Базовыми цветами в модели rgb являются. Понятие цветовой модели. Модель RGB, CMY(K). Соотношение моделей RGB и CMY. Цветовой круг

Цвет и его модели

Софья Скрылина, преподаватель учебного центра «Арт», г.Санкт-Петербург

В КомпьюАрт № 7"2012 была представлена статья о гармоничных цветовых сочетаниях и закономерностях влияния цвета на восприятие человека, что, несомненно, учитывают в своих проектах современные дизайнеры. Но при работе за компьютером и смешивании цветов на экране монитора возникают специфические проблемы. Дизайнер должен получить на экране монитора или на твердой копии именно те цвет, тон, оттенок и светлоту, которые требуются. Цвета на мониторе не всегда совпадают с природными красками. Очень непросто получить один и тот же цвет на экране, на распечатке цветного принтера и на типографском оттиске. Дело в том, что цвета в природе, на мониторе и на печатном листе создаются абсолютно разными способами.
Для однозначного определения цветов в различных цветовых средах существуют цветовые модели, о которых мы и поговорим в настоящей статье.

Модель RGB

Цветовая модель RGB — самый популярный способ представления графики, который подходит для описания цветов, видимых на мониторе, телевизоре, видеопроекторе, а также создаваемых при сканировании изображений.

Модель RGB используется при описании цветов, получаемых смешиванием трех лучей: красного (Red), зеленого (Green) и синего (Blue). Из первых букв английских названий этих цветов составлено название модели. Остальные цвета получаются сочетанием базовых. Цвета такого типа называются аддитивными, поскольку при сложении (смешивании) двух лучей основных цветов результат становится светлее. На рис. 1 показано, какие цвета получаются при сложении основных.

В модели RGB каждый базовый цвет характеризуется яркостью, которая может принимать 256 значений — от 0 до 255. Поэтому можно смешивать цвета в различных пропорциях, изменяя яркость каждой составляющей. Таким образом, можно получить 256x256x256 = 16 777 216 цветов.

Каждому цвету можно сопоставить код, используя десятичное и шестнадцатеричное представление кода. Десятичное представление — это тройка десятичных чисел, разделенных запятыми. Первое число соответствует яркости красной составляющей, второе — зеленой, а третье — синей. Шестнадцатеричное представление — это три двузначных шестнадцатеричных числа, каждое из которых соответствует яркости базового цвета. Первое число (первая пара цифр) соответствует яркости красного цвета, второе число (вторая пара цифр) — зеленого, а третье (третья пара) — синего.

Для проверки данного факта откройте палитру цветов в CorelDRAW или Photoshop. В поле R введите максимальное значение яркости красного цвета 255, а в поля G и B — нулевое значение. В результате поле образца будет содержать красный цвет, шестнадцатеричный код будет таким: FF0000 (рис. 2).

Рис. 2. Представление красного цвета в модели RGB: слева — в окне палитры Photoshop, справа — CorelDRAW

Если к красному цвету добавить зеленый с максимальной яркостью, введя в поле G значение 255, получится желтый цвет, шестнадцатеричное представление которого — FFFF00.

Максимальная яркость всех трех базовых составляющих соответствует белому цвету, минимальная — черному. Поэтому белый цвет имеет в десятичном представлении код (255, 255, 255), а в шестнадцатеричном — FFFFFF16. Черный цвет кодируется соответственно (0, 0, 0) или 00000016.

Все оттенки серого цвета образуются смешиванием трех составляющих одинаковой яркости. Например, при значениях R = 200, G = 200, B = 200 или C8C8C816 получается светло-серый цвет, а при значениях R = 100, G = 100, B = 100 или 64646416 — темно-серый. Чем более темный оттенок серого цвета вы хотите получить, тем меньшее число нужно вводить в каждое текстовое поле.

Что же происходит при выводе изображения на печать, как передаются цвета? Ведь бумага не излучает, а поглощает или отражает цветовые волны! При переносе цветного изображения на бумагу используется совершенно другая цветовая модель.

Модель CMYK

При печати на бумагу наносится краска — материал, который поглощает и отражает цветовые волны различной длины. Таким образом, краска выступает в роли фильтра, пропускающего строго определенные лучи отраженного цвета, вычитая все остальные.

Цветовую модель CMYK используют для смешения красок печатающие устройства — принтеры и типографские станки. Цвета этой модели получаются в результате вычитания из белого базовых цветов модели RGB. Поэтому их называют субтрактивными.

Базовыми для CMYK являются следующие цвета:

  • голубой (Cyan) — белый минус красный (Red);
  • пурпурный (Magenta) — белый минус зеленый (Green);
  • желтый (Yellow) — белый минус синий (Blue).

Помимо этих, используется еще и черный цвет, который является ключевым (Key) в процессе цветной печати. Дело в том, что реальные краски имеют примеси, поэтому их цвет не соответствует в точности теоретически рассчитанным голубому, пурпурному и желтому. Смешение трех основных красок, которые должны давать черный цвет, дает вместо этого неопределенный грязно-коричневый. Поэтому в число основных полиграфических красок и внесена черная.

На рис. 3 представлена схема, из которой видно, какие цвета получаются при смешении базовых в CMYK.

Следует отметить, что краски модели CMYK не являются столь чистыми, как цвета модели RGB. Этим объясняется небольшое несоответствие базовых цветов. Согласно схеме, представленной на рис. 3, при максимальной яркости должны получаться следующие комбинации цветов:

  • смешение пурпурного (M) и желтого (Y) должно давать красный цвет (R) (255, 0, 0);
  • смешение желтого (Y) и голубого (C) должно давать зеленый цвет (G) (0, 255, 0);
  • смешение пурпурного (M) и голубого (C) должно давать синий цвет (B) (0, 0, 255).

На практике получается несколько иначе, что мы далее и проверим. Откройте диалоговое окно палитры цветов в программе Photoshop. В текстовые поля M и Y введите значение 100%. Вместо базового красного цвета (255, 0, 0) мы имеем красно-оранжевую смесь (рис. 4).

Теперь в текстовые поля Y и C введите значение 100%. Вместо базового зеленого цвета (0, 255, 0) получается зеленый цвет с небольшим оттенком синего. При задании яркости 100% в полях M и C вместо синего цвета (0, 0, 255) мы имеем синий цвет с фиолетовым оттенком. Более того, не все цвета модели RGB могут быть представлены в модели CMYK. Цветовой охват RGB шире, чем у CMYK.

Основные цвета моделей RGB и CMYK находятся в зависимости, представленной на схеме цветового круга (рис. 5). Эта схема применяется для цветовой коррекции изображений; примеры ее использования рассматривались в КомпьюАрт № 12"2011.

Модели RGB и CMYK являются аппаратно зависимыми. Для модели RGB значения базовых цветов определяются качеством люминофора у ЭЛТ или характеристиками ламп подсветки и цветовых фильтров панели у ЖК-мониторов. Если обратиться к модели CMYK, то значения базовых цветов определяются реальными типографскими красками, особенностями печатного процесса и носителя. Таким образом, одинаковое изображение может на различной аппаратуре выглядеть по-разному.

Как отмечалось ранее, RGB является наиболее популярной и часто применяемой моделью для представления цветных изображений. В большинстве случаев изображения подготавливаются для демонстрации через монитор или проектор и для печати на цветных настольных принтерах. Во всех этих случаях необходимо использовать модель RGB.

