Технология распознавания лиц придет в российские города. Распознавание лиц: как это работает и что с ним будет дальше

Видеть - значит понимать увиденное. Мы слепы, если в нашем мозгу не работают зрительные зоны неокортекса - своеобразного биокомпьютера, ответственного за распознавание образов. Сейчас подобные анализаторы, способные узнавать лица и понимать их выражение, появляются у искусственных систем.

Итак, вещи обретают зрение, а у зрения есть собственный разум. Сначала мне кажется, что он туповат: только что включенная система распознавания лиц LUNA не торопится войти в штатный режим и запомнить меня. Но вот наконец она рапортует, что запомнила, и просит ввести имя. Пол и возраст LUNA может определить сама. С полом легко: у меня борода, а вот возраст система завысила на пять лет - видимо, из-за той же бороды.

Теперь камера узнает меня, даже если я снимаю очки или поворачиваю голову. Приходится попробовать средство посерьезней - мы направляемся к шкафу с париками и накладными усами. Я выбираю густые кудри, скрывающие к тому же пол-лица, - LUNA все равно узнает меня.

Наигравшись с париками, мы открываем ICQ и начинаем развлекаться с масками для видеозвонков: на мое цифровое лицо в реальном времени накладываются маски - можно неузнанным общаться в видеочате.

Следующий номер нашей программы - Face.DJ. Это приложение строит 3D-модель лица по селфи, а потом "надевает" это лицо на виртуальную голову, чтобы вы могли примерять прически и аксессуары. Другое назначение приложения - анимировать пользователя, создать его мультяшную копию для игр и прочих онлайн-занятий.

Мы готовим такое же приложение для сервиса знакомств: люди при первом контакте часто не хотят раскрываться, - рассказывает Юля, пиарщик компании VisionLabs, разработавшей LUNA. - Некоторые надевают маски, чтобы добавить в романтическое общение элемент игры.

У кросс-платформенной системы LUNA тоже много масок. Есть приложение в мессенджере Telegram, которое распознает пол и возраст по лицу, есть LUNA в облаке и LUNA для браузера. Но главное - эту программу можно внедрять в самые разные технологические продукты, чтобы использовать для распознавания лиц.

Например, одному из наших клиентов нужно выбирать фотографии - так называемый bestshot из видеопотока. Так вот, наша программа справляется с этим сама. Другому клиенту нужно, чтобы система распознавала лицо не только при входе в интернет-банк, но и на протяжении всего сеанса, потому что вы можете отойти, а вашим доступом воспользуется злоумышленник. С этой задачей мы тоже справились.

Главные клиенты VisionLabs - банки. Например, в "Почта Банке" системой LUNA оборудованы 50 тысяч рабочих мест - это самое большое внедрение биометрии в мире. Важно распознавать и лица клиентов, чтобы сравнивать фотографии в паспортах с фото в базе данных. Ведь самое распространенное мошенничество в этой сфере - вклейка своего фото в чужой паспорт для получения кредита.

Как видят машины

К нам подходит Александр Ханин, директор VisionLabs.

Расскажите о компьютерном зрении?

Александр Ханин: Компьютерное зрение - это область прикладной математики, которая по сложности эквивалентна задаче создания искусственного интеллекта в целом. Визуальный канал основной для получения информации об окружающем мире. И доверяем мы увиденному своими глазами больше, чем другим источникам.

Наша задача - научить программу по фотографии или видео делать выводы и понимать картинку так же, как человек. Или даже лучше. Вот когда машина сравняется с человеком в этом умении, можно будет считать, что задача решена. Пока же она решена лишь для некоторых узких прикладных областей. Например, для распознавания дефектов оборудования или распознавания лиц.

Задача распознавания лиц решена?

Александр Ханин: Да, уже сейчас достоверно показано, что машина различает лица лучше нас. И точнее, и быстрее. Человек не очень хорошо определяет возраст, национальность. Тот, кто живет в Европе, хуже различает лица людей с азиатской внешностью, и наоборот. Еще мы забывчивы. В довершение всего машина делает это в десятки миллионов раз быстрее.

Зато человек анализирует не отдельные параметры, а лицо и даже ситуацию в целом. Мы понимаем контекст, в котором лицо собеседника принимает то или иное выражение. Как машина со всем этим справляется?

Александр Ханин: Сочетая лучшие методики компьютерного зрения и машинного обучения. Взять, например, метод глубокого обучения - его особенность в том, что человек не задает параметры лица для распознавания.

Нейросеть программирует сама себя?

Александр Ханин: Нейросети появились еще в 1970-х, а революция в этой области началась примерно в 2013-2014-м. Потому что только к этому времени удалось накопить достаточно большие объемы данных , чтобы учить нейросети, а вычислительные мощности стали относительно дешевыми. Продолжать разрабатывать детерминированные методы распознавания - указывать, какие части лица как сравнивать, - стало бессмысленно.

Прорыв произошел, когда отказались от заданных параметров, например от ключевых точек на лице. Вместо этого машине поставили задачу: "Смотри, вот десять тысяч пар фотографий, каждая пара - один человек. Проанализируй их, чтобы суметь определить на фото, которые ты пока не видишь, где один человек, а где разные". Машина сама находит параметры, которые важны для решения этой задачи.

Вы именно так обучали свою систему?

Александр Ханин: Ну да, это типичная задача идентификации - сравнить фотографию, сделанную сейчас, с фото в паспорте и подтвердить, что это один и тот же человек. Мы давали машине на вход большие данные - миллионы пар фотографий, а на выходе требовали правильного ответа для любых фотопортретов. И система училась - сама настраивала параметры так, чтобы минимизировать ошибки. То есть для глубокого обучения сначала надо найти обучающую выборку - много примеров правильных решений. Потом программа работает уже сама.

Где же вы взяли эти миллионы пар фотографий?

Александр Ханин: Есть доступные обучающие выборки для исследователей - сначала мы использовали их, а дальше уже работали с партнерами и клиентами, которые разрешили продолжить обучение на их данных.

Как преуспеть на рынке

Задача распознавания людей по лицу решена. А как обстоит дело с определением эмоций?

Александр Ханин: Как, например, в африканских странах люди миновали стадию телеграфа и сразу перешли на мобильную сеть, так и мы, не решая задачу распознавания эмоций, сразу перешли на более высокий уровень - к выводам о важных для наших клиентов характеристиках человека. Бизнес показывает: от того, что машина распознает, улыбается человек или нахмурен, пользы никакой. Нужны более серьезные умения.

