Схемотехника усилителей мощности звуковой частоты. Схемотехника умзч высокой верности. Основные технические характеристики

Рассказать в:

СХЕМОТЕХНИКА УСИЛИТЕЛЕЙ МОЩНОСТИ ЗВУКОВОЙ ЧАСТОТЫ ВЫСОКОЙ ВЕРНОСТИ

М. КОРЗИНИН, г. Магнитогорск

В настоящее время известен не один десяток вариантов как любительских, так и промышленных усилителей мощности звуковой частоты (УМЗЧ), но только некоторые из них можно действительно отнести к высококачественным. В связи с этим перед любителями звуковоспроизведения встает непростой вопрос: приобрести УМЗЧ промышленного изготовления или попытаться сконструировать его самому? На первый взгляд, приобретение готового устройства представляется более простым, поскольку для этого потребуются лишь необходимые средства. Однако лучший ли это выход из положения? Ответить на этот вопрос попытался радиолюбитель М. Корзинин в публикуемой ниже статье.

Из высококачественных УМЗЧ отечественного производства по своим параметрам к усилителям высокой верности звуковоспроизведения можно отнести только полный усилитель "Форум 180У-001 С" и блочный усилитель мощности "Корвет 200УМ-088С".

Оговоримся сразу, по каким критериям УМЗЧ можно отнести к высококачественным. Напомним, что условное обозначение высококачественной радиоаппаратуры "hi-fi" представляет собой сокращение от английского "high fidelity", что в переводе означает "Высокая верность (звуковоспроизведения)".

К этим аппаратам относятся только те, которые не вносят в усиливаемый сигнал заметных на слух непрограммируемых искажений. В последнее время в самостоятельный класс звуковоспроизводящей аппаратуры выделилась группа аппаратов, обладающих такой высокой линейностью усиления сигнала которая отвечает требованиям самых взыскательных слушателей. Этот класс получил название "high-end" - "Наивысший". Именно аппаратура этого класса представляет для нас наибольший интерес.

Оба указанных выше усилителя звуко вой частоты, безусловно, могут быть отнесены к категории усилителей высокой верности звуковоспроизведения. По отдельным же характеристикам и субъективным оценкам их можно отнести к нижней группе класса "high-end".

При решении вопроса о приобретении названных нами отечественных УМЗЧ следует иметь в виду, что хотя они и выпускались предприятиями оборонной промышленности, оба усилителя имели существенные конструктивные недостатки.

У полного усилителя "Форум 180У-00tc производства завода им. М.И.Калинина в г.Санкт-Петербурге отмечалась крайне низкая надежность. В гарантийный период заводской брак превышал 30% в основном из-за аварийного перегрева выходного каскада. Попытки найти оптимальное конструктивное и схемотехническое решения не увенчались успехом, и в 1994 г. усилитель был снят с производства.

Следует также сказать об очень высокой сложности схемотехники усилителя, в котором использовалось около 200 транзисторов. В результате гарантийный ремонт аппарата приходилось производить в заводских условиях. Именно по этой причине альбом схем к усилителю при продаже не прикладывался.

Что касается усилителя мощности "Корвет 200УМ-088С. который до последнего времени выпускался заводом "Водтрансприбор" в г. Санкт-Петербурге то его конструкторы более удачно решили проблему отвода тепла от нагревающихся элементов Правда, в процессе работы верхняя крышка усилителя все же нагревалась до 40...50 С, а корпусы выходных транзисторов - до 90...95°С. Процент брака данной конструкции существенно ниже, чем у "Форума 180У-001 С", однако ее ремонтопригодность крайне низка, и ремонт также производился только в заводских условиях.

Остальные усилители звуковой частоты нельзя отнести к аппаратуре высокой верности. Так, выпускаемый заводом "Ладога" в г.Кировске Ленинградской области полный усилитель "Корвет 100У-068СМ" можно причислить лишь к аппаратам так называемого потребительского класса с весьма средними качественными параметрами

На внутреннем рынке продаются усилители 34 зарубежного производства. Однако они также далеко не всегда отвечают требованиям, предъявляемым к аппаратуре высокой верности воспроизведения звука. У многих из них характеристики находятся на уровне хороших аппаратов потребительского класса, что касается их стоимости, то она существенно выше. Следует, однако, отметить, что разница в цене полностью окупается несравнимо более высокой надежностью в эксплуатации, прекрасным дизайном с использованием современных технологий, большими потребительскими возможностями Схемотехника, как правило, достаточно проста, но стоимость ремонта от этого не становится ниже. Объясняется это недостатком радиокомпонентов в наших мастерских.

В последнее время на наших рынках начали появляться и усилители 34 высокого качества.