Замечание

Несмотря на то что в цветных принтерах используются чернила цветовой модели CMYK, чаще всего изображения, подготавливаемые для печати, необходимо преобразовать в модель RGB. Но распечатанное изображение будет выглядеть немного темнее, чем на мониторе, поэтому перед печатью его необходимо осветлить. Величина осветления для каждого принтера определяется опытным путем.

Модель CMYK необходимо применять в одном случае — если изображение готовится к печати на типографском станке. Более того, следует учесть, что модель CMYK не содержит столь же большого числа цветов, как модель RGB, поэтому в результате преобразования из RGB в CMYK изображение может утратить ряд оттенков, которые вряд ли получится восстановить обратным преобразованием. Поэтому старайтесь выполнять преобразование изображения в модель CMYK на конечном этапе работы с ним.

Модель HSB

Модель HSB упрощает работу с цветами, так как в ее основе лежит принцип восприятия цвета человеческим глазом. Любой цвет определяется своим цветовым тоном (Hue) — собственно цветом, насыщенностью (Saturation) — процентом добавления к цвету белой краски и яркостью (Brightness) — процентом добавления черной краски. На рис. 6 показано графическое представление модели HSB.

Спектральные цвета, или цветовые тона, располагаются по краю цветового круга и характеризуются положением на нем, которое определяется величиной угла в диапазоне от 0 до 360°. Эти цвета обладают максимальной (100%) насыщенностью (S) и яркостью (B). Насыщенность изменяется по радиусу круга от 0 (в центре) до 100% (на краях). При значении насыщенности 0% любой цвет становится белым.

Яркость — параметр, определяющий освещенность или затемненность. Все цвета цветового круга имеют максимальную яркость (100%) независимо от тона. Уменьшение яркости цвета означает его затемнение. Для отображения этого процесса на модели добавляется новая координата, направленная вниз, на которой откладываются значения яркости от 100 до 0%. В результате получается цилиндр, образованный из серии кругов с уменьшающейся яркостью, нижний слой — черный.

С целью проверки данного утверждения откройте диалоговое окно выбора цвета в программе Photoshop. В поля S и B введите максимальное значение 100%, а в поле H — минимальное значение 0°. В результате мы получим чистый красный цвет солнечного спектра. Этому же цвету соответствует красный цвет модели RGB, его код (255, 0, 0), что указывает на взаимосвязь этих моделей (рис. 7).

В поле H изменяйте значение угла с шагом 20°. Вы будете получать цвета в том порядке, в каком они расположены в спектре: красный сменится оранжевым, оранжевый желтым, желтый зеленым и т. д. Угол 60° дает желтый цвет (255, 255, 0), 120°— зеленый (0, 255, 0), 180°— голубой (255, 0, 255), 240° — синий (0, 0, 255) и т.д.

Чтобы получить розовый цвет, на языке модели HSB — блеклый красный, необходимо в поле H ввести значение 0°, а насыщенность (S) понизить, например, до 50%, задав максимальное значение яркости (B).

Серый цвет для модели HSB — это сведенные к нулю цветовой тон (H) и насыщенность (S) с яркостью (B) меньше 100%. Вот примеры светло-серого: H = 0, S = 0, B = 80% и темно-серого цветов: H = 0, S = 0, B = 40%.

Белый цвет задается так: H = 0, S = 0, B = 100%, а чтобы получить черный цвет, достаточно снизить до нуля значение яркости при любых значениях тона и насыщенности.

В модели HSB любой цвет получается из спектрального добавлением определенного процента белой и черной красок. Поэтому HSB — очень простая в понимании модель, которую используют маляры и профессиональные художники. У них обычно есть несколько основных красок, а все другие получаются добавлением к ним черной или белой. Однако при смешивании художниками красок, полученных на основе базовых, цвет выходит за рамки модели HSB.

Модель Lab

Модель Lab основана на следующих трех параметрах: L — яркость (Lightness) и два хроматических компонента — a и b . Параметр a изменяется от темно-зеленого через серый до пурпурного цвета. Параметр b содержит цвета от синего через серый до желтого (рис. 8). Оба компонента меняются от -128 до 127, а параметр L — от 0 до 100. Нулевое значение цветовых компонентов при яркости 50 соответствует серому цвету. При значении яркости 100 получается белый цвет, при 0 — черный.

Понятия яркости в моделях Lab и HSB нетождественны. Как и в RGB, смешение цветов из шкал a и b позволяет получить более яркие цвета. Уменьшить яркость результирующего цвета можно за счет параметра L .

Откройте окно выбора цвета в программе Photoshop, в поле яркости L введите значение 50, для параметра a введите наименьшее значение -128, а параметр b обнулите. В результате вы получите сине-зеленый цвет (рис. 9). Теперь попробуйте увеличить значение параметра a на единицу. Обратите внимание: ни в одной модели числовые значения не изменились. Попробуйте, увеличивая значение данного параметра, добиться изменения в других моделях. Скорее всего, у вас получится это сделать при значении 121 (зеленая составляющая RGB уменьшится на 1). Это обстоятельство подтверждает факт того, что модель Lab имеет бо льший цветовой охват по сравнению с моделями RGB, HSB и CMYK.

В модели Lab яркость полностью отделена от изображения, поэтому в некоторых случаях эту модель удобно использовать для перекраски фрагментов и повышения насыщенности изображения, влияя только на цветовые составляющие a и b . Также возможна регулировка контраста, резкости и других тоновых характеристик изображения за счет изменения параметра яркости L . Примеры коррекции изображения в модели Lab приводились в КомпьюАрт № 3"2012.

Цветовой охват модели Lab шире, чем у RGB, поэтому каждое повторное преобразование из одной модели в другую практически безопасно. Более того, можно перевести изображение в режим Lab, выполнить коррекцию в нем, а затем безболезненно перевести результат обратно в модель RGB.

Модель Lab аппаратно независима, служит ядром системы управления цвета в графическом редакторе Photoshop и применяется в скрытом виде при каждом преобразовании цветовых моделей как промежуточная. Ее цветовой диапазон покрывает диапазоны RGB и CMYK.

Индексированные цвета

Для публикации изображения в Интернете используется не вся цветовая палитра, состоящая из 16 млн цветов, как в режиме RGB, а только 256 цветов. Этот режим называется «Индексированные цвета» (Indexed Color). На работу с такими изображениями налагается ряд ограничений. К ним не могут быть применены фильтры, некоторые команды тоновой и цветовой коррекции, недоступны все операции со слоями.

С изображением, скачанным из Интернета (как правило в формате GIF) очень часто возникает следующая ситуация. Нарисовать в нем что-либо получится только цветом, отличным от выбранного. Это объясняется тем, что выбранный цвет выходит за рамки цветовой палитры индексированного изображения, то есть этого цвета нет в файле. В результате происходит замена выбранного в палитре цвета на ближайший похожий цвет из цветовой таблицы. Поэтому перед редактированием такого изображения необходимо перевести его в модель RGB. 

Статья подготовлена по материалам книги Софьи Скрылиной «Photoshop CS6. Самое необходимое»: http://www.bhv.ru/books/book.php?id=190413.

Цветовая модель RGB (от англ. Red, Green, Blue - красный, зелёный, синий) - аддитивная цветовая модель, описывающая способ синтеза цвета для цветовоспроизведения. В российской традиции иногда обозначается как КЗС.