Распознавать ложь, например?

Александр Ханин: Да. Или определять, соответствует кандидат вашим требованиям или нет. Удовлетворен клиент обслуживанием или нет - улыбка ведь может выражать не только радость, но и насмешку и скрытое недовольство. Поэтому само по себе распознавание эмоций - это подзадача. Мы изучаем лицо в динамике, последовательность реакций на вопросы, обслуживание, обстановку.

Есть ли в мире инновационные продукты, на которые вы ориентируетесь?

Александр Ханин: Мы сами на переднем фланге. Медицинский факт, что наш продукт - первая в мире комплексная система распознавания лиц для банков и ретейла, которая работает и в мобильном телефоне, и на сайте, и в отделениях, и в банкоматах, и в терминалах самообслуживания - везде. Мы не только первые, но пока, насколько я знаю, единственные.

В каких-то терминалах самообслуживания уже установлена система распознавания лиц?

Александр Ханин: Да, например, в банке "Открытие" - в терминалах электронной очереди. И это не пилотные проекты, а такие, которые работают и удовлетворяют заказчиков в реальных условиях.

Чувствуете, как конкуренты дышат в спину?

Александр Ханин: Пилотных проектов в близких к нам областях много. Компаний, которые занимаются распознаванием лиц, только в России десятки, в Китае - около сотни, в мире - больше тысячи. Поэтому я и говорю, что сама по себе задача распознавания лиц решена, - во всяком случае для большинства сегментов и практических задач.

Для успеха на рынке важны не технологии. Большинству клиентов плевать, какая у нас технология и как именно мы решаем задачу, допустим, по ускорению обслуживания в банке или магазине, - с помощью распознавания лиц, прогноза погоды или черной магии. Им важно, чтобы был результат.

Распознать всех!

Какие задачи еще не решены, но будут - в обозримой перспективе? Над чем работают специалисты?

Александр Ханин: Одна из важнейших нерешенных задач - распознавание лиц в полностью неконтролируемой обстановке, например в толпе. Многие говорят, что умеют это делать, но по факту ничего такого пока не внедрили. Видимо, напрасно говорят.

Разве узнавать случайных людей по лицам не запрещено законом? Это ведь использование персональных данных.

Александр Ханин: Бизнесу запрещено, конечно. Это нарушение прав человека и вмешательство в частную жизнь. Вообще, технологии сейчас позволяют сделать гораздо больше, чем разрешает законодательство. Но мы работаем только в белой зоне - в полном соответствии с законом. Для нас важно не нарушать права людей. Мы не имеем права использовать без согласия человека его данные из соцсетей и поэтому не станем делать, например, для магазина систему, которая ищет информацию о клиенте по его фотографии. Но мы можем разработать программу, которая будет приблизительно оценивать пол и возраст покупателей по фото.

Наша компания работает только с бизнесом, а вот у служб национальной безопасности есть системы, которые ищут людей по фотографии.

То есть ФСБ можно, а обычным людям нельзя?

Александр Ханин: Да. Если спецслужба хочет найти террориста в толпе, ей нужно сканировать и распознать всех. А если человек зашел в магазин и программа по фотографии нашла его аккаунт в соцсети, узнала телефон и начала рассылать спам, это очень серьезное нарушение. На Западе за это предусмотрена уголовная ответственность.

В аэропортах уже есть системы распознавания лиц?

Александр Ханин: Да, в основном на паспортном контроле - они проверяют, ваш ли это паспорт, не поддельный ли и не числитесь ли вы в списке заблокированных или в федеральном розыске. За рубежом степень автоматизации значительно выше. В аэропортах Сингапура, Лондона, Парижа паспортный контроль можно проходить автоматически, без участия сотрудников. Вы сканируете свой паспорт, вас фотографируют, происходит сверка - и все, можно идти дальше.

Угадай, что на картинке

Как будет развиваться компьютерное зрение?

Александр Ханин: Есть большая группа задач, именуемых visual question answering: вы показываете компьютеру картинку, и он должен понять, что там изображено. Это очень сложно: если просто учить распознавать объекты по отдельности, ничего не получится - надо понимать контекст и взаимосвязь объектов.

Другая похожая задача - распознавание действий человека, они ведь тоже определяются во многом по контексту. Например, если человек поднял руку, что это значит? Он указывает дорогу или собирается кого-то ударить? Вот сидим, думаем.

То есть вы хотите научить машины распознавать образы, смысл которых зависит от контекста?

Александр Ханин: Научить интерпретировать контекст и таким образом распознавать картинки, действия, сцены.

Когда роботы прозреют

Александр Ханин: Хотелось бы, чтоб разработку компьютерного зрения довели до конца. Тогда у роботов появятся настоящие глаза, а значит, возможность понимать происходящее и адекватно реагировать. Иначе они не станут частью общества, а так и будут игрушками с пультами управления.

Как системы, распознающие лица, изменят нашу жизнь в ближайшие годы?

Александр Ханин: Вы совершенно точно заметите работу таких систем при авторизации - например, когда будете разблокировать телефон. Многие уже привыкли к Touch ID, но скоро самым распространенным способом станет вхождение в систему по лицу. Приходя домой, вы не будете искать ключи, на работе вам не понадобится пропуск. Ускорится обслуживание и самообслуживание в банках, магазинах, во всей сфере услуг: расчеты будут происходить без карточек.

На улицах станет безопаснее, потому что появится видеонаблюдение с функциями отслеживания. Города и страны получат дополнительную защиту, а возмездие за преступление станет неизбежным. Система будет фиксировать все: кто и где это сделал, куда потом пошел. На смену понятию "безопасный город" придет "умный город": одна и та же инфраструктура будет обеспечивать безопасность и, например, управление потоками людей и машин, а также много чего другого.

Одна и та же система установленных повсюду камер и компьютерного зрения?

Александр Ханин: Да, алгоритму без разницы, кого распознавать: вип-клиента или воришку. Лица у всех устроены одинаково: глаза, рот и нос. Но дело не только в лицах. Эта же система может заняться, скажем, регулированием освещения. Если в помещении нет людей, зачем жечь электричество? Машина вызовет коммунальные службы, если зафиксирует неполадки, и так далее.

