосфера для некоторых длин волн непрозрачна. Диапазон используемых «радиочастот» лежит в пределах от примерно 1 до 30 000 МГц. В этом диапазоне АМ-радиовещание ведется на частотах от 0,5 до 1,5 МГц, а ЧМ- и телевизионное вещание – в значительно более широком диапазоне частот, середина которого приходится на частоту 100 МГц. Микроволновые сигналы, в том числе посылаемые на спутники связи и принимаемые от них, находятся в диапазоне от 4000 до 14 000 МГц и даже выше. Вообще говоря, для любого сигнала нужна определенная полоса или диапазон частот; при этом чем сложнее сигнал, тем шире необходимая полоса частот. Так, например, для телевизионного сигнала из-за его гораздо большей сложности требуется ширина полосы, примерно в 600 раз большая, чем для речевого. Весь используемый спектр радиочастот позволяет разместить в нем 10 млн. речевых или около 10 000 телевизионных каналов. Этот спектр распределяется между вещательными станциями, аварийными службами, авиацией, судами, мобильной телефонией, военными и другими пользователями.

Революция в области связи.

В последние десятилетия средства электронной связи развивались так быстро, что слова «революция в области связи» не кажутся преувеличением. Базой для многих новшеств служил быстрый прогресс электронной техники и технологии. В начале 1950-х годов был разработан прибор, названный транзистором. Этот миниатюрный электронный компонент, сделанный из полупроводниковых материалов, используется для усиления электрического тока или управления им. Так как транзисторы меньше по размерам и более долговечны, чем электронные лампы, они заменили лампы в радиоприемниках и стали основой компьютеров. ТРАНЗИСТОР.

В конце 1960-х годов вместо транзисторных схем в вычислительной технике начали применять полностью собранные полупроводниковые схемы, получившие название интегральных (ИС). Впоследствии на одной пластине кремния, размер которой лишь немного превышал размеры первого транзистора, технологи научились в ходе одного процесса изготавливать сразу сотни тысяч транзисторов. Этот метод, получивший название технологии больших интегральных схем (БИС), позволяет в одном маленьком приборе разместить множество ИС.

Каждый этап развития электроники сопровождался значительным повышением надежности электронных компонентов. При этом удавалось также существенно уменьшить размеры, потребляемую мощность и стоимость многих видов электронной аппаратуры.

Широкое применение такой техники, как компьютеры, лазеры, волоконно-оптические линии, спутники связи, телефоны прямого набора, видеотелефоны, транзисторные радиоприемники и кабельное телевидение, привело к полному пересмотру традиционной классификации методов связи. Сейчас уже практически не отождествляют передачу по проводам с прямой адресной связью, а беспроводную передачу – с радиовещанием. Вероятно, наиболее сильное влияние на развитие техники связи оказало значительное увеличение пропускной способности средств связи как по эфиру, так и по проводам. Эта возросшая пропускная способность используется для постоянно увеличивающегося глобального трафика телевидения, телефонии и цифровой информации.

Лазер.

Одним из факторов, сыгравших важную роль в увеличении пропускной способности систем связи, было открытие лазера в 1961. Лазер – это источник света, генерирующий узкий луч света высокой интенсивности. Такой луч можно использовать для передачи сигналов. Уникальная особенность лазера состоит в том, что он излучает свет одной частоты, т.е. дает чисто монохроматическое излучение. Таким образом, лазер может служить генератором электромагнитных волн очень высокой частоты (ОВЧ) аналогично тому, как радиопередатчик служит источником волн более низкой частоты (радиоволн). Поскольку частотный диапазон световых волн (примерно от 5ґ10 8 до 10 9 МГц) во много раз шире диапазона частот радиоволн, световой луч позволяет передавать огромные объемы информации. Эта часть электромагнитного спектра имеет ширину, достаточную для размещения 80 млн. ТВ-каналов или обеспечения 50 млрд. одновременных телефонных разговоров.

Спутники связи.

Первые спутники связи, размещавшиеся на околоземных орбитах в начале 1960-х годов, несли аппаратуру пассивного типа и служили лишь ретрансляторами сигнала.

Современные спутники связи обычно выводятся на геостационарную орбиту высотой 35 900 км над поверхностью Земли. На каждом спутнике имеется 10 или большее число микроволновых приемников и передатчиков. Современный спутник позволяет передавать через океаны на целые континенты несколько телевизионных программ и обеспечивать работу более десятков тысяч телефонных каналов.