История
В 1861 г. английский физик Джеймс Кларк Максвелл выступил с предложением использовать способ получения цветного изображения, который известен как - аддитивное слияние цветов. Аддитивная (суммирующая) система цветопередачи означает, что цвета в этой модели добавляются к черному (Black) цвету. Аддитивное смещение цветов можно трактовать как, - процесс объединения световых потоков различных цветов до того, как они достигнут глаза.
Аддитивными моделями цвета (от англ. add - складывать) называются цветовые модели, в которых световой поток со спектральным распределением, визуально воспринимающимся как нужный цвет, создается на основе операции пропорционального смешивания света, излучаемого тремя источниками. Схемы смешивания могут быть различными, одна из них представлена на
Аддитивная модель цвета предполагает, что каждый из источников света имеет свое постоянное спектральное распределение, а его интенсивность регулируется.
Существуют две разновидности аддитивной модели цвета: аппаратно зависимая и перцептивная. В аппаратно-зависимой модели цветовое пространство зависит от характеристик устройства вывода изображения (монитора, проектора). Из-за этого одно и то же изображение, представленное на основе такой модели, при воспроизведении на различных устройствах будет восприниматься визуально немного по-разному.
Перцептивная модель построена с учетом особенностей зрения наблюдателя, а не технических характеристик устройства.
В 1931 г. Международная комиссия по освещению (CIE) стандартизовала цветовую систему, а также завершила работу, позволившую создать математическую модель человеческого зрения. Было принято цветовое пространство CIE 1931 XYZ, являющееся базовой моделью по сей день.

Механизм формирования цветов
При восприятии цвета человеком именно они непосредственно воспринимаются глазом. Остальные цвета представляют собой смешение трех базовых цветов в разных соотношениях.На представлена цветовая модель . R+G=Y (Yellow - желтый); G+B=C (Cyan - голубой); B+R=M (Magenta - пурпурный).Сумма всех трех основных цветов в равных долях дает белый (White) цвет R+G+B=W (White - белый). Например, на экране монитора с электронно-лучевой трубкой, а также аналогичного телевизора изображение строится при помощи засветки люминофора пучком электронов. При таком воздействии люминофор начинает излучать свет. В зависимости от состава люминофора, этот свет имеет ту или иную окраску.
Промежуточные оттенки получаются за счет того, что разноцветные зерна расположены близко друг к другу. При этом их изображения в глазу сливаются, а цвета образуют некоторый смешанный оттенок. Если же зерна одного цвета засветить не так, как остальные, то смешанный цвет не будет оттенком серого, а приобретет окраску. Такой способ формирования цвета напоминает освещение белого экрана в полной темноте разноцветными прожекторами. Если кодировать цвет одной точки изображения тремя битами, каждый из которых будет являться признаком присутствия (1) или отсутствия (0) соответствующей компоненты системы, RGB 1 бит на каждый компонент RGB то мы получим все восемь различных цветов . На практике же, для сохранения информации о цвете каждой точки цветного изображения в модели RGB обычно отводится 3 байта (т.е. 24 бита) по 1 байту (т.е. по 8 бит) под значение цвета каждой составляющей. Таким образом, каждая RGB-составляющая может принимать значение в диапазоне от 0 до 255 (всего 2 в 8 степени = 256 значений). Поэтому можно смешивать цвета в различных пропорциях, изменяя яркость каждой составляющей. Таким образом, можно получить 256 х 256 х 256 = 16 777 216 цветов. Изменяющиеся в диапазоне от 0 до 255 координаты RGB образуют цветовой куб. . Любой цвет расположен внутри этого куба и описывается своим набором координат, показывающем в каких долях смешаны в нем красная, зеленая и синяя составляющие. Возможность отобразить не менее 16,7 миллиона оттенков это полно цветные типы изображения которые иногда называют True Color (истинные или правдивые цвета). потому что человеческий глаз все равно не в силах различить большего разнообразия. Максимальная яркость всех трех базовых составляющих соответствует белому цвету, минимальная - черному цвету. Поэтому белый цвет имеет в десятеричном представлении код (255,255,255), а в шестнадцатеричном - FFFFFF. Черный цвет кодирует соответственно (0,0,0) или 000000. Все оттенки серого цвета образуются смешиванием трех составляющих одинаковой яркости. Например, при значениях (200,200,200) или C8C8C8 получается светло-серый цвет, а при значениях (100,100,100) или 646464 - темно-серый. Чем более темный оттенок серого нужно получить, тем меньшее число нужно вводить в каждое текстовое поле. Черный цвет образуется, когда интенсивность всех трех составляющих равна нулю, а белый - когда их интенсивность максимальна.

Ограничения
У модели цвета RGB есть три принципиальных недостатка: Первый - недостаточность цветового охвата. Независимо от размера цветового пространства модели цвета RGB, в ней невозможно воспроизвести много воспринимаемых глазом цветов (например, спектрально чистые голубой и оранжевый). У таких цветов в формуле цвета RGB имеются отрицательные значения интенсивностей базового цвета, а реализовать не сложение, а вычитание базовых цветов при технической реализации аддитивной модели очень сложно. Этот недостаток устранен в перцептивной аддитивной модели.
Второй недостаток модели цвета RGB состоит в невозможности единообразного воспроизведения цвета на различных устройствах (аппаратная зависимость) из-за того, что базовые цвета этой модели зависят от технических параметров устройств вывода изображений. Поэтому, строго говоря, единого цветового пространства RGB не существует, области воспроизводимых цветов различны для каждого устройства вывода. Более того, даже сравнивать эти пространства численно можно только с помощью других моделей цвета. Третий недостаток коррелированность цветовых каналов (при увеличении яркости одного канала другие уменьшают ее).

Достоинства
Множество компьютерного оборудования работает с использованием модели RGB, кроме того, эта модель очень проста, ее "генетическое" родство с аппаратурой (сканером и монитором), широкий цветовой охват (возможность отображать многообразие цветов, близкое к возможностям человеческого зрения) этим объясняется ее широкое распространение.
Главные достоинства модели цвета RGB состоят в ее простоте, наглядности и в том, что любой точке ее цветового пространства соответствует визуально воспринимаемый цвет.
Благодаря простоте этой модели она легко реализуется аппаратно. В частности, в мониторах управляемыми источниками света с различным спектральным распределением служат микроскопические частицы люминофора трех видов. Они хорошо заметны через увеличительное стекло, но при рассматривании монитора невооруженным глазом из-за явления визуального смыкания видно непрерывное изображение.
Интенсивность светового излучения в мониторах на основе электроннолучевых трубок регулируется с помощью трех электронных пушек, возбуждающих свечение люминофоров. Доступность многих процедур обработки изображения (фильтров) в программах растровой графики, небольшой (по сравнению с моделью CMYK) объем, занимаемый изображением в оперативной памяти компьютера и на диске.

Применение
Цветовая модель RGB повсеместно используется в компьютерной графике по той причине, что основное устройство вывода информации (монитор) работает именно в этой системе. Изображение на мониторе образуется из отдельных светящихся точек красного, зеленого и синего цветов. Посмотрев на экран работающего монитора через увеличительное стекло, можно разглядеть отдельные цветные точки - а еще проще это увидеть на экране телевизора, поскольку его точки значительно крупнее.
Широко используется при разработке электронных (мультимедийных) и полиграфических изданий.
Иллюстрации, выполненные средствами растровой графики, редко создают вручную с помощью компьютерных программ. Чаще для этой цели используют отсканированные иллюстрации, подготовленные художником на бумаге, или фотографии.
В последнее время для ввода растровых изображений в компьютер нашли широкое применение цифровые фото- и видеокамеры. Соответственно, большинство графических редакторов, предназначенных для работы с растровыми иллюстрациями, ориентированы не столько на создание изображений, сколько на их обработку. В Интернете применяют растровые иллюстрации в тех случаях, когда надо передать полную гамму оттенка цветного изображения.