Жить в мире, где все на виду, страшновато. Технически все проще становится построить антиутопию, где за всеми ведется тотальная слежка…

Александр Ханин: Я думаю, в итоге мир станет лучше и намного безопаснее. Но обманывать будет труднее. Например, мы с партнерами недавно разработали продукт, который не только дает доступ в рабочее помещение, но и учитывает проведенное там время: пришли во столько-то, ушли во столько. Прогуляли, опоздали, не вернулись с обеда - все будет зафиксировано.

И никак нельзя будет от этого спрятаться? Наверняка появятся маски с чужим лицом.

Александр Ханин: Безусловно, есть масса способов обмануть систему, и в этой области "гонка вооружений" только начинается. Был такой видеоролик, где учили делать макияж, препятствующий распознаванию. Но то было года три назад - нынешние алгоритмы так просто не проведешь.

А если вместо лица показывать фотографию?

Александр Ханин: Чтобы вычислить мошенников, в системах распознавания лиц программируют специальный "детектор живости" (lifeness detector), который определяет, человек перед ним или фотография. Показателей живости несколько. Самый простой, который считается мировым стандартом, - это моргание. Еще система может попросить человека улыбнуться, повернуть голову, приблизиться к камере, чтобы убедиться, что он реальный. Но если камера оснащена сенсором глубины, это не требуется: машина сразу понимает, что в кадре объемный объект, а не фото.

Кто еще в лидерах

Распознавание лиц - это не только наука и технология, но и большой бизнес, который в развитых странах растет огромными темпами. Исследовательская компания Allied Market Research прогнозирует, что к 2022 году его оборот составит почти десять миллиардов долларов. Среди ведущих игроков есть и российские. Из десятков стартапов и исследовательских проектов мы выделили три самых успешных.

NTechLab. Выпускник МГУ Артем Кухаренко начинал с приложения, определявшего породу собак по фотографии. Но уже в 2015 году созданный им с партнерами по проекту NTechLab алгоритм FaceN одержал победу в двух из четырех номинаций главного мирового конкурса по распознаванию лиц MegaFace, обойдя команду Google. Однако настоящая слава пришла к компании после разработки популярнейшего приложения FindFace, предназначенного для поиска по фото людей в соцсети "ВКонтакте". Сегодня число заявок на интеграцию технологии FindFace приближается к тысяче.

Vocord. Компанию "Вокорд" можно смело считать чемпионом мира по распознаванию лиц: на сайте конкурса MegaFace она занимает первое место, лидируя с солидным отрывом. Команда "Вокорд" - ветераны на рынке систем компьютерного зрения: программу дистанционного биометрического распознавания лиц Vocord FaceControl они выпустили еще в 2008 году, сегодня их продуктами пользуются больше двух тысяч коммерческих и государственных организаций. Специализация компании - идентификация лиц, то есть поиск человека в толпе.

VisionLabs. Их продукты входят в тройку лучших мировых коммерческих систем распознавания лиц. Подробнее об этой компании читайте в основном тексте.

Основные виды биометрии

Международная классификация способов идентификации человека

Лицо. Программа по фото или видеоизображению лица анализирует размер и форму глаз, носа, скул, их взаиморасположение и на основе этих данных создает уникальную комбинацию, которую затем сравнивает с имеющимися на предмет совпадения.

Отпечатки пальцев. Дактилоскопический метод основан на неповторимости папиллярного рисунка кожи, широко применяется в криминалистике.

Речь. Способ распознавания, основанный на преобразовании звучащей речи в цифровую информацию.

Глаза. Распознавание происходит в результате сравнения цифрового изображения радужной оболочки глаза с имеющимися в базе.

Вены. Способ идентификации на основе венозного рисунка руки или пальцев.

Взять кредит, оформить визу, да и просто запустить смартфон последней модели — сделать все это сегодня невозможно без участия алгоритмов распознавания лиц. Они помогают полицейским в расследованиях, музыкантам — на сцене, но понемногу превращаются во всевидящее око, следящее за всеми нашими действиями онлайн и офлайн.

Алгоритмы (технологии)

Определить человека по фото с точки зрения компьютера означает две очень разные задачи: во‑первых, найти лицо на снимке (если оно там есть), во‑вторых, вычленить из изображения те особенности, которые отличают этого человека от других людей из базы данных.

1. Найти

Попытки научить компьютер находить лицо на фотографиях проводились еще с начала 1970-х годов. Было испробовано множество подходов, но важнейший прорыв произошел существенно позднее — с созданием в 2001 году Полом Виолой и Майклом Джонсом метода каскадного бустинга, то есть цепочки слабых классификаторов. Хотя сейчас есть и более хитрые алгоритмы, можно поспорить, что и в вашем сотовом телефоне, и в фотоаппарате работает именно старый добрый Виола — Джонс. Все дело в замечательной быстроте и надежности: даже в далеком 2001 году средний компьютер с помощью этого метода мог обрабатывать по 15 снимков в секунду. Сегодня эффективность алгоритма удовлетворяет всем разумным требованиям. Главное, что нужно знать об этом методе, — он устроен удивительно просто. Вы даже не поверите насколько.

  1. Шаг1. Убираем цвет и превращаем изображение в матрицу яркости.
  2. Шаг 2. Накладываем на нее одну из квадратных масок — они называются признаками Хаара. Проходимся с ней по всему изображению, меняя положение и размер.
  3. Шаг 3. Складываем цифровые значения яркости из тех ячеек матрицы, которые попали под белую часть маски, и вычитаем из них те значения, что попали под черную часть. Если хотя бы в одном из случаев разность белых и черных областей оказалась выше определенного порога, берем эту область изображения в дальнейшую работу. Если нет — забываем про нее, здесь лица нет.
  4. Шаг 4. Повторяем с шага 2 уже с новой маской — но только в той области изображения, которая прошла первое испытание.

Почему это работает? Посмотрите на признак . Почти на всех фотографиях область глаз всегда немного темнее области непосредственно ниже. Посмотрите на признак : светлая область посередине соответствует переносице, расположенной между темными глазами. На первый взгляд черно-белые маски совсем не похожи на лица, но при всей своей примитивности они имеют высокую обобщающую силу.