Стоимость их очень высока. Так, комплект из предварительного и оконечного усилителей звуковой частоты модели su-2000e фирмы "technics" стоит примерно столько же, сколько подержанный автомобиль.

По мнению автора, для радиолюбителей средней квалификации оптимальным является самостоятельное изготовление высококачественного усилителя. Этот путь длиннее, сложнее и вряд ли дешевле но он позволяет создать действительно высоколинейньй относительно простой и надежный усилитель мощности с использованием нестандартных радиокомпонентов и схемотехнических решений. Задача радиолюбителя значительно облегчается, если у него есть возможность основные конструктивные элементы усилителя - платы, панели, шас си, корпус, ручки управления - изготовить в заводских условиях.

В настоящей статье автором сделана попытка в максимально простой и доступной форме помочь радиолюбителям проанализировать известные и малоизвестные конструкции усилителей мощности, выбрать оптимальные схемотехнические и конструктивные решения, подобрать необходимые радиокомпоненты, а также настроить усилитель без использования сложной измерительной техники.

1. Основные концепции конструирования усилителей мощности 34 высокой верности

Как правило, подаваемое на вход усилителя мощности напряжение звуковой частоты составляет 0,25...2,0 В, а ток - единицы и десятки мкА Выходное напряжение УМЗЧ может достигать десятков вольт, а выходной ток-десятков ампер. Отсюда следует, что УМЗЧ должен обеспечить линейное без искажений усиление сигнала по напряжению в десятки, а по току - в десятки тысяч раз.

Для выполнения этих функций любой высококачественный УМЗЧ содержит три основных последовательно соединенных между собой узла. Сначала сигнал звуковой частоты поступает на входной каскад, где предварительно усиливается по напряжению и току. Усиленный сигнал поступает на усилитель напряжения, в котором усиливается по напряжению до конечной величины. Затем он попадает на усилитель тока, называемый также оконечным каскадом, где усиливается по току до конечной величины. В ряде конструкций любительских и промышленных усилителей мощности 34 делались попытки совместить в одном узле как усилитель напряжения, так и усилитель тока, либо возложить на усилитель тока дополнительно функции частичного усиления сигнала по напряжению. Попытки эти реализовывались путем схемотехнического компромисса за счет заведомого снижения линейности усилителя, что неприемлемо для техники высококачественного звуковоспроизведения

Упрощенная структурная схема УМЗЧ приведена на рис. 1,а. Известна разновидность УМЗЧ, называемая мостовой. Она представляет собой два обычных УМЗЧ, работающих в противофазе на общую нагрузку. Для мостовой схемы справедливы концепции обычного УМЗЧ высокой верности. Упрощенная структурная схема мостового усилителя мощности приведена на рис. 1 ,б

Чтобы УМЗЧ отвечал требованиям высокой верности звуковоспроизведения, его схемотехника и конструкция должны соответствовать определенным принципам, которые можно сформулировать следующим образом.

Все узлы такого УМЗЧ должны быть выполнены с использованием высоколинейных схемотехнических решений, современных высококачественных радиокомпонентов и согласованы между собой по электрическим, частотным и качественным характеристикам. Важно, чтобы схемотехнические решения по возможности были рациональны, а блок питания обеспечивал питание узлов УМЗЧ максимально отфильтрованным от пульсаций сети током с необходимыми стабильными напряжениями с учетом импульсного характера их потребления и независимого питания каналов усилителя. Следует стремиться к тому, чтобы глубина общей обратной связи была минимальна, а в идеале - равнялась нулю. Все радиокомпоненты должны работать в щадящих режимах по току, напряжению, мощности и рабочей температуре. С этой целью в конструкции нужно предусмотреть эффективный теплоотвод выделяющегося в процессе работы усилителя тепла, комплекс систем защиты узлов усилителя от перегрузок всех видов и возникновения аварийных режимов, индикации текущих и аварийных состояний.

В следующих разделах статьи будет рассказано, каким образом можно реа-лизовывать эти принципы при конструировании узлов УМЗЧ

2. Схемотехника входных каскадов УМЗЧ

Схемотехника и конструкция входного каскада УМЗЧ в основном определяет такие его характеристики, как диапазон допустимых входных напряжений, входное сопротивление, входные токи, отношения сигнал/шум, сигнал/фон/, сигнал/ помеха.

себя номинальное входное напряжение, которое соответствует номинальной выходной мощности усилителя, максимальное долговременное входное напряжение, соответствующее максимальной долговременной выходной мощности усилителя, и максимальное кратковременное входное напряжение, соответствующее максимальной кратковременной мощности усилителя. Эти параметры тесно связаны друг с другом и находятся в определенной зависимости, поскольку в рабочем диапазоне частот усилитель обладает конструктивным коэффициентом усиления по напряжению. Этот параметр при отсутствии цепей общей обратной связи определяется усилением по напряжению входного каскада и усилителя напряжения, а также потерями напряжения в усилителе тока. При наличии цепей общей обратной связи его коэффициент усиления по напряжению определяется параметрами именно этих цепей Поясним это на примере. Для УМЗЧ высокой верности указана чувствительность порядка 0,8 В.