Кабели.

Во время Первой мировой войны специалисты по технике связи разработали метод использования пары проводов для одновременной передачи нескольких телефонных разговоров. Этот метод, названный частотным уплотнением каналов, основан на возможности передачи по паре проводов широкого спектра звуковых частот. При этом сигналы каждого из нескольких передатчиков разносятся по частоте (с помощью модуляции) и полученный более высокочастотный объединенный сигнал передается на приемный терминал, где разделяется на составляющие сигналы посредством демодуляции. Телефонный кабель с защитной оболочкой может содержать от десятков до сотен скрученных проводных пар, каждая из которых позволяет обеспечить работу до 24 телефонных каналов.

Однако кабелям, состоящим из проводных пар, присущи определенные ограничения. С превышением некоторой частоты сигналы, передаваемые по одной паре, начинают создавать помехи сигналам соседней пары. Чтобы решить эту проблему, была разработана передающая среда нового типа – коаксиальный кабель. Такой кабель, содержащий 22 коаксиальные пары, может обеспечить одновременную работу 132 000 телефонных каналов. Каждая пара в таком кабеле представляет собой центральный провод, заключенный в трубку второго проводника. Центральный проводник и трубка электрически изолированы друг от друга.

TASI.

Временнóе уплотнение речи с интерполяцией (TASI) – способ, позволяющий удвоить пропускную способность трансокеанских телефонных кабелей благодаря использованию естественных пауз в разговорах. Канал двусторонней связи примерно в течение 60% всего времени работает вхолостую при паузах в разговоре, а также в то время, когда пользователь работает на прием. Аппаратура TASI с помощью быстродействующего коммутатора предоставляет неиспользуемое время одного канала кому-либо из других пользователей. Такой коммутатор возвращает канал пользователю сразу же, как только тот начинает говорить, и разъединяет его сразу после замолкания, предоставляя канал в паузах другим абонентам.

Импульсно-кодовая модуляция.

Этот способ передачи сигналов средствами цифровой техники особенно удобен при использовании БИС и СБИС, а также волоконно-оптических линий. Такая цифровая (ИКМ) передача речи и ТВ-сигналов в конце концов заменит другие средства связи. При использовании импульсно-кодовой модуляции сигналы речи или изображения можно разделять на множество малых временн х интервалов; на каждом интервале ряд импульсов постоянной амплитуды представляет сигнал. Эти импульсы посылаются на принимающую станцию вместо оригинальных сигналов. Одно из преимуществ ИКМ связано с тем, что дискретные электронные импульсы постоянной амплитуды нетрудно отличить от случайных помех произвольной амплитуды (электростатического происхождения), которые в той или иной степени присутствуют в любой среде передачи. Такие импульсы можно передавать, по существу, без помех от стороннего шума, так как их легко отделить. ИКМ используется для самых разных сигналов. Телеграфные и факсимильные сообщения, а также другие данные, которые ранее пересылались по телефонным линиям другими методами, можно гораздо более эффективно передавать в импульсной форме. Трафик таких неречевых сигналов непрерывно возрастает; существуют также системы, позволяющие передавать смешанные сигналы речи, данных и видеоинформации.

Электронная коммутация.

Еще одно новшество, которое привело к повышению эффективности телефонной связи, – это электронная коммутация. Описанные выше современные микросхемы сделали возможным использование на АТС электронных коммутаторов вместо механических, что повысило скорость и надежность выполнения вызовов. Новые системы коммутации представляют собой цифровые системы, в которых для коммутации данных, сигналов ИКМ или видеосигналов в цифровой форме используются быстродействующие и компактные БИС. Вдобавок к тому, что электронная коммутация хорошо подходит для различных применений телефонии, она допускает реализацию ряда нововведений. К ним относятся: автоматическая передача вызова на другой номер, когда номер данного абонента занят; ускоренный набор, при котором абонент для соединения с часто вызываемыми номерами набирает только одну или две цифры; сигналы о вызове, которые извещают пользователя, что с ним пытается соединиться еще один абонент.

Телефоны-компьютеры.

Телефон будущего найдет себе применение не только для обычной связи. Телефонные аппараты с встроенными миниатюрными и недорогими логическими схемами будут способны выполнять сложные электронные функции. С помощью АТС такой телефон может стать индивидуальным компьютером. Нажимая клавиши своего телефонного аппарата, пользователь сможет вводить данные, которые он хочет сохранить, обрабатывать информацию, запрашивать данные из некоторого центрального файла или выполнять вычисления.