Почему так быстро? В описанном алгоритме не отмечен один важный момент. Чтобы вычесть яркость одной части изображения из другой, понадобилось бы складывать яркость каждого пикселя, а их может быть много. Поэтому на самом деле перед наложением маски матрица переводится в интегральное представление: значения в матрице яркости заранее складываются таким образом, чтобы интегральную яркость прямоугольника можно было получить сложением всего четырех чисел.

Как собрать каскад? Хотя каждый этап наложения маски дает очень большую ошибку (реальная точность ненамного превышает 50%), сила алгоритма — в каскадной организации процесса. Это позволяет быстро выкидывать из анализа области, где лица точно нет, и тратить усилия только на те области, которые могут дать результат. Такой принцип сборки слабых классификаторов в последовательности называется бустингом (подробнее о нем можно прочитать в октябрьском номере «ПМ» или ). Общий принцип такой: даже большие ошибки, будучи перемножены друг на друга, станут невелики.

2. Упростить

Найти особенности лица, которые позволили бы идентифицировать его владельца, означает свести реальность к формуле. Речь идет об упрощении, причем весьма радикальном. Например, различных комбинаций пикселей даже на миниатюрном фото 64 x 64 пикселя может быть огромное количество — (2 8) 64 x 64 = 2 32768 штук. При этом для того, чтобы пронумеровать каждого из 7,6 млрд людей на Земле, хватило бы всего 33 бита. Переходя от одной цифры к другой, нужно выкинуть весь посторонний шум, но сохранить важнейшие индивидуальные особенности. Специалисты по статистике, хорошо знакомые с такими задачами, разработали множество инструментов упрощения данных. Например, метод главных компонент, который и заложил основу идентификации лиц. Впрочем, в последнее время сверточные нейросети оставили старые методы далеко позади. Их строение довольно своеобразно, но, по сути, это тоже метод упрощения: его задача — свести конкретное изображение к набору особенностей.


Накладываем на изображение маску фиксированного размера (правильно она называется ядром свертки), перемножаем яркость каждого пикселя изображения на значения яркости в маске. Находим среднее значение для всех пикселей в «окошке» и записываем его в одну ячейку следующего уровня.


Сдвигаем маску на фиксированный шаг, снова перемножаем и снова записываем среднее в карту признаков.


Пройдясь по всему изображению с одной маской, повторяем с другой — получаем новую карту признаков.


Уменьшаем размер наших карт: берем несколько соседних пикселей (например, квадрат 2x2 или 3x3) и переносим на следующий уровень только одно максимальное значение. То же самое проводим для карт, полученных со всеми другими масками.


В целях математической гигиены заменяем все отрицательные значения нулями. Повторяем с шага 2 столько раз, сколько мы хотим получить слоев в нейросети.


Из последней карты признаков собираем не сверточную, а полносвязную нейросеть: превращаем все ячейки последнего уровня в нейроны, которые с определенным весом влияют на нейроны следующего слоя. Последний шаг. В сетях, обученных классифицировать объекты (отличать на фото кошек от собак и пр.), здесь находится выходной слой, то есть список вероятностей обнаружения того или иного ответа. В случае с лицами вместо конкретного ответа мы получаем короткий набор самых важных особенностей лица. Например, в Google FaceNet это 128 абстрактных числовых параметров.

3. Опознать

Самый последний этап, собственно идентификация, — самый простой и даже тривиальный шаг. Он сводится к тому, чтобы оценить похожесть полученного списка признаков на те, что уже есть в базе данных. На математическом жаргоне это означает найти в пространстве признаков расстояние от данного вектора до ближайшей области известных лиц. Точно так же можно решить и другую задачу — найти похожих друг на друга людей.

Почему это работает? Сверточная нейросеть «заточена» на то, чтобы вытаскивать из изображения самые характерные черты, причем делать это автоматически и на разных уровнях абстракции. Если первые уровни обычно реагируют на простые паттерны вроде штриховки, градиента, четких границ и т. д. , то с каждым новым уровнем сложность признаков возрастает. Маски, которые нейросеть примеряет на высоких уровнях, часто действительно напоминают человеческие лица или их фрагменты. Кроме того, в отличие от метода главных компонент, нейросети комбинируют признаки нелинейным (и неожиданным) образом.

Откуда берутся маски? В отличие от тех масок, что используются в алгоритме Виолы — Джонса, нейросети обходятся без помощи человека и находят маски в процессе обучения. Для этого нужно иметь большую обучающую выборку, в которой имелись бы снимки самых разных лиц на самом разном фоне. Что касается того результирующего набора особенностей, которые выдает нейросеть, то он формируется по методу троек. Тройки — это наборы изображений, в которых первые два представляют собой фотографию одного и того же человека, а третье — снимок другого. Нейросеть учится находить такие признаки, которые максимально сближают первые изображения между собой и при этом исключают третье.

Чья нейросеть лучше? Идентификация лиц давно уже вышла из академии в большой бизнес. И здесь, как и в любом бизнесе, производители стремятся доказать, что именно их алгоритмы лучше, хотя не всегда приводят данные открытого тестирования. Например, по информации конкурса MegaFace, в настоящее время лучшую точность показывает российский алгоритм deepVo V3 компании «Вокорд» с результатом в 92%. Гугловский FaceNet v8 в этом же конкурсе показывает всего 70%, а DeepFace от Facebook с заявленной точностью в 97% в конкурсе вовсе не участвовал. Интерпретировать такие цифры нужно с осторожностью, но уже сейчас понятно, что лучшие алгоритмы почти достигли человеческой точности распознавания лиц.

Живой грим (искусство)

Зимой 2016 года на 58-й ежегодной церемонии вручения наград «Грэмми» Леди Гага исполнила трибьют умершему незадолго до того Дэвиду Боуи. Во время выступления по ее лицу растеклась живая лава, оставив на лбу и щеке узнаваемый всеми поклонниками Боуи знак — оранжевую молнию. Эффект движущегося грима создавала видеопроекция: компьютер отслеживал движения певицы в режиме реального времени и проецировал на лицо картины, учитывая его форму и положение. В Сети легко найти видеоролик, на котором заметно, что проекция еще несовершенна и при резких движениях слегка запаздывает.


Технологию видеомаппинга лиц Omote Нобумичи Асаи развивает с 2014 года и уже с 2015-го активно демонстрирует по всему миру, собрав приличный список наград. Основанная им компания WOW Inc. стала партнером Intel и получила хороший стимул для развития, а сотрудничество с Ишикавой Ватанабе из Токийского университета позволило ускорить проекцию. Впрочем, основное происходит в компьютере, и похожие решения используют многие разработчики приложений, позволяющих накладывать на лицо маски, будь то шлем солдата Империи или грим «под Дэвида Боуи».