Он собран по схеме неинвертирующего усилителя. Соотношение величин резисторов его цепи ООС составляет 33. Следовательно, коэффициент усиления по напряжению равен 34 Для входного напряжения 0,8 В (эффективное значение) величина выходного напряжения составит около 27 В (эффективное значение), что при сопротивлении нагрузки УМЗЧ, равном 8 Ом, соответствует выходной мощности порядка 92 Вт. Для того, чтобы этот усилитель на такой же нагрузке развил выходную мощность порядка 200 Вт, нужно чтобы напряжение на нагрузке составляло примерно 40 В. При коэффициенте усиления УМЗЧ по напряжению, равном 34, входное напряжение составит примерно 1,2 В

Поскольку такая мощность для этого УМЗЧ является долговременной максимальной, можно утверждать, что максимальное входное долговременное напряжение для него составит 1,2 В. Если принять максимальную кратковременную выходную мощность этого УМЗЧ равной 300 Вт, то напряжение на нагрузке должно составить примерно 49 В, что соответствует максимальному кратковременному входному напряжению УМЗЧ порядка 1,45 В. Следовательно, диапазон допустимых входных напряжений для этого УМЗЧ составляет 0,8...1,45 В. Диапазон входных напряжений ниже уровня 0,8 В является рабочим. Так, для выходной мощности УМЗЧ порядка 32 Вт необходимое рабочее входное напряжение составляет около 0,47 В, а для выходной мощности порядка 8 Вт - около 0,24 В.

Таким образом, рабочий диапазон входных напряжений УМЗЧ высокой верности находится в пределах 0,12...0,8 В, а диапазон допустимых входных напряжений - в пределах 0,8...1,45 В. При дальнейшем повышении входного напряжения УМЗЧ начинает работать в заведомо нелинейном режиме из-за перегрузки всех его узлов и нарушения линейности их работы

В связи с этим представляется целесообразным ограничить с помощью специального устройства максимальную величину входного напряжения УМЗЧ, рассчитав ее аналогичным образом для каждой конкретной конструкции. Для УМЗЧ высокой верности, описанного в [ 1 ], эта величина может быть определена на уровне 1,2...1,4 В. Принципиальная схема такого ограничителя, использованного в [ 2 ], приведена на рис. 2.

Это устройство представляет собой двусторонний симметричный диодный ограничитель входного сигнала УМЗЧ, собранный на кремниевых диодах КД521А Можно применить и любые кремниевые маломощные импульсные выпрямительные и универсальные диоды с допустимым током до 50 мА. Резисторы r1 и r2 ограничивают прямой ток через ограничитель при открывании диодов. Резисторы r3, r4 обеспечивают прямой ток на уровне около 2 мА для линеаризации амплитудной характеристики ограничителя на рабочем участке.

Уровень ограничения входного сигнала УМЗЧ устанавливается конструктивно изменением числа диодов в обеих ветвях одновременно как для отрицательной, так и для положительной полярности. Конструкция ограничителя максимально проста и надежна, легко адаптируется под любой УМЗЧ и может быть рекомендована для использования в каждом усилителе мощности 34.

Представляется оптимальной и уста-

Высоколинейный входной каскад УМЗЧ может быть выполнен как на интегральных операционных усилителях, так и на дискретных транзисторах. Рассмотрим оба варианта подробнее.

Интегральный операционный усилитель-это многокаскадный усилитель постоянного тока. Его внутренняя схемотехника сходна со схемотехникой усилителей мощности 34. Он содержит входной каскад, собранный по дифференциальной схеме с источниками тока, усилитель напряжения и усилитель тока. ОУ способен усиливать переменный ток, однако его конструкция не является оптимальной для этого из-за ограничений, накладываемых интегральной технологией его изготовления. Так, выходной ток ОУ составляет обычно единицы миллиампер, а выходное напряжение - единицы вольт. АЧХ интегрального ОУ на переменном токе далека от идеальной: начиная с определенной частоты коэффициент усиления ОУ начинает монотонно уменьшаться. Таких частот может быть несколько в зависимости от собственных частотных характеристик узлов ОУ. Частота, на которой усиление ОУ падает до единицы, называется частотой единичного усиления. Этот параметр достаточно хорошо характеризует частотные свойства ОУ как усилителя. Вторым важным параметром ОУ такого рода является скорость нарастания выходного напряжения. Этот параметр характеризует искажения, вносимые ОУ в сигнал импульсного характера с крутыми фронтами. Чем выше значение скорости нарастания выходного напряжения ОУ, тем меньше собственные искажения такого рода. На рис. 4 приведена типовая АЧХ интегрального ОУ без обратной связи, а на рис. 5 показано влияние скорости нарастания выходного напряжения интегрального ОУ на воспро- изведение переднего фронта прямоугольного импульса. Оба графика максимально упрощены для лучшего восприятия указанных положений.