Видеотелефон.

Новые средства электроники позволяют дополнять изображениями передаваемую по телефону звуковую информацию. Видеопередачи между конференц-залами, находящимися в нескольких городах, используются для того, чтобы избежать необходимости переездов участников конференций. Видеопередачи начали широко применяться для обучения – лекции передаются из одной аудитории в другую (удаленную) и записываются на видеоленту для использования в тех же целях.

Системы кабельного телевидения.

Хотя лазерное излучение и миллиметровые волны могут быть использованы для вещания, ограничения, обусловленные поглощением в атмосфере, и разные помехи другого рода удается преодолеть лишь ценой больших затрат. Поэтому при поиске путей расширения вещания, позволяющих избежать ограничений, связанных с использованием электромагнитных излучений, все больше используются кабельные системы.

Для кабельного телевидения требуется прокладка кабелей от передающих до принимающих станций, расположенных, например, в домах. Радиослушатель или телезритель кабельного вещания не испытывает неудобств от замираний, двоения изображений и других помех. Кроме того, благодаря тому, что число каналов, передаваемых по кабелю, практически неограниченно (тогда как обычная станция ТВ-вещания передает в данный момент лишь одну программу), телезрителю предоставляется гораздо более широкий выбор программ. В перспективе средства массовой информации могут стать службами индивидуализированной информации, способными передавать по запросам отдельных телезрителей предварительно записанные программы.

На протяжении многих лет работают системы кабельного телевидения с коллективным приемом (CATV). Первоначально предназначавшиеся для обслуживания удаленных поселков, где устанавливаемые на крышах антенны не обеспечивали качественного приема сигналов, системы CATV также широко используются в городах, где одной из проблем являются помехи.

Компьютер как интеллектуальный помощник.

Специалисты в области вычислительной техники полагают, что в конце концов люди смогут более эффективно распространять свои идеи с помощью компьютеров, чем путем прямой беседы. Обычно цель беседы сводится к обмену, сравнению и критическому обсуждению идей, уже сформировавшихся в умах участников беседы. Идеи в основном выражают словами, однако если предмет обсуждения сложен или имеет техническую специфику, то приходится использовать графику, фотографии и расчеты. Беседа не всегда приводит к полному пониманию, поскольку излагаемые концепции бывает нелегко выразить словами; часто они содержат данные и ассоциации, связанные между собой настолько сложным образом, что даже говорящему трудно их до конца понять и выразить. Слушающий же не в состоянии исследовать образ мыслей говорящего и должен полагаться на информацию, которую тот сообщает, причем с мерой неадекватности, которую трудно оценить.

Компьютер, по утверждениям кибернетиков, предоставляет участнику беседы возможность лучше понять идеи своего собеседника. Компьютер – это машина для обработки информации, умеющая хранить данные, знающая, где их найти, способная сопоставлять их, сортировать, сжимать или реструктурировать и затем воспроизводить на экране в наиболее подходящей форме. Если в компьютер введена информация, имеющая отношение к формулированию некой идеи, но не прозвучавшая достаточно ясно при объяснении этой идеи собеседником, то на выходе компьютера можно получить общее представление об образе мышления говорящего. Таким образом, базовая информация говорящего оказывается доступной для слушателя. Кроме того, компьютер может понадобиться слушателю для сортировки данных, позволяющей выявить факты, имеющие отношение к обсуждаемой проблеме или концепции. Затем могут возникнуть обсуждения между двумя или большим числом собеседников, компьютеры которых соединены так, что информация собирается, обрабатывается и обменивается столь эффективно, что решения и творческие идеи смогут возникать в такой мере и на таком уровне, которых нельзя было бы достичь без использования компьютеров. Эксперименты, проведенные в этом направлении, дали обнадеживающие результаты. ОРГТЕХНИКА И КАНЦЕЛЯРСКОЕ ОБОРУДОВАНИЕ; ТЕЛЕФОН; КОМПЬЮТЕР;

Термин «электросвязь» обозначает любой вид передачи информации на разные расстояния с помощью электромагнитных импульсов. К ним, импульсам, относятся радиоволны, ток в проводах и свет в оптических кабелях. Ну и ещё такая мелочь как инфракрасный луч пульта управления телевизором. Мы же поговорим не о пустяках, а о самых что ни есть глобальных вещах - о том, как электромагнетизм служит человечеству и зачем это всё нужно.