Александр Ханин, основатель и генеральный директор VisionLabs

«Подобной системе не нужен мощный компьютер, наложение масок может производиться даже на мобильных устройствах. Система способна работать прямо на смартфоне, без отправки данных в облако или на сервер».

«Эта задача называется трекингом точек на лице. Есть много подобных решений и в открытом доступе, но профессиональные проекты отличаются скоростью и фотореалистичностью, — рассказал нам глава компании VisionLabs Александр Ханин. — Самое сложное при этом состоит в определении положения точек с учетом мимики и индивидуальной формы лица или в экстремальных условиях: при сильных поворотах головы, недостаточной освещенности и большой засветке». Чтобы научить систему находить точки, нейронную сеть обучают — сначала вручную, скрупулезно размечая фотографию за фотографией. «На входе это картинка, а на выходе — размеченный набор точек, — поясняет Александр. — Дальше уже запускается детектор, определяется лицо, строится его трехмерная модель, на которую накладывается маска. Нанесение маркеров осуществляется на каждый кадр потока в режиме реального времени».


Примерно так и работает изобретение Нобумичи Асаи. Предварительно японский инженер сканирует головы своих моделей, получая точные трехмерные прототипы и готовя видеоряд с учетом формы лица. Задачу облегчают и небольшие маркеры-отражатели, которые клеят на исполнителя перед выходом на сцену. Пять инфракрасных камер следят за их движениями, передавая данные трекинга на компьютер. Дальше все происходит так, как нам рассказали в VisionLabs: лицо детектируется, строится трехмерная модель, и в дело вступает проектор Ишикавы Ватанабе.

Устройство DynaFlash было представлено им в 2015 году: это высокоскоростной проектор, способный отслеживать и компенсировать движения плоскости, на которой отображается картинка. Экран можно наклонить, но изображение не исказится и будет транслироваться с частотой до тысячи 8-битных кадров в секунду: запаздывание не превышает незаметных глазу трех миллисекунд. Для Асаи такой проектор оказался находкой, живой грим стал работать действительно в режиме реального времени. На ролике, записанном в 2017 году для популярного в Японии дуэта Inori, отставания уже совсем не видно. Лица танцовщиц превращаются то в живые черепа, то в плачущие маски. Это смотрится свежо и привлекает внимание — но технология уже быстро входит в моду. Скоро бабочка, севшая на щеку ведущей прогноза погоды, или исполнители, каждый раз на сцене меняющие внешность, наверняка станут самым обычным делом.


Фейс-хакинг (активизм)

Механика учит, что каждое действие создает противодействие, и быстрое развитие систем наблюдения и идентификации личности не исключение. Сегодня нейросети позволяют сопоставить случайную смазанную фотографию с улицы со снимками, загруженными в аккаунты социальных сетей и за секунды выяснить личность прохожего. В то же время художники, активисты и специалисты по машинному зрению создают средства, способные вернуть людям приватность, личное пространство, которое сокращается с такой головокружительной скоростью.

Помешать идентификации можно на разных этапах работы алгоритмов. Как правило, атакам подвергаются первые шаги процесса распознавания — обнаружение фигур и лиц на изображении. Как военный камуфляж обманывает наше зрение, скрывая объект, нарушая его геометрические пропорции и силуэт, так и машинное зрение стараются запутать цветными контрастными пятнами, которые искажают важные для него параметры: овал лица, расположение глаз, рта и т. д. По счастью, компьютерное зрение пока не столь совершенно, как наше, что оставляет большую свободу в выборе расцветок и форм такого «камуфляжа».


Розовые и фиолетовые, желтые и синие тона доминируют в линейке одежды HyperFace, первые образцы которой дизайнер Адам Харви и стартап Hyphen Labs представили в январе 2017 года. Пиксельные паттерны предоставляют машинному зрению идеальную — с ее точки зрения — картинку человеческого лица, на которую компьютер ловится, как на ложную цель. Несколько месяцев спустя московский программист Григорий Бакунов и его коллеги даже разработали специальное приложение, которое генерирует варианты макияжа, мешающего работе систем идентификации. И хотя авторы, подумав, решили не выкладывать программу в открытый доступ, тот же Адам Харви предлагает несколько готовых вариантов.


Человек в маске или со странным гримом на лице, может, и будет незаметен для компьютерных систем, но другие люди наверняка обратят на него внимание. Однако появляются способы сделать и наоборот. Ведь с точки зрения нейросети изображение не содержит образов в обычном для нас понимании; для нее картинка — это набор чисел и коэффициентов. Поэтому совершенно различные предметы могут выглядеть для нее чем-то вполне сходным. Зная эти нюансы работы ИИ, можно вести более тонкую атаку и подправлять изображение лишь слегка — так, что человеку перемены будут почти незаметны, зато машинное зрение обманется полностью. В ноябре 2017 года исследователи показали, как небольшие изменения в окраске черепахи или бейсбольного мяча заставляют систему Google InceptionV3 уверенно видеть вместо них ружье или чашку эспрессо. А Махмуд Шариф и его коллеги из Университета Карнеги — Меллон спроектировали пятнистый узор для оправы очков: на восприятие лица окружающими он почти не влияет, а вот компьютерная идентификация средствами Face++ уверенно путает его с лицом человека, «под которого» спроектирован паттерн на оправе.

Лицо человека уникально, технологии биометрического распознавания лиц точны и доступны. Если сложить два этих факта, можно смело делать прогноз: идентификация человека по лицу имеет все шансы стать одним из основных способов подтверждения личности.

Сергей Щербина, директор по маркетингу компании «Вокорд», на пяти примерах показывает, в каких областях эта технология уже работает.

Сегодня на рынке представлены сразу несколько типов подобных систем и выполняют они разные по уровню сложности задачи: от дистанционного распознавания в толпе до учета рабочего времени в офисе. Решения для распознавания лиц доступны заказчикам на разных платформах – это серверная архитектура, мобильные и встраиваемые решения и облачные сервисы.

Современные системы работают на нейросетевых алгоритмах глубокого обучения, поэтому точность распознавания максимальная даже для изображений низкого качества, они устойчивы к поворотам головы и обладают другими преимуществами.