Входные каскады современных ОУ выполняются, как правило, на полевых транзисторах по дифференциальным схемам и имеют вполне приемлемые для линейного усиления входные характеристики. В них зачастую предусматривается внешняя балансировка ОУ изменением токового режима плеч дифференциального каскада таким образом, чтобы постоянное напряжение на выходе ОУ в режиме покоя отсутствовало. Основные искажения ОУ вносятся в усиливаемый им сигнал его выходным каскадом.

В режиме покоя этот каскад работает в режиме класса А с небольшим током покоя, не превышающим, как правило, величины в 1 мА.

При работе ОУ в малосигнальном режиме его выходной каскад продолжает работать в режиме класса А, обладающем наименьшими искажениями. При увеличении входного сигнала свыше определенной величины выходной каскад ОУ переходит в режим класса АВ и его искажения увеличиваются примерно в 4 раза .

Это пороговое значение величины входного сигнала тесным образом связано с сопротивлением нагрузки ОУ. Действительно, если критерием является выходной ток ОУ при определенном значении коэффициента его усиления по напряжению, то при увеличении значения сопротивления нагрузки ОУ становится возможным увеличить допустимый диапазон входных и выходных напряжений ОУ, при которых его выходной каскад остается работать в режиме класса А, не переходя в режим класса АВ.

В любом случае следует стремиться к максимальному увеличению сопротивления нагрузки ОУ, используемого во входном каскаде высококачественного УМЗЧ По данным при увеличении значения сопротивления нагрузки ОУ К574УД1 с 10 до 100 кОм коэффициент его собственных искажений уменьшился в 10 (!) раз и составил всего 0,01%.

Известны попытки увеличить сопротивление нагрузки интегрального ОУ для постоянной работы его выходного каскада в режиме класса А. Делалось это с помощью подключения к его выходу в качестве динамической нагрузки эмит-терного повторителя на биполярном транзисторе, нагруженного в свою очередь на генератор тока .

Данные о конструктивной собственной линейности отечественных интегральных ОУ в справочной литературе не приводятся. Отрывочные сведения об этом можно найти в различных источниках. Так, собственный коэффициент нелинейных искажений (КНИ) интегрального ОУ К544УД2 составляет 1% (19 ], а ОУ К574УД2 - порядка 0,005% . Однако в справочной литературе можно найти данные о конструктивной собственной линейности для отдельных типов ОУ зарубежного производства. Так, собственный КНИ ОУ tl081 и tl083 по данным составляет всего 0,003%. Этот параметр весьма важен при выборе ОУ для входного каскада УМЗЧ высокой верности, так как невозможно получить высокую линейность всего УМЗЧ только за счет глубокой обратной связи: начиная с определенного значения КНИ при увеличении глубины ООС не уменьшается из-за низкой линейности исходного усилителя.

Оценивая шумовые параметры, а также параметры по подавлению помех всех видов, следует признать, что вполне достаточным для УМЗЧ высокой верности является отношение сигнал/шум, сигнал/ фон и сигнал/помеха порядка 100 дБ. При использовании ОУ К574УД1 и номинальном входном напряжении 0,8 В по данным этот параметр не превышает величины -112 дБ при измерении со взвешивающим фильтром МЭК-А. Подбор ОУ по шумовым параметрам для входного каскада УМЗЧ позволяет получить существенный выигрыш по шумам. Так, замена ОУ КР544УД1 на ОУ А081 позволила улучшить отношение сигнал/взвешенный шум в усилителе мощности "Корвет 100УМ-048С" со 100 до 110 дБ .

Подбирая ОУ по частотным характеристикам, следует отметить, что пригодны ОУ, имеющие частоту единичного усиления не менее 5 МГц и скорость нарастания выходного напряжения более 5 В/мкс .

Суммируя все сказанное, можно сформулировать следующие принципы построения высоколинейного входного каскада на интегральном ОУ для УМЗЧ высокой верности.

Во входном каскаде такого УМЗЧ следует использовать ОУ с полевыми транзисторами на входе, имеющий незначительные собственные искажения всех видов, частоту единичного усиления не ниже 5 МГц и скорость нарастания выходного напряжения более 5 В/мкс,

Важно, чтобы ОУ работал только в малосигнальном режиме и на высокоом-ную нагрузку;

ОУ в режиме покоя должен быть максимально сбалансирован, по возможности постоянное напряжение на его выходе в режиме покоя должно отсутствовать;

Обязательно нужно принять меры по ограничению до безопасных величин всех видов напряжений, поступающих на выводы ОУ;

Проследить, чтобы в процессе эксплуатации температура корпуса ОУ не превышала температуру окружающей среды.