История

История началась в 1792-м - француз Клод Шапп (Claude Chappe) придумал световой телеграф. Это когда шторки на фонаре открываются и закрываются таким образом, чтобы формировать точки и тире азбуки Морзе (правда, деятельность Сэмьюэля Морзе - это уже девятнадцатое столетие). Такая система применяется на кораблях по сей день.

Проводной телеграф появился в 1832-м в России, его изготовил изобретатель Павел Львович Шиллинг. Через пять лет в США патент на аналогичный аппарат получил вышеупомянутый Морзе. В смысле, в 1837-м. Тогда же началось создание азбуки из точек и тире.

Термин «телефон» придумал Шарль Бурсель в 1854-м. И толковую теорию составил, даже диссертацию написал. Вот только воплотить идею в жизнь так и не смог. А запатентовал устройство Александр Белл в 1876-м, хотя аналогичные разработки вели и другие конструкторы. Но такова жизнь: у кого патент, тот и прав, даже в ущерб справедливости.

Радио изобрёл Никола Тесла. Продемонстрировал в 1891-м, задолго до Попова и Маркони. Если в попавшемся вам учебнике написано иное, то это плохая книжка. Верховный суд США в 1943-м подтвердил приоритет Теслы.

Ну а от радио было уже недалеко и до телевидения. Его изобрёл русский физик Борис Розинг. Опыты начал в 1897-м, а в 1907-м сконструировал первую систему передачи изображений. Продвижение прогресса продолжил Владимир Зворыкин, эмигрировавший из Советской России в США. Приложили усилия и другие инженеры. В общем, становление телевещания началось в 20-30-е годы минувшего столетия.

Потом появились компьютеры (в середине 20-го века) и родился интернет (в 70-х его годах). Не мудрствуя лукаво, цифровые данные начали передавать по уже готовым каналам - телефонным проводам и посредством спутников. Правда, пришлось дополнительно прокладывать оптоволоконные линии.

Классификация

Классификация разновидностей электросвязи подразумевает наличие разных категорий. Рассмотрим их вкратце.

По назначению передаваемой информации связь бывает:

  1. индивидуальная, когда связываются с кем-то одним, конфиденциально;
  2. массовая, когда что-то транслируется для всех, кому не лень включить телевизор, радиоприёмник или компьютер.

По способу передачи сигнала:

  1. электрическая - по проводам;
  2. оптическая - по оптоволоконному кабелю, ну или с помощью светового телеграфа;
  3. радиосвязь - это радио, телевидение, 3G, Wi-Fi , Bluetooth.

По типу линий связи, которые делятся на:

  1. наземные (провода на столбах);
  2. подземные (закопанные провода);
  3. подводные (межконтинентальные кабели на дне океана);
  4. воздушные (волны радиостанций);
  5. космические (спутниковые, тоже радиоволны, разумеется).

По типу передаваемой информации:

  1. звуковая телефонная (аналоговая, мобильная и VoIP);
  2. звуковая радиовещательная, тоже аналоговая и цифровая ;
  3. телеграфная (вероятно, кто-то где-то до сих пор пользуется);
  4. факсимильная (говорят, ещё применяется);
  5. телевизионная (видео), аналоговое вещание пока существует, доживает последние годы;
  6. передача цифровых данных (каких-нибудь файлов, веб-страниц).

Кроме того, электросвязь бывает осуществляемой непосредственно или с помощью ретрансляторов (радиорелейная). Телевышки-ретрансляторы есть практически во всех городах. Спутники - тоже ретрансляторы.

Общие принципы действия

Сначала берётся что-то реальное , аналоговое. Например, звук. Микрофон преобразовывает его в первичные электрические сигналы. Таковые могут оставаться аналоговыми, а могут и оцифровываться. Затем для транспортировки всё превращается во вторичные сигналы - радиоволны, пакеты данных, световые импульсы в оптическом волокне.

Приёмное устройство получает вторичные сигналы и превращает их обратно в первичные. Электромагнитные колебания (радиоволны) снова становятся электрическим током звуковых частот, пакеты с цифровыми данными складываются в единый поток.

Восстановленный первичный сигнал преобразуется в физический звук - в такой же, каким он был при попадании в микрофон на передающей стороне. Ну, или примерно такой же, в зависимости от помех , возможностей аппаратуры или сжатия данных с потерями качества.