Используемые источники
1. Домасев М. В. Цвет, управление цветом, цветовые расчеты и измерения. Санкт-Петербург: Питер 2009 г.
2. Петров М. Н. Компьютерная графика. Учебник для вузов. Санкт-Петербург: Питер 2002 г.
3. ru.wikipedia.org/wiki/Цветовая модель.
4. darkroomphoto.ru
5. bourabai.kz/graphics/0104.htm
6. litpedia.ru
7. youtube.com/watch?v=sA9s8HL-7ZM

Очень часто у людей, напрямую не связанных с полиграфическим дизайном, возникают вопросы "Что такое CMYK?", "Что такое Pantone?" и "почему нельзя использовать ничего, кроме CMYK?".

В этой статье постараемся немного разобраться, что такое цветовые пространства CMYK, RGB, LAB, HSB и как использовать краски Pantone в макетах.

Цветовая модель

CMY(K), RGB, Lab, HSB - это цветовая модель. Цветовая модель - термин, обозначающий абстрактную модель описания представления цветов в виде кортежей чисел, обычно из трёх или четырёх значений, называемых цветовыми компонентами или цветовыми координатами. Вместе с методом интерпретации этих данных множество цветов цветовой модели определяет цветовое пространство.

RGB - аббревиатура английских слов Red, Green, Blue - красный, зелёный, синий. Аддитивная (Add, англ. - добавлять) цветовая модель, как правило, служащая для вывода изображения на экраны мониторов и другие электронные устройства. Как видно из названия – состоит из синего, красного и зеленого цветов, которые образуют все промежуточные. Обладает большим цветовым охватом.

Главное, что нужно понимать, это то, что аддитивная цветовая модель предполагает, что вся палитра цветов складывается из светящихся точек. То есть на бумаге, например, невозможно отобразить цвет в цветовой модели RGB, поскольку бумага цвет поглощает, а не светится сама по себе. Итоговый цвет можно получить, прибавляя к исходномой черной (несветящейся) поверхности проценты от каждого из ключевых цветов.


CMYK - Cyan, Magenta, Yellow, Key color - субтрактивная (subtract, англ. - вычитать) схема формирования цвета, используемая в полиграфии для стандартной триадной печати. Обладает меньшим, в сравнении с RGB, цветовым охватом.

CMYK называют субстрактивной моделью потому, что бумага и прочие печатные материалы являются поверхностями, отражающими свет. Удобнее считать, какое количество света отразилось от той или иной поверхности, нежели сколько поглотилось. Таким образом, если вычесть из белого три первичных цвета - RGB, мы получим тройку дополнительных цветов CMY. «Субтрактивный» означает «вычитаемый» - из белого вычитаются первичные цвета.

Key Color (черный) используется в этой цветовой модели в качестве замены смешению в равных пропорциях красок триады CMY. Дело в том, что только в идеальном варианте при смешении красок триады получается чистый черный цвет. На практике же он получится, скорее, грязно-коричневым - в результате внешних условий, условий впитываемости краски материалом и неидеальности красителей. К тому же, возрастает риск неприводки в элементах, напечатанных черным цветом, а также переувлажнения материала (бумаги).



В цветовом пространстве Lab значение светлоты отделено от значения хроматической составляющей цвета (тон, насыщенность). Светлота задана координатой L (изменяется от 0 до 100, то есть от самого темного до самого светлого), хроматическая составляющая - двумя декартовыми координатами a и b. Первая обозначает положение цвета в диапазоне от зеленого до пурпурного, вторая - от синего до желтого.

В отличие от цветовых пространств RGB или CMYK, которые являются, по сути, набором аппаратных данных для воспроизведения цвета на бумаге или на экране монитора (цвет может зависеть от типа печатной машины, марки красок, влажности воздуха на производстве или производителя монитора и его настроек), Lab однозначно определяет цвет. Поэтому Lab нашел широкое применение в программном обеспечении для обработки изображений в качестве промежуточного цветового пространства, через которое происходит конвертирование данных между другими цветовыми пространствами (например, из RGB сканера в CMYK печатного процесса). При этом особые свойства Lab сделали редактирование в этом пространстве мощным инструментом цветокоррекции.

Благодаря характеру определения цвета в Lab появляется возможность отдельно воздействовать на яркость, контраст изображения и на его цвет. Во многих случаях это позволяет ускорить обработку изображений, например, при допечатной подготовке. Lab предоставляет возможность избирательного воздействия на отдельные цвета в изображении, усилиения цветового контраста, незаменимыми являются и возможности, которые это цветовое пространство предоставляет для борьбы с шумом на цифровых фотографиях.


HSB - модель, которая в принципе является аналогом RGB, она основана на её цветах, но отличается системой координат.

Любой цвет в этой модели характеризуется тоном (Hue), насыщенностью (Saturation) и яркостью (Brightness). Тон - это собственно цвет. Насыщенность - процент добавленной к цвету белой краски. Яркость - процент добавленной чёрной краски. Итак, HSB - трёхканальная цветовая модель. Любой цвет в HSB получается добавлением к основному спектру чёрной или белой, т.е. фактически серой краски. Модель HSB не является строгой математической моделью. Описание цветов в ней не соответствует цветам, воспринимаемых глазом. Дело в том, что глаз воспринимает цвета, как имеющие различную яркость. Например, спектральный зелёный имеет большую яркость, чем спектральный синий. В HSB все цвета основного спектра (канала тона) считаются обладающими 100%-й яркостью. На самом деле это не соответствует действительности.

Хотя модель HSB декларирована как аппаратно-независимая, на самом деле в её основе лежит RGB. В любом случае HSB конвертируется в RGB для отображения на мониторе и в CMYK для печати,а любая конвертация не обходится без потерь.


Стандартный набор красок

В стандартном случае полиграфическая печать осуществляется голубой, пурпурной, желтой и черной красками, что, собственно и составляет палитру CMYK. Макеты, подготовленные для печати, должны быть в этом пространстве, поскольку в процессе подготовки фотоформ растровый процессор однозначно трактует любой цвет как составляющую CMYK. Соответственно, RGB-рисунок, который на экране смотрится очень красиво и ярко, на конечной продукции будет выглядеть совсем не так, а, скорее, серым и бледным. Цветовой охват CMYK меньше, чем RGB, поэтому все изображения, подготавливаемые для полиграфической печати, требуют цветокоррекции и правильной конвертации в цветовой пространство CMYK!. В частности, если вы пользуетесь Adobe Photoshop для обработки растровых изображений, следует пользоваться командой Convert to Profile из меню Edit.

Печать дополнительными красками

В связи с тем, что для воспроизведения очень ярких, "ядовитых" цветов цветового охвата CMYK недостаточно, в отдельных случаях используется печать CMYK + дополнительные (SPOT) краски . Дополнительные краски обычно называют Pantone , хотя это не совсем верно (каталог Pantone описывает все цвета, как входящие в CMYK, так и не содержащиеся в нем) - правильно называть такие цвета SPOT (плашечные), в отличие от смесевых, то есть CMYK.

Физически это означает, что вместо четырех печатных секций со стандартными CMYK-цветами используется большее их количество. Если печатных секций всего четыре, организовывается дополнительный прогон, при котором в уже готовое изделие впечатываются дополнительные цвета.