Последнее утверждение необходимо дополнительно пояснить. Отсутствие нагрева корпуса ОУ косвенно показывает, что его выходной каскад работает во всех режимах только в классе А, т.е. наиболее линейном.

Нагрев же корпуса ОУ свидетельствует о работе его выходного каскада в режиме класса АВ и соответствующей потере линейности. Простейший расчет позволяет установить, что при напряжении питания ОУ порядка ±13 В и токе покоя 1 мА рассеиваемая ОУ мощность постоянна и составляет всего около 50 мВт с учетом токопотребления его входного каскада и усилителя напряжения. При такой рассеиваемой мощности корпус ОУ практически не нагревается. В любом случае нагрев ОУ однозначно говорит о неоптимальном режиме его использования.

Попробуем применить эти принципы для оценки линейности входного каскада на интегральном ОУ, примененном в УМЗЧ высокой верности, описанном в [ 1).

Упрощенная схема этого УМЗЧ приведена на рис. 6. Удалены система "чистой земли" и триггерная встроенная система защиты, поскольку усилитель вполне работоспособен без потерь в качественных показателях и без этих систем. Следует отметить, что система "чистой земли" малоэффективна при использовании соединительных кабелей с малым активным сопротивлением для соединения усилителя с акустическими системами. В то же время эта система может создать серьезные проблемы при использовании ее совместно с УМЗЧ в помещении, имеющем высокий электромагнитный фон сети, подавая этот фон на вход УМЗЧ со своего входа. Триггерная система защиты, по мнению автора, малоэффективна в случае аварии усилителя, поскольку не отключает напряжений его питания и имеет ограниченную функцию воздействия на УМЗЧ: предполагается, что она срабатывает при перегрузке УМЗЧ. Гораздо проще и надежнее ограничить напряжение входного сигнала, подаваемое на вход УМЗЧ и правильно рассчитать его схемотехнику.

Входной каскад УМЗЧ собран на интегральном ОУ К574УД1. Этот ОУ полностью соответствует требованиям, предъявляемым к входному каскаду УМЗЧ высокой верности.

В то же время из схемы усилителя следует, что на выходе ОУ в режиме покоя постоянно присутствует напряжение по рядка 4,9 В при напряжении питания ОУ ±13 В. Из описания УМЗЧ следует, что корпус ОУ в процессе работы ощутимо нагревается и его температура составляет 45...50°С.

Это позволяет сделать вывод: правильно выбранный по типу ОУ в данной конструкции используется в нелинейном режиме со значительными собственными искажениями. Поскольку такой потенциал на выходе ОУ создается в связи с конструктивными особенностями схемотехники УМЗЧ системой его балансировки, намеренно следует говорить о схемотехнически некорректном для УМЗЧ высокой верности решении входного каскада этого усилителя.

Даже в данном случае линейность УМЗЧ весьма высока. Однако если доработать входной каскад и поставить ОУ в линейный режим, мы сможем существенно улучшить качественные характеристики усилителя.

[Усилители мощности низкой частоты (на транзисторах)]
Сохрани статью в:

Рассказать в:

ПРАВДА и "СКАЗКИ" О ВЫСОКОКАЧЕСТВЕННОМ ЗВУКОВОСПРОИЗВЕДЕНИИ

И. СУХОВ, г. Киев, Украина

Давние разработки Н. Е. Сухова (системы динамического под-магничивания, УМЗЧ высокой верности и др.) до сих пор не забыты любителями высококачественной записи звука. Это отражают и письма в редакцию журнала "Радио", и ссылки на статьи в других изданиях, да и, насколько нам известно, личная почта автора.

В предлагаемой статье Н. Е. Сухов отвечает на вопросы наших читателей и ряд критических замечаний в его адрес. Полагаем, эта публикация для многих будет представлять интерес, тем более что она содержит рекомендации по доработке усилителей мощности и анализ некоторых аспектов современной звукозаписи.

Москвич Николай Клименко, один из читателей "Радио", с большим сомнением воспринял рассуждения и голословную критику экспертов журнала "АУДИО МАГАЗИН" (далее "AM") по поводу УМ 34 высокой верности (далее УМ 34 В В), описанного в . В частности, он попросил прокомментировать некоторые суждения (в рубрике "Почта" - "AM", 1996, №4, с. 3, 4).