Пример 1. Общественная безопасность

Обеспечение безопасности – это своего рода отправная точка, с которой началось внедрение систем биометрической идентификации. Системы дистанционного распознавания лиц применяются для обеспечения безопасности объектов массового нахождения людей.

Самая сложная задача – идентификация человека в толпе.

Так называемое некооперативное распознавание, когда человек не взаимодействует с системой, не смотрит в объектив камеры, отворачивается или пытается скрыть лицо. Например, на транспортно-пересадочных узлах, метро, крупных международных мероприятиях.

Кейсы

Одним из самых значимых проектов 2017 для нашей компании стала крупнейшая международная выставка EXPO-2017, проходившая в Казахстане этим летом. В системе дистанционного биометрического распознавания лиц применялись специализированные камеры.

Выделение лиц в кадре происходит в самой камере и на сервер передается только изображение лица, это разгружает канал и существенно снижает затраты на сетевую инфраструктуру. Камеры контролировали четыре входные группы, в разных частях комплекса. Архитектура системы была разработана таким образом, что входные группы работали по отдельности или все вместе, при этом корректная работа системы обеспечивалась всего 4 серверами и 48 камерами.

С помощью видеоаналитики в режиме онлайн на крупных территориально-распределенных объектах ищут подозреваемых, пропавших людей, расследуют происшествия и инциденты, ведут анализ пассажиропотоков.

В некоторых аэропортах до конца 2017 года биометрия начнет применяться и для регистрации пассажиров на рейс. По данным портала Tadviser , системы «умных гейтов» в аэропортах планируют также внедрить 12 европейских стран (Испания, Франция, Нидерланды, Германия, Финляндия, Швеция, Эстония, Венгрия, Греция, Италия, Румыния).

А следующим шагом должно стать внедрение систем распознавания лиц для прохождения пограничного и миграционного контроля. При государственной поддержке внедрение идентификации по лицу может стать такой же обыденностью, как рамки металлодетекторов в перспективе ближайших трех-пяти лет.

Пример 2. Знать своего покупателя в лицо

Бизнес тоже делает ставку на биометрическую идентификацию по лицу. В первую очередь, это розничная торговля.

Системы распознают пол и возраст покупателей, частоту и время посещения торговых точек, аккумулируют статистику по каждому отдельному магазину сети.

После этого для отдела в автоматическом режиме выводятся подробные отчеты как в целом по сети, так и с разбивкой по торговым точкам. На основе этих отчетов удобно составлять «портрет клиента», планировать эффективные маркетинговые кампании.

К сожалению, мы не можем разглашать заказчиков. В их числе крупнейшие ритейлеры и DIY (Do It Youself) сети, в ассортименте которых присутствует дорогой инструмент и комплектующие.

Как это работает

Многие опасаются утечек конфиденциальной информации, но мы особо подчеркиваем, что никакие личные данные распознанных людей не хранятся в архивах. Более того, хранится даже не изображение, а его биометрический шаблон, по которому изображение не восстановить.

При повторных визитах «подтягивается» биометрический шаблон лица, поэтому система точно знает, кто и сколько раз был в магазине. За сохранность личных данных можно быть спокойным.

Для небольших магазинов, автосалонов, аптек механизм сбора маркетинговой аналитики реализован в облачном сервисе распознавания. Для предприятий малого и среднего бизнеса такой вариант является более предпочтительным, поскольку не требует затрат на серверное оборудование, найм дополнительного персонала, обновление софта и так далее Это, во-первых, удобный инструмент для оценки эффективности торговых точек, а во-вторых, отличный помощник для выявления воров. То есть одна система выполняет сразу несколько функций.

Пример 3. Системы контроля и управления доступом

Помимо вышеперечисленных функций, систему распознавания лиц удобно применять как альтернативу Proximity-картам в системах контроля и управления доступом (СКУД).

Они имеют ряд преимуществ: обеспечивают высокую достоверность распознавания, их невозможно обмануть, скопировать или украсть идентификатор, их легко интегрировать с существующим охранным оборудованием. Можно даже использовать уже имеющиеся камеры наблюдения. Системы биометрической идентификации лиц работают дистанционно и очень быстро с фиксированием событий в архиве.

На базе биометрической СКУД удобно вести учет рабочего времени сотрудников, особенно в крупных офисных центрах.

Кейс

Мы внедрили такую систему на крупном индийском предприятии, которое специализируется в сфере логистики в прошлом году. Число постоянных сотрудников – более 600 человек. При этом компания работает в круглосуточном режиме и практикует «плавающий» трудовой график. С помощью нашей системы дистанционной биометрической идентификации заказчик получил полный и достоверный учет рабочего времени сотрудников, инструмент превентивной безопасности объекта и СКУД.

Пример 4. Пропуск болельщика на стадион

В момент покупки билета в кассах лицо каждого покупателя автоматически фотографируется и подгружается в систему. Так формируется база посетителей матча. Если покупка была через интернет или мобильное приложение, то авторизация возможна удаленно с помощью «селфи». В дальнейшем, когда человек придет на стадион, система его распознает без всяких паспортов.

Идентификация посетителей спортивных соревнований стала обязательной согласно Федеральному закону № 284-ФЗ «О внесении изменений в статью 20 Федерального закона «О физической культуре и спорте в Российской Федерации» и статьи 32.14 Кодекса Российской Федерации об административных правонарушениях.

На стадион пройдет именно тот, кто купил билет, передать билет другому лицу или пройти по поддельному билету невозможно. Дистанционное распознавание лиц на стадионах работает по такому же принципу, как на крупных территориально-распределенных транспортных объектах: если человек внесен в списки лиц, которым доступ на стадион запрещен, система его не пропустит.

Кейс

В марте 2016 года в рамках совместного проекта Вокорда и Ханты-Мансийского филиала ПАО «Ростелеком» система дистанционного распознавания лиц применялась для обеспечения безопасности Кубка мира по биатлону, проходившего в Ханты-Мансийске. С 2015 года такая же система успешно работает в многофункциональном спортивном комплексе «Арена Омск». Он входит в шестерку самых больших спортивных сооружений России, является крупнейшим спортивно-развлекательным объектом Сибири и базой хоккейного клуба «Авангард».