Существуют печатные машины с пятью печатными секциями, поэтому печать всех цветов происходит за один прогон, что, несомненно, улучшает качество приводки цвета в готовом изделии. В случае печати в 4 CMYK-секциях и дополнительным прогоном через печатную машину с плашечными красками цветосовпадение может страдать. Особенно это будет заметно на машинах с менее чем 4 печатными секциями - наверняка не раз вы видели рекламные листовки, где за края, к примеру, красивых ярко-красных букв может немного выступать желтая рамочка, которая есть ни что иное, как желтая краска из раскладки данного красивого красного цвета.

Подготовка макетов для полиграфии

Если вы готовите макет для печати в типографии и вами не оговорена возможность печати дополнительными (SPOT) красками, готовьте макет в цветовом пространстве CMYK, какими бы привлекательными вам не казались цвета в палитрах Pantone. Дело в том, что для имитации цвета Pantone на экране используются цвета, выходящие за пределы цветового пространства CMYK. Соответственно, все ваши SPOT-краски будут автоматически переведены в CMYK и результат будет совсем не таким, как вы ожидаете.

Если в вашем макете (при договоренности об использовании триады) все-таки есть не CMYK краски, будьте готовы к тому, что макет вам вернут и попросят переделать.

При составлении статьи за основу были взяты материалы с citypress72.ru и masters.donntu.edu.ua/
  • Перевод

Я собираюсь совершить экскурс в историю науки о человеческом восприятии, которая привела к созданию современных видеостандартов. Также я попытаюсь объяснить часто используемую терминологию. Кроме того, я вкратце расскажу, почему типичный процесс создания игры со временем будет всё больше и больше напоминать процесс, используемый в киноиндустрии.

Пионеры исследований цветовосприятия

Сегодня мы знаем, что сетчатка человеческого глаза содержит три разных типа фоторецепторных клеток, называемых колбочками. Каждый из трёх типов колбочек содержит белок из семейства белков опсинов, который поглощает свет в различных частях спектра:

Поглощение света опсинами

Колбочки соответствуют красной, зелёной и синей частям спектра и часто называются длинными (L), средними (M) и короткими (S) согласно длинам волн, к которым они наиболее чувствительны.

Одной из первых научных работ о взаимодействии света и сетчатки был трактат «Hypothesis Concerning Light and Colors» Исаака Ньютона, написанный между 1670-1675 гг. У Ньютона была теория, что свет с различными длинами волн приводил к резонансу сетчатки с теми же частотами; эти колебания затем передавались через оптический нерв в «сенсориум».


«Лучи света, падая на дно глаза, возбуждают колебания в сетчатке, которые распространяются по волокнам оптических нервов в мозг, создавая чувство зрения. Разные типы лучей создают колебания разной силы, которые согласно своей силе возбуждают ощущения разных цветов…»

Больше чем через сотню лет Томас Юнг пришёл к выводу, что так как частота резонанса - это свойство, зависящее от системы, то чтобы поглотить свет всех частот, в сетчатке должно быть бесконечное количество разных резонансных систем. Юнг посчитал это маловероятным, и рассудил, что количество ограничено одной системой для красного, жёлтого и синего. Эти цвета традиционно использовались в субтрактивном смешивании красок. По его собственным словам :

Поскольку по причинам, указанным Ньютоном, возможно, что движение сетчатки имеет скорее колебательную, чем волновую природу, частота колебаний должна зависеть от строения её вещества. Так как почти невозможно полагать, что каждая чувствительная точка сетчатки содержит бесконечное количество частиц, каждая из которых способна колебаться в идеальном согласии с любой возможной волной, становится необходимым предположить, что количество ограничено, например, тремя основными цветами: красным, жёлтым и синим…
Предположение Юнга относительно сетчатки было неверным, но он сделал правильный вывод: в глазе существует конечное количество типов клеток.

В 1850 году Герман Гельмгольц первым получил экспериментальное доказательство теории Юнга. Гельмгольц попросил испытуемого сопоставить цвета различных образцов источников света, регулируя яркость нескольких монохромных источников света. Он пришёл к выводу, что для сопоставления всех образцов необходимо и достаточно трёх источников света: в красной, зелёной и синей части спектра.

Рождение современной колориметрии

Перенесёмся в начало 1930-х. К тому времени научное сообщество имело достаточно хорошее представление о внутренней работе глаза. (Хотя потребовалось ещё 20 лет, чтобы Джорджу Уолду удалось экспериментально подтвердить присутствие и функции родопсинов в колбочках сетчатки. Это открытие привело его к Нобелевской премии по медицине в 1967 году.) Commission Internationale de L"Eclairage (Меж­ду­на­род­ная комиссия по освещению), CIE, поставила задачу по созданию исчерпывающей количественной оценки восприятия цвета человеком. Количественная оценка была основана на экспериментальных данных, собранных Уильямом Дэвидом Райтом и Джоном Гилдом при параметрах, схожих с выбранными впервые Германом Гельмгольцем. Базовыми настройками были выбраны 435,8 нм для синего цвета, 546,1 нм для зелёного и 700 нм для красного.


Экспериментальная установка Джона Гилда, три ручки регулируют основные цвета

Из-за значительного наложения чувствительности колбочек M и L невозможно было сопоставить некоторые длины волн с сине-зелёной частью спектра. Для «сопоставления» этих цветов в качестве точки отсчёта нужно было добавить немного основного красного цвета:

Если мы на мгновение представим, что все основные цвета вносят отрицательный вклад, то уравнение можно переписать так:

Результатом экспериментов стала таблица RGB-триад для каждой длины волны, что отображалось на графике следующим образом:


Функции сопоставления цветов RGB по CIE 1931

Разумеется, цвета с отрицательным красным компонентом невозможно отобразить с помощью основных цветов CIE.

Теперь мы можем найти трихромные коэффициенты для света распределения спектральной интенсивности S как следующее внутреннее произведение:

Может казаться очевидным, что чувствительность к различным длинам волн можно проинтегрировать таким образом, но на самом деле она зависит от физической чувствительности глаза, линейной по отношению к чувствительности к длинам волн. Это было эмпирически подтверждено в 1853 году Германом Грассманом, и представленные выше интегралы в современной формулировке известны нам как закон Грассмана.

Термин «цветовое пространство» возник потому, что основные цвета (красный, зелёный и синий) можно считать базисом векторного пространства. В этом пространстве различные цвета, воспринимаемые человеком, представлены лучами, исходящими из источника. Современное определение векторного пространства введено в 1888 году Джузеппе Пеано, но более чем за 30 лет до этого Джеймс Клерк Максвелл уже использовал только зародившиеся теории того, что позже стало линейной алгеброй, для формального описания трихроматической цветовой системы.

CIE решила, что для упрощения вычислений будет более удобно работать с цветовым пространством, в которой коэффициенты основных цветов всегда положительны. Три новых основных цвета выражались в координатах цветового пространства RGB следующим образом:

Этот новый набор основных цветов невозможно реализовать в физическом мире. Это просто математический инструмент, упрощающий работу с цветовым пространством. Кроме того, чтобы коэффициенты основных цветов всегда были положительными, новое пространство скомпоновано таким образом, что коэффициент цвета Y соответствует воспринимаемой яркости. Этот компонент известен как яркость CIE (подробнее о ней можно почитать в замечательной статье Color FAQ Чарльза Пойнтона (Charles Poynton)).