Ознакомившись с заметками в "AM", могу отметить, что эксперты В. Зуев и С. Куниловский, на мой взгляд, в схемотехнике разбираются, мягко говоря, не очень хорошо. Так, например, В. Зуев, оценивая схемотехнику УМ 34 В В, пытался доказать, что (цитирую) "микросхема на входе усилителя... наверняка украдет виртуальную глубину стереопанорамы, столь необходимую для создания эффекта присутствия" (имеется в виду быстродействующий ОУ К574УД1 с входным каскадом на полевых транзисторах). Уместно спросить, почему именно этот ОУ " украдет глубину ", а десяток ОУ, через которые звуковой сигнал проходит до УМЗЧ в магнитофоне, CD-плейере или любом другом источнике сигнала (даже в "ламповых" CD-плейерах ЦАП выполнен, как должно быть известно и эксперту, на твердотельной ИМС, внутри которой несколько ОУ), будут вести себя "порядочно" и ничего "не украдут"?

Далее эксперт "AM" старается убедить нас в "практически невозможном получении хорошего звучания в любительских условиях", поскольку "для хорошего воспроизведения звука требуются изготовленные по специальной технологии дорогие "хай-файные" проводники, переключатели, сложные способы их соединения (бескислородная пайка, спецприпои)". Он оправдывает "смешную" цену усилителей фирм Audio Note ($120400) мощностью 17 Вт и Кедоп ($247000) мощностью 45 Вт, а также, очевидно, соединительных кабелей с некристаллической структурой проводников стоимостью в несколько сотен долларов.

Из курса физики известно, что любой контакт металла с металлом (при наличии хотя бы тончайшей оксидной пленки) можно рассматривать как нелинейный элемент электрической цепи. И эта нелинейность способна ухудшить звучание систем высокой верности. Но мне, например, трудно поверить, что В. Зуев слышал реальную работу УМЗЧ В В и тем более сколь-нибудь знаком с его схемой, поскольку именно вопросам устранения нелинейности соединительных проводов, контактов разъемов и реле при разработке этого усилителя было уделено особое внимание. В частности, в усилитель введен специальный каскад, компенсирующий не только нелинейность, но также активную и реактивную составляющие распределенного сопротивления соединительных проводов, а цепь общей ООС выполнена так, что компенсирует нелинейность "холодных" контактов реле коммутации выхода УМЗЧ и разъемов. Другими словами, те отрицательные факторы, о которых упоминает В. Зуев и которые способны ухудшить звучание, в УМЗЧ В В устранены наиболее эффективным способом - схемотехнически.

Не могу согласиться и с утверждением, что "любительство взвукотехнике не может сейчас конкурировать с фирменной аппаратурой... по качеству звука". Если речь идет о дизайне и исполнении корпуса - да, тут любителю трудно тягаться с промышленностью. Но если говорить о качестве звука, то сегодня даже радиолюбителю со средней подготовкой вполне под силу собрать УМЗЧ ценовой категории $300-500, затратив при этом всего $40...50. Но для этого надо быть радиолюбителем и не следовать совету В. Зуева "лучше купить готовый аппарат".

Несколько претенциозен, думается, и отзыв эксперта "AM" о том, что "г-н Сухов с большим опозданием обратил внимание на схемную экзотику некоторых зарубежных фирм, не отличающихся качеством звучания своих изделий (имеются в виду Kenwood и Akai. - Примеч. автора) и... опоздал примерно на 10 лет". Но почему же тогда "AM" обсуждает конструкцию семилетней давности как наиболее популярную и до сих пор не превзойденную по параметрам? Для мира электронной техники это большой срок.

Завершая изложение моего мнения о заметках в "AM", хочу отметить, что сами по себе такие журналы, конечно, полезны. Но многие утверждения отдельных авторов статей могут показаться бесспорными лишь тем читателям, которые, простите, не в состоянии отличить транзистор от резистора. На людей же, разбирающихся в схемотехнике аудиоаппаратуры, некоторые статьи в "AM" производят жалкое впечатление. Убежден, что учить кого-то можно в том случае, когда сам досконально, в мельчайших подробностях, знаешь то, о чем пишешь.

В своем письме в "Радио" Н. Клименко интересовался также "философией", которой я придерживался при разработке УМЗЧ ВВ, и проведением экспертных прослушиваний. Так вот, этот усилитель разрабатывался как оконечное звено стенда для субъективной экспертизы звучания CD-плейеров по заданию одной из испытательных лабораторий. Стояла задача выполнить конструкцию на отечественной элементной базе и обеспечить выходную мощность 100 Вт на нагрузке 8 Ом (студийные мониторы фирмы JBL) при уровне искажений и шумов на 10...20 дБ ниже, чем у CD-плейеров. Повторив на отечественных элементах до десятка вариантов УМЗЧ ведущих западных фирм, убедился, что на комплементарных транзисторах серий КТ818, КТ819 с низкой граничной частотой не удастся получ ить прие м л ем ого (п о ТЗ - не бол ее 0,001%) уровня нелинейных искажений на высшей частоте звукового диапазона. Фазовый сдвиг, создаваемый этими транзисторами уже на звуковых частотах (т. е. на один-два порядка ниже, чем у зарубежных), вынуждал вводить для обеспечения устойчивости более глубокую частотно-фазовую коррекцию, что, в свою очередь, ограничивало глубину ООС на высших частотах и ухудшало линейность.