Пример 5. Интернет-банкинг и банкоматы

Еще одной нишей, в которой обосновалось распознавание лиц, является банковская сфера. Здесь внедрение новых технологий проходит интенсивно, поскольку финансовый сектор больше других заинтересован в достоверности и сохранности персонифицированной информации.

Сегодня биометрия постепенно начинает, если не вытеснять привычные и устоявшиеся «бумажные» документы, то идти с ними вровень. При этом существенно повышается степень защиты при проведении платежей: для подтверждения транзакции достаточно посмотреть в камеру своего смартфона. При этом сами биометрические данные никуда не передаются, соответственно, перехватить их невозможно.

Внедрение технологий биометрической идентификации напрямую связано с массовым использованием электронных сервисов и устройств, развитием интернет-торговли и распространением пластиковых карт взамен наличных денег.

С появлением высокопроизводительных графических процессоров (GPU) и сверхкомпактных аппаратных платформ на их базе – таким как NVIDIA Jetson – распознавание лиц начало внедряться в банкоматы. Теперь снять наличные или провести операции по счету может только владелец карты, например, через банкоматы Тинькофф-банка . А PIN-код скоро может уйти на пенсию.

Биометрическую систему распознавания лиц планируется включить в стандарт «смарт-сити» для российских городов, который начал разрабатывать Минстрой. Об этом рассказал «Известиям» замглавы ведомства Андрей Чибис. Он отметил, что такую технологию было бы удобно использовать в общественном транспорте: пассажир заходит в автобус, программа его узнает и списывает за проезд деньги с банковского счета. Министерство намерено ознакомиться с опытом китайских городов и распространить подобные технологии в России.

Министерство планирует привлечь китайские компании, в том числе Huawei, к внедрению совместно с «Ростелекомом» технологии биометрии и анализа событий в российских городах. Об этом сообщил «Известиям» заместитель министра строительства и ЖКХ Андрей Чибис. По его словам, в случае успеха эта система ляжет в основу стандарта «смарт-сити» - минимального набора решений для повышения комфортности городов. К разработке стандарта ведомство уже приступило.

Представители министерства планируют посетить Китай, чтобы оценить, как современные технологии, включая биометрию, работают там.

Насколько я знаю, сейчас идет дискуссия по поводу внедрения такой технологии в Москве. Очевидно, что из-за необходимости использовать карточки, время посадки пассажиров затягивается. А алгоритм распознавания лиц работает так: пассажир заходит в метро или автобус, программа его распознает и списывает за проезд деньги с банковского счета, - привел пример Андрей Чибис.

Во многих городах уже установлено значительное количество камер, то есть инфраструктура в целом создана, подчеркнул чиновник. Вопрос в нормативном регулировании и реализации пилотных проектов - в случае их успеха дальнейший процесс будет стремителен: «как в свое время быстро ушли от жетонов в метро, так можем уйти и от турникетов».

В пресс-службе «Ростелекома» отметили, что идентификация пассажиров в городском транспорте, в том числе для оплаты проезда, - это одна из самых очевидных возможностей использования системы.

В мире есть реальные примеры, и в России создание такого рода решений ожидается уже в скором времени, - подтвердили «Известиям» в компании.

Проект «Умный город», в рамках которого планируется развивать новую технологию, рассчитан на шесть лет. По словам Андрея Чибиса, никто не говорит, что в течение этого срока везде обязательно появится система распознавания лиц, но нужно двигаться в этом направлении. «Это же не только вопрос безопасности, но и комфорта. Мы изучим эту технологию и в ближайшее время определимся с возможностью внедрения - конечно, в первую очередь, с точки зрения ее стоимости», - указал он.

Генеральный директор компании VisionLabs, специализирующейся на компьютерном зрении, Александр Ханин отмечает, что процесс установки камер и серверов технически несложный, поэтому в ближайшем будущем подобные системы могут быть внедрены повсеместно. Их можно использовать в том числе для поиска пропавших, считает он. Стоимость подключения к каждой камере зависит от сценария использования и типа камеры: от 200 рублей до нескольких тысяч.

Заведующий кафедрой телекоммуникационных систем Московского института электронной техники Александр Бахтин отметил, что сети городов готовы к передаче таких данных. Однако на начальном этапе внедрения новых технологий всегда есть риск нарушения конфиденциальности. Существует достаточно много точек, в которых сведения могут быть перехвачены. Но после тестовых испытаний система выстраивается и эффективно работает.

Томограф в поликлинике генерирует гораздо больше информации, чем видеопоток из какого-нибудь автобуса. Вопрос в том, кто ее анализирует и в каких целях. Хотелось бы, чтобы законодательство защищало нас от тех сотрудников, которые используют персональные данные неправомочно, - сказал «Известиям» Александр Бахтин.

В «Ростелекоме» признают, что оборот таких данных - очень чувствительная тема, поэтому, как и в других странах, в России единая биометрическая система создается под контролем государства. На первом этапе в сотрудничестве с Центробанком она внедряется в интересах банковской сферы. Уже проводились эксперименты по распознаванию лиц для бесконтактного прохода в музеи, и в дальнейшем система будет развиваться, уверены в компании.

В сентябре 2017 года о внедрении системы видеонаблюдения с функцией распознавания лиц объявили власти Москвы. Сообщалось, что столичная сеть включает в себя 160 тыс. видеокамер и охватывает 95% подъездов жилых домов. Лица на записях сканируются, чтобы при необходимости можно было сравнить данные с информацией в различных базах - например, правоохранительных органов, когда речь идет о поиске правонарушителя, указано на портале мэра Москвы. Система способна установить личность человека на видео, его пол и возраст.

Госкорпорация «Ростех» применила технологию распознавания лиц во время ЧМ-2018. С ее помощью, например, удалось вычислить фаната, которому по решению суда запрещено посещать спортивные мероприятия. Алгоритм позволяет узнавать лица с точностью до 99%. В госкорпорации отмечали, что поиск конкретного человека среди миллиарда лиц занимает менее полусекунды.

Еще недавно охранные системы с опцией распознавания лиц казались чем-то фантастическим, а увидеть их можно было только в кино. Но за последние несколько лет многое изменилось. Появились новые разработки, которые изменили представление об охранных системах.

Качество и комфорт существования общества зависит от правильного подхода к организации персональной безопасности и защиты имущества. Не удивительно, что требования к защите постоянно растут. Одним из нововведений стало появление функции распознавания лиц. В чем ее особенности? Где она применяется? На каком принципе работает? Эти и другие вопросы подробно рассмотрим в статье.