Чтобы упростить визуализацию итогового цветового пространства, мы выполним последнее преобразование. Разделив каждый компонент на сумму компонентов мы получим безразмерную величину цвета, не зависящую от его яркости:

Координаты x и y известны как координаты цветности, и вместе с яркостью Y CIE они составляют цветовое пространство xyY CIE. Если мы расположим на графике координаты цветности всех цветов с заданной яркостью, у нас получится следующая диаграмма, которая вам наверно знакома:


Диаграмма xyY CIE 1931

И последнее, что нужно узнать - что считается белым цветом цветового пространства. В такой системе отображения белый цвет - это координаты x и y цвета, которые получаются, когда все коэффициенты основных цветов RGB равны между собой.

С течением времени появилось несколько новых цветовых пространств, которые в различных аспектах вносили улучшения в пространства CIE 1931. Несмотря на это, система xyY CIE остаётся самым популярным цветовым пространством, описывающим свойства устройств отображения.

Передаточные функции

Прежде чем рассматривать видеостандарты, необходимо ввести и объяснить ещё две концепции.

Оптико-электронная передаточная функция

Оптико-электронная передаточная функция (optical-electronic transfer function, OETF) определяет то, как линейный свет, фиксируемый устройством (камерой) должен кодироваться в сигнале, т.е. это функция формы:

Раньше V был аналоговым сигналом, но сейчас, разумеется, он имеет цифровое кодирование. Обычно разработчики игр редко сталкиваются с OETF. Один из примеров, в котором функция будет важна: необходимость сочетания в игре видеозаписи с компьютерной графикой. В этом случае необходимо знать, с какой OETF было записано видео, чтобы восстановить линейный свет и правильно смешать его с компьютерным изображением.

Электронно-оптическая передаточная функция

Электронно-оптическая передаточная функция (electronic-optical transfer, EOTF) выполняет противоположную OETF задачу, т.е. она определяет, как сигнал будет преобразован в линейный свет:

Эта функция более важна для разработчиков игр, потому что она определяет, как созданный ими контент будет отображаться экранах телевизоров и мониторов пользователей.

Отношение между EOTF и OETF

Понятия EOTF и OETF хоть и взаимосвязаны, но служат разным целям. OETF нужна для представления захваченной сцены, из которого мы потом можем реконструировать исходное линейное освещение (это представление концептуально является буфером кадра HDR (High Dynamic Range) обычной игры). Что происходит на этапах производства обычного фильма:
  • Захват данных сцены
  • Инвертирование OETF для восстановления значений линейного освещения
  • Цветокоррекция
  • Мастеринг под различные целевые форматы (DCI-P3, Rec. 709, HDR10, Dolby Vision и т.д.):
    • Уменьшение динамического диапазона материала для соответствия динамическому диапазону целевого формата (тональная компрессия)
    • Преобразование в цветовой пространство целевого формата
    • Инвертирование EOTF для материала (при использовании EOTF в устройстве отображения изображение восстанавливается как нужно).
Подробное обсуждение этого техпроцесса не войдёт в нашу статью, но я рекомендую изучить подробное формализованное описание рабочего процесса ACES (Academy Color Encoding System).

До текущего момента стандартный техпроцесс игры выглядел следующим образом:

  • Рендеринг
  • Буфер кадра HDR
  • Тональная коррекция
  • Инвертирование EOTF для предполагаемого устройства отображения (обычно sRGB)
  • Цветокоррекция
В большинстве игровых движков используется метод цветокоррекции, популяризованный презентацией Нэти Хофмана (Naty Hoffman) «Color Enhancement for Videogames» с Siggraph 2010. Этот метод был практичен, когда использовался только целевой SDR (Standard Dynamic Range), и он позволял использовать для цветокоррекции ПО, уже установленное на компьютерах большинства художников, например Adobe Photoshop.


Стандартный рабочий процесс цветокоррекции SDR (изображение принадлежит Джонатану Блоу (Jonathan Blow))

После внедрения HDR большинство игр начало двигаться к техпроцессу, похожему на используемый в производстве фильмов. Даже при отсутствии HDR схожий с кинематографическим техпроцесс позволял оптимизировать работу. Выполнение цветокоррекции в HDR означает, что у вас есть целый динамический диапазон сцены. Кроме того, становятся возможными некоторые эффекты, которые раньше были недоступны.

Теперь мы готовы рассмотреть различные стандарты, используемые в настоящее время для описания форматов телевизоров.

Видеостандарты

Rec. 709

Большинство стандартов, относящихся к вещанию видеосигналов, выпущено Меж­ду­на­род­ным союзом элект­рос­вя­зи (International Telecommunication Union, ITU), органом ООН, в основном занимающимся информационными технологиями.

Рекомендация ITU-R BT.709 , которую чаще называют Rec. 709 - это стандарт, описывающий свойства HDTV. Первая версия стандарта была выпущена в 1990 году, последняя - в июне 2015 года. В стандарте описываются такие параметры, как соотношения сторон, разрешения, частота кадров. С этими характеристиками знакомо большинство людей, поэтому я не буду рассматривать их и сосредоточусь на разделах стандарта, касающихся воспроизведения цвета и яркости.

В стандарте подробно описана цветность, ограниченная цветовым пространством xyY CIE. Красный, зелёный и синий источники освещения соответствующего стандарту дисплея должны быть выбраны таким образом, чтобы их отдельные координаты цветности были следующими:

Их относительная интенсивность должна быть настроена таким образом, чтобы белая точка имела цветность

(Эта белая точка также известна как CIE Standard Illuminant D65 и аналогична захвату координат цветности распределения спектральной интенсивности обычного дневного освещения.)

Свойства цветности можно визуально представить следующим образом:


Охват Rec. 709

Область схемы цветности, ограниченная треугольником, созданным основными цветами заданной системы отображения, называется охватом.

Теперь мы переходим к части стандарта, посвящённой яркости, и здесь всё становится немного сложнее. В стандарте указано, что «Общая оптико-электронная передаточная характеристика в источнике» равна:

Здесь есть две проблемы:

  1. Не существует спецификации о том, чему соответствует физическая яркость L = 1
  2. Несмотря на то, что это стандарт вещания видео, в нём не указана EOTF
Так получилось исторически, потому что считалось, что устройство отображения, т.е. телевизор потребителя и есть EOTF. На практике это осуществлялось корректировкой диапазона захваченной яркости в вышеприведённой OETF, чтобы изображение выглядело хорошо на эталонном мониторе со следующей EOTF:

Где L = 1 соответствует яркость примерно 100 кд / м² (единицу кд / м² в этой отрасли называют «нит»). Это подтверждается ITU в последних версиях стандарта следующим комментарием:

В стандартной производственной практике функция кодирования источников изображения регулируется таким образом, чтобы конечное изображение имело требуемый вид, соответствующий видимому на эталонном мониторе. В качестве эталонной принимается функция декодирования из Рекомендации ITU-R BT.1886. Эталонная среда просмотра указана в Рекомендации ITU-R BT.2035.
Rec. 1886 - это результат работ по документации характеристик ЭЛТ-мониторов (стандарт опубликован в 2011 году), т.е. является формализацией существующей практики.


Кладбище слонов ЭЛТ

Нелинейность яркости как функции приложенного напряжения привела к тому, как физически устроены ЭЛТ-мониторы. По чистой случайности эта нелинейность (очень) приблизительно является инвертированной нелинейностью восприятия яркости человеком. Когда мы перешли к цифровому представлению сигналов, это привело к удачному эффекту равномерного распределения ошибки дискретизации по всему диапазону яркости.