Проблему удалось решить, полностью отказавшись от включения транзисторов по схеме с ОЭ. Была введена коррекция по опережению, компенсирующая формируемый транзисторами выходного каскада полюс на АЧХ усилителя с разомкнутой ООС. В результате требования заказчика по линейности были выполнены с большим запасом во всем звуковом диапазоне и усилитель был принят в эксплуатацию.

Но затем обнаружилось (я участвовал как "слухач" в большинстве субъективных испытаний), что проигрываемый компакт-диск звучит через мониторы (студийную АС), соединяемые с УМЗЧ разными кабелями, по-разному! Тогда, тщательно исследовав феномен, мы поняли, что те тысячные доли процента искажений, которые давал УМЗЧ, ничто по сравнению с искажениями, создаваемыми соединительными кабелями с разъемами. Замена разъемов на позолоченные, а обычные соединительные провода - на специальные с "некристаллической" структурой ($250 за витую пару длиной 4 м), лишь частично решила проблему - искажения уменьшились в несколько раз, но не исчезли. Тогда, после ряда экспериментов со студийными усилителями Kenwood с системой "Sigma Drive", попробовал ввести в УМ34 каскады компенсации полного импеданса проводов и нелинейности "холодных" контактов. Результат превзошел все ожидания - искажения исчезли, причем независимо от качества (и цены!) соединительных проводов и разъемов. Так родилась конструкция, описанная в "Радио" № 6, 7 за 1989 г.

Кстати, настоятельно рекомендую всем любителям высококачественного звука установить упомянутую схему компенсации в свои УМЗЧ. Это сделать несложно: потребуются лишь три прецизионных (или точно подобранных) резистора и один ОУ Его тип особого значения не имеет, это может быть и К140УД6, и К157УД2.

На рис. 1 показаны функциональные схемы типовых УМ34: рис. 1, а -с входным каскадом на дискретных элементах, рис. 1, б - с входным каскадом на ОУ, остальные каскады "упрятаны" в блок А2. Вход цепи компенсации соединяют с общим выводом прямо на клемме громкоговорителя, а выход через резистор Р|дош сопротивление которого должно быть точно равно сопротивлению резистора R2 в цепи общей ООС УМЗЧ, - с инвертирующим входом входного каскада. Резисторы в компенсаторе следует использовать прецизионные (с погрешностью не более 1 %).

Принцип работы такого компенсатора - измерение падения напряжения на одном из соединительных проводов, удвоение его и "добавка" к обычному сигналу на выходе УМЗЧ, что эквивалентно устранению проводов между усилителем и громкоговорителями. Такое схемное решение не требует какого-либо налаживания при замене соединительных кабелей или акустических систем. Попробуйте, и вы убедитесь, что эффект превзойдет все ваши ожидания (конечно, если ваш усилитель, источник сигнала и особенно акустические системы достаточно высокого качества).

Отвечая на вопрос о субъективном сравнении звучания УМЗЧ В В, хочу отметить, что я признаю только "анонимные" тесты, проводимые по системе так называемой А-В-Х экспертизы, в ходе которой сравниваемые устройства А и В невидимы экспертам и переключаются случайным образом (скажем,"А", затем "В", а последующие переключения "X" не объявляются).

Так вот, в ходе А-В-Х экспертизы сравнения УМЗЧ В В был лучше или не хуже имевшихся в распоряжении испытательной лаборатории Kenwood КА-500, Quad 405, Yarn aha A-1 стоимостной категории $400 - 1000 и намного лучше "Брига","Одиссея-010" или лампового "Прибоя". Кстати, именно А-В-Х экспертиза позволила воочию убедиться, как многие знатоки High End теряли способность отличить компоненты классов Hi-Fin High End, как только объект их безграничной, но "слепой" любви исчезал за черную перегородку.

Я, конечно, не обладаю идеальным музыкальным слухом, но, на мой взгляд, многое из того, что "крутится" сейчас вокруг слова "High End", похоже на религиозный диспут ("верю - не верю"), а ажиотаж нагнетается искусственно с единственной целью - стимулировать сбыт.

В связи с этим вспоминается случай с выпуском в свое время фирмой Nakamichi "спецварианта" популярного магнитофона "Nakamichi 1000ZXL", в котором все детали, вплоть до радиаторов блока питания, были позолочены! Добавило ли это качества звуку - читатели догадаются сами, а вот цена выросла примерно втрое по сравнению со стандартной моделью.