Сферы применения

Пользу распознавания лиц сложно переоценить. Охранные системы с такой функцией применяются в различных сферах - при организации системы пропуска в крупных организациях, для поиска злоумышленников, защиты частных объектов и так далее.

Если говорить в целом, с помощью такой охранной системы удается решить следующие задачи:

  • Организовать надежную и эффективную систему пропуска на проходной в компании или на других закрытых объектах. Для большей эффективности видеонаблюдение объединяется с турникетами. В результате удается быстро распознавать своих сотрудников и посторонних лиц.
  • Создать систему защиты от краж в точках продаж и частных объектах. Не секрет, что различные магазины, торговые центры, супермаркеты и прочие заведения сталкиваются с проблемными клиентами, склонными к кражам. В большинстве случаев воровство осуществляется одними и теми же людьми. При наличии соответствующей базы функция распознавания лиц позволяет вовремя выявить человека и информировать охранника. В результате удается принять дополнительные меры по защите имущества.
  • Организовать охранную систему, обеспечивающую защиту от проникновения посторонних в сооружения закрытого типа и частные домовладения. Даже при внимательном наблюдении охраннику не всегда удается отличать злоумышленника от другого объекта. Это особенно актуально, если камера установлена на участке с низким уровнем освещения. Монтаж специальных систем с функцией распознавания лиц помогает быстро определить человека даже в темноте. То, что неподвластно работнику охраны, с легкостью решается компьютерным модулем.
  • Обеспечение фейс-контроля в ночных заведениях. Наличие рассматриваемых систем в клубах гарантирует 100-процентную защиту от «проблемных» посетителей.

Как это работает?

Наибольший интерес вызывает принцип работы системы, способной не только передавать изображение на монитор, но и распознавать лица людей. Задача специального модуля заключается в считывании информации, а также ее последующем сравнении с данными, которые имеются в базе. Такие комплексы способны идентифицировать лицо человека на удалении от камеры до 10 м.

Одна из особенностей системы - высокая «чувствительность», позволяющая распознавать личность даже при изменении внешности. Модуль невозможно сбить с помощью очков, изменения прически, бороды или других дополнительных элементов маскировки на лице. Это связано с тем, что анализируются не черты лица, как считают многие, а строение черепа, его биометрические параметры. Такие характеристики индивидуальны, как и отпечатки пальцев, что исключает вероятность ошибки.

Информация сканируется и обрабатывается в режиме реального времени. Достаточно посетителю повернуться лицом по направлению к сканеру, как система определяет личность и дает команды другим органам. Если модуль распознавания лиц связан с турникетами или другими устройствами блокировки, их срабатывание производится автоматически. Кроме того, в памяти сохраняется фотография подозрительного лица для дальнейшей обработки и анализа охраной.

Наибольшее распространение системы с функцией идентификации получили в крупных компаниях, где имеет место большая конкуренция. Не секрет, что от уровня безопасности зависит успех предприятия. Особенно это касается организаций, которые работают в оборонной сфере, занимаются разработкой новых проектов или биологическими исследованиями.

Задача системы заключается в сравнении работников и сверке лиц с имеющейся базой. Если человека нет в перечне, подается сигнал охранникам, после чего последние принимают меры по предотвращению проникновения постороннего лица на объект. При этом место выявления точно фиксируется на электронной карте, а сотрудники отдела безопасности в течение нескольких минут выявляют нарушителя.

Особенности установки

В процессе монтажа системы с опций распознавания лиц стоит учесть, что видеокамеры могут работать в одном из 2-х режимов - 2D или 3D. В первом случае анализ выполняется на базе плоского изображения, а двухмерные камеры обладают высокой чувствительностью к освещению. Из этого следует, что при установке 2D-камер стоит отдельное внимание уделять освещению охраняемого объекта и охвату защищаемых зон.

Что касается камер с 3D, они работают с трехмерным объектом на базе передаваемого устройством изображения. В этом случае можно не обращать внимания на уровень освещенности, ведь система хорошо справляется с возложенными на нее функциями даже в темноте. Единственная опасность в том, что текстура лица будет в незначительной степени искажена.

Какие виды таких систем существуют?

При выборе систем, имеющих функцию распознавания лиц, важно ориентироваться на несколько факторов - цели, задачи и место монтажа. Кроме того, стоит брать во внимание виды таких устройств:

  • Системы обнаружения. Видеокамера имеет разрешение от 1 Мп, а фокусное расстояние составляет от 1 мм. Работа устройства направлена на фиксацию факта проникновения посторонних субъектов на защищаемые объекты. Особенность сканера заключается в способности отличить человека от животного, но идентифицировать личность не получится.
  • Система распознавания. Этот комплекс отличается большей сложностью, а в него входит 2-мегапиксельная камера с фокусным расстоянием от шести миллиметров. Задача заключается в распознавании лиц и их определению по принципу «свой-чужой». В случае просмотра видео четкости у картинки не будет. Система выявляет посторонние лица, но в случае кражи найти вора по сохраненному изображению будет сложно
  • Устройства идентификации. При организации такой системы применяются камеры с разрешением от 2 МП и более, имеющие фокусное расстояние больше восьми миллиметров. Такие комплексы способны выполнять функции, рассмотренные выше. Плюс заключается в том, что полученного изображения достаточно для опознавания вора по фотографии. Имеющийся кадр можно использовать в процессе расследования и даже передавать в суд.

В приведенном описании рассмотрены минимальные требования для охранных систем в отношении фокусного расстояния и разрешения «картинке». Это значит, что при покупке оборудования стоит ориентироваться на изделия с лучшими характеристиками, обеспечивающими более качественную съемку. Например, для систем распознавания больше подойдут камеры на 2 МП, имеющие фокусное расстояние, равное 8 мм. Что касается комплексов для идентификации, здесь рекомендации еще более серьезные. Желательно использовать видеокамеры с разрешением в 5 МП и 12-миллиметровым фокусным расстоянием.

Подведем краткие итоги:

  • Видеокамера с разрешением 1МП позволяет отличить человека от животного. При этом идентифицировать субъекта не получится.
  • Для фиксации лиц и сравнения с имеющейся базой устройство для фиксации должно иметь разрешение от 2-х МП и более.
  • Для идентификации человека желательно применять 5-мегапиксельную камеру.