То есть, для аналогового способа передачи цепочка выглядит примерно так: «реальное - электронное первичное - вторичное для транспортировки - снова первичное - восстановленное реальное» .

Для цифрового: «реальное - электронное первичное аналоговое - первичное цифровое - вторичное цифровое для транспортировки - снова первичное цифровое - опять аналоговое - восстановленное реальное» .

С цифровым управляется программное обеспечение, а конвертирует в него и обратно аналого-цифровой (и цифро-аналоговый) преобразователь. Таковой имеется в каждом мобильном телефоне и компьютере.

«Тёплый ламповый звук»

Немножко теории для меломанов, полагающих, что аналоговые средства сохранения, передачи и воспроизведения музыки лучше цифровых.

Во-первых, дискретизация звука 44.1 килогерц не может восприниматься на слух. Почему? Ну, хотя бы из-за того, что динамики и наушники не выдают больше двадцати этих самых килогерц. То есть, звуковой поток, восстановленный из цифровых данных, является непрерывным и самым что ни есть аналоговым.

Во-вторых, многие слушают FM-радиостанции, не жалуясь на звук. Но при этом ругают формат mp3 , даже в его максимальном качестве (с битрейтом 320 кбит/сек).

Так вот, mp3 в наилучшей ипостаси способен выдавать полосу частот 20 - 16 000 герц. А стандарт FM-вещания: 30 - 15 000 герц. То есть, значительно хуже.

Более того, телевидение выдаёт точно такую же полосу звуковых частот, как и радио FM. Однако все смотрят концертные программы, слушают музыку и не возмущаются.

Заключение

Что из всего вышеизложенного имеет хоть какую-то практическую ценность для обычного потребителя, зависит от местности проживания, качества приёма сигнала эфирного вещания и доступа к интернету. Иногда целесообразно подключаться к кабельным телеканалам, иногда достаточно купить цифровую приставку (тем более что аналоговое телевидение скоро исчезнет), а в некоторых случаях удобнее слушать интернет-радио и смотреть трансляции онлайн.

Путешественникам и морякам не обойтись без спутниковой связи. Да и дома «тарелка» не может не радовать широтой выбора. Разнообразие вариантов - это всегда хорошо.

Предыдущие публикации:

Материал из Юнциклопедии


Век научно-технической революции характеризуется информационным взрывом, т. е. огромным количеством самой разнообразной информации. Чтобы передать какую-либо информацию (звук, изображение, текст телеграммы, дифровые данные для ЭВМ) по сети электрической связи, необходимо сначала превратить ее в электрические сигналы, затем направить их через линию связи, а на другом конце линии преобразовать полученные сигналы снова в информацию. Преобразование передаваемой информации в электрические сигналы и последующая «расшифровка» принятых сообщений происходят в аппаратах связи, например в телефонном, телеграфном, в передающем и приемном устройствах радиовещания или телевидения, которые включаются на концах линии связи и поэтому называются оконечными.

Передающий и приемный оконечные аппараты расположены в различных пунктах. Нет необходимости постоянно связывать эти пункты прямой линией связи: достаточно установить коммутационную (соединительную) станцию, которая бы соединяла линии связи, идущие от аппаратов, лишь на время передачи и приема сигналов. Такими коммутационными станциями являются автоматические телефонные станции (АТС), объединяющие тысячи телефонов и быстро находящие номер каждого из них, и автоматические телеграфные станции, в которых поступающие от отправителей телеграммы могут при необходимости накапливаться, сортироваться по их важности, а уж затем, через некоторое время, посылаться дальше.

Линии связи появились в середине XIX в. когда заработал электрический телеграф. Телеграфные линии связи изготавливали из железной или медной проволоки и подвешивали на столбах, прикрепляя к изоляторам. Чтобы передать больше сообщений, на каждый столб подвешивалось несколько десятков проводов. Позднее покрытые резиновой изоляцией провода стали собирать в толстые жгуты, заключая их для предохранения от повреждений в оболочку. Так «были созданы кабельные линии связи (см. Кабель). Когда изобрели телефон, то сначала пользовались уже существовавшими телеграфными линиями. Только со временем стало ясно, что для передачи телеграмм и для телефонных разговоров надо иметь линии связи разного «качества», так как их электрические сигналы состоят из токов различных частот, или, как говорят, имеют разную полосу частот.