Rec. 709 рассчитана на использование 8-битного или 10-битного кодирования. В большинстве контента используется 8-битное кодирование. Для него в стандарте указано, что распределение диапазона яркости сигнала должно распределяться в кодах 16-235.

HDR10

Что касается HDR-видео, то в нём есть два основных соперника: Dolby Vision и HDR10. В этой статье я сосредоточусь на HDR10, потому что это открытый стандарт, который быстрее стал популярным. Этот стандарт выбран для Xbox One S и PS4.

Мы снова начнём с рассмотрения используемой в HDR10 части цветности цветового пространства, определённой в Рекомендации ITU-R BT.2020 (UHDTV). В ней указаны следующие координаты цветности основных цветов:

И снова в качестве белой точки используется D65. При визуализации на схеме xy Rec. 2020 выглядит следующим образом:


Охват Rec. 2020

Очевидно заметно, что охват этого цветового пространства значительно больше, чем у Rec. 709.

Теперь мы переходим к разделу стандарта о яркости, и здесь снова всё становится более интересным. В своей кандидатской диссертации 1999 года “Contrast sensitivity of the human eye and its effect on image quality” («Контрастная чувствительность человеческого глаза и её влияние на качество изображения») Питер Бартен представил немного пугающее уравнение:

(Многие переменные этого уравнения сами по себе являются сложными уравнениями, например, яркость скрывается внутри уравнений, вычисляющих E и M).

Уравнение определяет, насколько чувствителен глаз к изменению контрастности при различной яркости, а различные параметры определяют условия просмотра и некоторые свойства наблюдателя. «Минимальная различаемая разница» (Just Noticeable Difference, JND) обратна уравнению Бартена, поэтому для дискретизации EOTF, чтобы избавиться от привязки к условиям просмотра, должно быть верно следующее:

Общество инженеров кино и телевидения (Society of Motion Picture and Television Engineers, SMPTE) решило, что уравнение Бартена будет хорошей основой для новой EOTF. Результатом стало то, что мы сейчас называем SMPTE ST 2084 или Perceptual Quantizer (PQ).

PQ был создан выбором консервативных значений для параметров уравнения Бартена, т.е. ожидаемых типичных условий просмотра потребителем. Позже PQ был определён как дискретизация, которая при заданном диапазоне яркости и количестве сэмплов наиболее точно соответствует уравнению Бартена с выбранными параметрами.

Дискретизированные значения EOTF можно найти с помощью следующей рекуррентной формулы нахождения k < 1 . Последним значением дискретизации будет являться необходимая максимальная яркость:

Для максимальной яркости в 10 000 нит с использованием 12-битной дискретизации (которая используется в Dolby Vision) результат выглядит следующим образом:


EOTF PQ

Как можно заметить, дискретизация не занимает весь диапазон яркости.

В стандарте HDR10 тоже используется EOTF PQ, но с 10-битной дискретизацией. Этого недостаточно, чтобы оставаться ниже порога Бартена в диапазоне яркости в 10 000 нит, но стандарт позволяет встраивать в сигнал метаданные для динамической регуляции пиковой яркости. Вот как 10-битная дискретизация PQ выглядит для разных диапазонов яркости:


Разные EOTF HDR10

Но даже так яркость немного выше порога Бартена. Однако ситуация не настолько плоха, как это может показаться из графика, потому что:

  1. Кривая логарифмическая, поэтому относительная погрешность на самом деле не так велика
  2. Не стоит забывать, что параметры, взятые для создания порога Бартена, выбраны консервативно.
На момент написания статьи телевизоры с HDR10, представленные на рынке, обычно имеют пиковую яркость 1000-1500 нит, и для них достаточно 10 бит. Стоит также заметить, что изготовители телевизоров могут сами решать, что им делать с яркостями выше диапазона, который они могут отображать. Некоторые придерживаются подхода с жёсткой обрезкой, другие - с более мягкой.

Вот пример того, как выглядит 8-битная дискретизация Rec. 709 с пиковой яркостью 100 нит:


EOTF Rec. 709 (16-235)

Как можно видеть, мы намного выше порога Бартена, и, что важно, даже самые неразборчивые покупатели будут настраивать свои телевизоры на значительно большие 100 нит пиковые яркости (обычно на 250-400 нит), что поднимет кривую Rec. 709 ещё выше.

В заключение

Одно из самых больших различий между Rec. 709 и HDR в том, что яркость последнего указывается в абсолютных значениях. Теоретически это означает, что контент, предназначенный для HDR, будет выглядеть одинаково на всех совместимых телевизорах. По крайней мере, до их пиковой яркости.

Существует популярное заблуждение, что HDR-контент в целом будет ярче, но в общем случае это не так. HDR-фильмы чаще всего будут изготавливаться таким образом, чтобы средний уровень яркости изображения был тем же, что и для Rec. 709, но так, чтобы самые яркие участки изображения были более яркими и детальными, а значит, средние тона и тени будут более тёмными. В сочетании с абсолютными значениями яркости HDR это означает, что для оптимального просмотра HDR нужны хорошие условия: при ярком освещении зрачок сужается, а значит, детали на тёмных участках изображения будет сложнее разглядеть.

Теги:

  • rgb
  • пространства цветов
  • color spaces
  • стандарты видео
  • hdr
  • hdtv
Добавить метки

Модель RGB (Red - Красный, Green - Зеленый, Blue - Синий) описывает излучаемые цвета.

Модель R G B (Red - Красный, Green - Зеленый, Blue - Синий) описывает излучаемые цвета. Базовыми компонентами модели являются три цвета лучей - красный, зеленый, синий. При восприятии цвета человеком именно они непосредственно воспринимаются глазом. Остальные цвета представляют собой смешение трех базовых в разных соотношениях. Каждая составляющая может изменяться в пределах от 0 до 255, как было рассмотрено в предыдущей главе. Такой способ предоставляет доступ ко всем 16 миллионам цветов. При сложении (смешении) двух лучей основных цветов результат оказывается светлее, чем отдельные составляющие . Цвета этого типа называются аддитивными . Эта модель используется во всех мониторах , проекторах и других устройствах, которые излучают или фильтруют свет, включая телевизоры, кинопроекторы и цветные прожекторы. Web-дизайнер в своей работе ориентируется на такое устройство вывода, как монитор, поэтому мы будем учиться работать в основном с изображениями в модели RGB. Напомню, что она является трехканальной (имеет три составляющие) и 24-битной (цвет одного пиксела представляется 24 битами - по байту на канал).


Цветовое пространство модели удобно представить в виде цветового куба . По осям координат откладываются значения цветовых каналов. Каждый из них может принимать значения от нуля (нет света) до максимального (наибольшая яркость света). Внутренняя часть образовавшегося куба содержит все цвета модели. В начале координат значения каналов равны нулю (черный цвет). В противоположной точке смешиваются максимальные значения каналов, образуя белый цвет. На линии, соединяющей эти точки, располагаются смеси равных значений каналов, образуя серые оттенки от черного до белого - серую шкалу. Три вершины куба дают чистые исходные цвета, остальные три отражают двойные смешения исходных цветов. В обычном RGB-изображении каждый цветовой канал и серая шкала имеют 256 градаций (оттенков).


Изображение, созданное в цветовой модели RGB, может быть сохранено в любом графическом формате, поддерживаемом программой Photoshop, кроме формата GIF.


Недостатком режима RGB является то, что далеко не все цвета, которые могут быть в нем созданы, можно вывести на печать. Избежать потери цветов можно, редактируя изображение в режиме CMYK.