странственные радиоволны могут прийти к радиоприемнику разными путями; 14 - междугородный кабель связи с промежуточными усилительными пунктами; 15 - кабель для приема телефонной, телеграфной и телевизионной информации от спутника связи; 16, 17, 18 - кабели для передачи информации по телефону, телеграфу, телевидению; 19 - длинноволновая радиосвязь с кораблем. При передаче телеграфных сигналов требуется полоса частот всего 50-100 Гц, для телефонной связи - примерно 3 кГц (точнее, от 300 до 3400 Гц); для хорошей передачи музыки - 20 кГц; огромную полосу частот - примерно 6 МГц занимает телевизионный сигнал. Простейшая линия электрической связи - это пара изолированных друг от друга медных проводников. Медь - ценный металл, используемый во многих отраслях народного хозяйства. Чтобы сэкономить дефицитный металл, инженеры предложили по одной и той же паре проводов передавать не одно, а несколько сообщений - телефонных разговоров, телеграмм и т. п. С этой целью была создана многоканальная связь, которая позволяет передавать по одной линии связи одновременно и независимо друг от друга множество электрических сигналов. Но передавать по одной линии множество электрических сигналов с различной информацией без особых «хитростей» нельзя, так как все сигналы имеют одинаковые или почти одинаковые (причем относительно низкие) частоты и, следовательно, будут мешать друг другу: каждый из переданных сигналов будет приниматься каждым приемником, вместо того чтобы быть принятым только «своим». Секрет многоканальной связи заключается в том, что каждый сигнал в передатчике модулирует (т. е. изменяет амплитуды, частоты или фазы колебаний) «свой», отличающийся от других по частоте высокочастотный ток. Таким образом, модулированные разными сигналами информации высокочастотные токи могут одновременно передаваться по одной линии, не мешая друг другу и «перенося» каждый «свой» сигнал информации, т. е. в линии как бы создается много отдельных, не мешающих друг другу каналов передачи. Каждый приемник с помощью включенного на его входе электрического фильтра (см. Фильтр электрический) принимает только «свой» модулированный высокочастотный ток, а детектор приемника вновь превращает этот ток в сигнал исходной информации. Существует и другой метод многоканальной связи, когда сигналы отдельных каналов передаются по линии в различные промежутки времени и на приеме разделяются соответствующим распределителем. Для того чтобы непрерывные во времени сигналы (например, телефонные, вещательные и др.) могли передаваться таким методом, эти сигналы сначала дискретизируют во времени, т. е. каждый сигнал заменяют последовательностью отдельных его (дискретных) значений; затем эти значения кодируют, т. е. каждое из них заменяют соответствующей его величине комбинацией импульсов «1» и «0», аналогично комбинациям импульсов буквопечатающего телеграфного кода (см. Телеграфная связь). Чем больше создается различных каналов по одной линии, тем меньше продолжительность каждого импульса всех передаваемых сигналов всех каналов, поэтому тем шире должна быть полоса частот, которая используется в линии, чтобы импульсы передавались по ней без искажений. Количество отдельных каналов передачи, которые таким образом могут быть созданы на линиях связи различного типа, определяется тем, токи каких частот хорошо передаются по этим линиям. Токи одних частот могут быть использованы для многоканальной связи в различных кабелях, а токи других - в радиорелейных линиях, волноводах и световодах, линиях, использующих искусственные спутники Земли. Для примера можно сказать, что уже сегодня по одной паре коаксиального кабеля можно организовать свыше 10 тыс. одновременных телефонных разговоров, примерно столько же - по радиорелейным линиям и линиям, использующим искусственные спутники Земли; по волноводным линиям могут одновременно разговаривать до сотни тысяч абонентов и еще больше - по световодам. Электрические сигналы по мере их продвижения по линии связи постепенно ослабевают. На языке связистов это явление называется затуханием. Чтобы поддержать уровень сигналов, прибегают к их усилению с помощью усилителей, которые устанавливают через равные промежутки вдоль всей линии связи. Большинство усилителей управляется и снабжается электрической энергией с помощью дистанционного управления. Совокупность различных линий связи - кабельных, радиорелейных, волноводов, линий связи через искусственные спутники Земли и линий радиосвязи, на длинных, средних и коротких волнах, а также всех оконечных аппаратов и всех коммутационных станций - образует Единую автоматизированную систему связи (ЕАСС).