Модели CMY и CMYK.

Модель C M Y описывает отраженные цвета (краски). Они образуются в результате вычитания части спектра падающего света и называются субтрактивными . При смешении двух цветов результат темнее обоих исходных, поскольку каждый из цветов поглощает часть спектра. Иначе говоря, чем больше краски мы положили, тем больше вычли из белого, т.е. тем ниже будет результирующая яркость.


Для начала расшифруем название этой модели. C=Cyan (бирюзовый ), M=Magenta (пурпурный ), Y=Yellow (желтый ). Каналы CMY - это результат вычитания основных цветов модели RGB из белого цвета (то есть цвета маскимальной яркости). Запишем "формулы" получения этих цветов:

  • Бирюзовый = Белый - Красный
  • Пурпурный = Белый - Зеленый
  • Желтый = Белый - Синий

Можно сказать, что модель CMY обратна модели RGB . Посмотрите на рисунок - базовые цвета модели CMY находятся напротив базовых цветов модели RGB. Согласно модели RGB, белый цвет представляет собой сумму трех компонент максимальной яркости, т.е. можно записать:
Белый = Красный + Зеленый + Синий.
После нехитрых математических преобразований получаем следующее представление цветов модели CMY:

  • Бирюзовый = Зеленый + Синий
  • Пурпурный = Красный + Синий
  • Желтый = Красный + Зеленый

Сравните эти формулы с рисунком - все правильно. Желтый цвет лежит между красной и зеленой областями и т.д. Если это рисунок вас не убедил - посмотрите на рисунок модели RGB в предыдущей главе.


Развитием модели CMY является модель CMYK . Она описывает реальный процесс цветной печати на офсетной машине и цветном принтере. Пурпурная, голубая и желтая краски (полиграфическая триада) последовательно наносятся на бумагу в различных пропорциях, и таким способом может быть репродуцирована значительная часть видимого спектра. В области черного и темных цветов наносятся не цветные, а черная краска. Это четвертый базовый компонент, он введен для описания реального процесса печати. Черный компонент сокращается до буквы K (blacK или, по другой версии, Key ). CMYK - четырехканальная цветовая модель. Зачем в модель вводится черная краска? Реальные краски содержат примеси, и при смешении дадут не черный, а темно-коричневый цвет. К тому же при печати очень темных и черного цвета было бы необходимо большое количество каждой краски, что ведет к переувлажнению бумаги и неоправданному расходу красок.


Описанные цветовые модели являются аппаратно-зависимыми . При выводе одного и того же изображения на различных устройствах (например, на двух разных мониторах) вы, скорее всего, получите разный результат. То есть цвет зависит как от значений базовых составляющих, так и от параметров устройств: качества и марки данной печатной краски, свойств использованной бумаги, свойств люминофора и других параметров конкретного монитора, принтера или печатного пресса. Кроме того, существование разных моделей описания для излучаемых и отраженных цветов весьма неудобно при компьютерной подготовке цветных изображений. В полиграфический процесс входят системы, работающие как в модели RGB (сканер, монитор), так и в модели CMYK (фотонабор и печатная машина). В процессе работы приходится преобразовывать цвет из одной модели в другую. Поскольку эти модели имеют разный цветовой охват, преобразование часто сопряжено с потерей части оттенков. Поэтому одной из основных задач при работе с цветными изображениями становится достижение предсказуемого цвета. Для этого создана система цветокоррекции (Color Management System, СMS ). Это программная система, цель которой, во-первых, достичь одинаковых цветов для всех этапов полиграфического процесса, от сканера до печатного станка, а во-вторых - обеспечить стабильное воспроизведение цвета на всех выводных устройствах (например, на любом мониторе). Пространство этой модели аналогично пространству модели RGB, в которой перемещено начало координат. Смешение максимальных значений всех трех компонентов дает черный цвет. При полном отсутствии краски (нулевые значения составляющих) получится белый цвет (белая бумага). Смешение равных значений трех компонентов даст оттенки серого.



Модель CMYK предназначена специально для описания печатных изображений. Поэтому ее цветовой охват значительно ниже, чем у RGB (ведь она описывает не излучаемые, а отраженные цвета, интенсивность которых всегда меньше). Кроме того, как прикладная модель, CMYK жестко привязана к параметрам печати (краски, тип печатной машины и т. д.), которые очень разнятся для каждого случая. При переводе в CMYK нужно задать массу технологических характеристик - указать, какими конкретно красками и на какой бумаге будет отпечатано изображение, некоторые особенности печатного оборудования и т. д. Для разных заданных значений вид изображения на печати и на экране будет разным. Еще одной особенностью модели является теоретически не обоснованное введение дополнительного черного канала. Он предназначен для исправления недостатков современного печатного оборудования. В темных областях особенно хорошо видны погрешности совмещения, возможно переувлажнение бумаги, кроме того, смесь CMY-красок не дает глубокого черного тона. Все эти "узкие места" можно устранить применением дополнительной черной краски. При переводе в CMYK программа заменяет в темных областях триадные краски на черную. Эта замена производится по разным алгоритмам, в зависимости от состава изображения (черный цвет подчеркивает контуры предметов, визуально усиливая резкость), особенностей печати и других причин. Таким образом, в зависимости от установок перевода вид изображения меняется. Неудачный перевод в CMYK (цветоделение ) может привести к серьезным потерям качества. Цветоделение обычно предполагает печать тиража (иначе зачем CMYK), а это, в свою очередь, связано с большими финансовыми вложениями. Поэтому, если вам приходится выполнять подготовку файлов для типографии, необходимо изучить специальную литературу по предпечатной подготовке.


Рассмотрим каналы в CMYK-изображении. Для эксперимента нам потребуется файл photo.jpg . Как видите, в области заголовка окна также показана модель изображения. Сейчас это RGB. Чтобы перевести изображение в цветовой режим CMYK, выберите в меню Image команду Mode > CMYK . Откройте палитру Channels. Там присутствует пять строк - четыре строки цветовых каналов и одна строка совмещенного канала. Активизация и регулирование видимости каналов производятся точно так же, как для RGB - изображения.


Отключите видимость всех каналов, кроме голубого. Заметьте, что изображение стало много светлее. Каналы CMYK складываются так же, как краски, положенные на бумагу. Практически сейчас перед вами голубая форма для печати файла. Именно таким образом будет распределяться краска на отпечатке. Насыщенность цвета максимальна в голубой и синей областях. Они окрашены насыщенным голубым цветом. Голубой есть также в областях оттенков серого. Это означает, что в CMYK оттенки серого формируются из смеси равного количества всех компонентов модели. Область черного и очень темных оттенков изображается на печати черной краской, поэтому она пока остается белой.


Теперь активизируйте изображение черного канала, не отключая голубой. Вы видите форму, в соответствии с которой будет наноситься черная краска. Отключите видимость черного канала, добавьте к голубому отображение желтого канала. Как видите, смешение красок в модели происходит по гораздо более понятному принципу - при сложении голубой и желтой составляющих получаются оттенки зеленого. Зеленый цвет получили также серые участки, поскольку они состоят из равных количеств каждого из базовых компонентов. Отметьте, что изображение тем темнее, чем больше каналов видно на экране. Сделайте видимым и пурпурный канал. Изображение в средних и светлых тонах уже приобрело нормальный вид. В тенях же остались белые участки - все они будут напечатаны черным, а не смесью трех цветных красок.