Ламповые усилители. Они, действительно, в большинстве своем звучат приятнее, чем транзисторные. Но "приятнее" не значит точнее. Выходной трансформатор -устройство с гораздо большей (из-за петли гистерезиса и конечной индукции насыщения магнито-провода) нелинейностью, частотными и фазовыми искажениями, чем транзистор в линейном режиме. "Чистые лампо-вики", понимающие проблему, создали бестрансформаторные УМЗЧ на 6СЗЗС, но это - исключение из правила. Именно из-за больших фазовых искажений ламповый УМЗЧ затруднительно охватить глубокой ООС, что и проявляется в конечном итоге в относительно большом выходном сопротивлении (единицы ома, у транзисторных - обычно сотые доли ома), а также сравнительно плавном ограничении при перегрузке (на рис. 2 кривые 1 и 2 изображают типовые амплитудные характеристики соответственно лампового и транзисторного усилителей).

Попробуйте искусственно увеличить выходное сопротивление любого "среднего" транзисторного УМЗЧ до 2...4 Ом (для этого достаточно последовательно с акустической системой включить 10- 20-ваттный резистор с таким сопротивлением) и не превышайте четверти его номинальной мощности, чтобы кратковременные пики сигнала не обрезались. Вы убедитесь, что звук в 95% случаев приобретет "ламповую мягкость". Причина кроется в том, что многие (но не все!) громкоговорители обеспечивают минимум интермодуляционных искажений (по звуковому давлению) не при близком к нулю выходном сопротивлении УМЗЧ, а при его величине не менее 3...5 Ом *. Однако такое сопротивление нарушает линейность АЧХ и ФЧХ пассивных разделительных фильтров акустических систем, которые обычно проектируются в расчете на нулевое значение выходного сопротивления УМЗЧ.

Но ведь это проблемы не усилителей, а акустических систем! Именно акустики должны позаботиться при разработке систем не только о линейности АЧХ и ФЧХ по звуковому давлению на синусоидальном сигнале, но и о минимизации акустических интермодуляционных искажений при REtK = 0 или, что хуже, нормировать REbK, скажем, величиной 3 Ома и рассчитывать разделительные фильтры на такое сопротивление источника.

Еще одно распространенное заблуждение аудиофилов: якобы компакт-диски (КД) обеспечивают больший динамический диапазон, чем аналоговая компакт-кассета (КК). При этом в качестве основного аргумента приводится формула для расчета шумов квантования: Nкв=6N+1,8 [дБ], где N - разрядность квантования по уровню.

Для КД принято N=16, следовательно, теоретический уровень шумов квантования

Nкв кд =6X16+1,8=97,8 дБ. С чьей то легкой руки это значение и принимают за дин ам ич ески й диап азон КД. Учиты вая, что у лучших КК отношение сигнал/шум составляет (без систем шумопонижения) порядка 55 дБ, делают вывод о выигрыше КД более чем 40 дБ.

Но нельзя забывать, что принципы аналоговой КК и цифрового КД в корне отличаются, поэтому применять для оценки динамического диапазона КД методы измерения КК некорректно. В КК динамический диапазон снизу действительно определяется уровнем шумов, но это не значит, что так же обстоит дело и у КД! Взглянув на рис. 3, на котором изображены типовые зависимости коэффициента нелинейных искажений Кни КК и КД в функции уровня сигнала, можно легко заметить, что в аналоговой записи с уменьшением уровня Кни монотонно убывает, в то время как у цифровой записи возрастает, стремясь к 40% (поскольку увеличивается относительный размер ступеньки квантования).

Если у аналоговой записи в спектре искажений преобладают не очень режущие слух третья и пятая гармоники, то у цифровой дело обстоит гораздо хуже - множествокомбинационныхс оставл яю-щих не образуют привычного для слуха гармонического ряда, и их действие становится заметно уже при уровнях около 1%. Легко убедиться, что при уровнях сигнала порядка -50 дБ и ниже искажения сигналов КД переходят порог допустимых 1%. Снизу его динамический диапазон оказывается ограничен не

шумами квантования, а нелинейными искажениями. И из теоретических 97,8 дБ остается только 50.

Но это еще не все! При перегрузке КК нелинейные искажения пропорциональны квадрату уровня записи (при увеличении уровня в два раза коэффициент гармоник возрастает всего в четыре раза), поэтому их кратковременное появление на пиках сигнала незаметно на слух. У КД при превышении номинального входного уровня аналого-цифрового преобразователя (АЦП) всего на 2...3 дБ нелинейные искажения возрастают в тысяч и раз, поэтому в реальной аппаратуре цифровой записи за номинальный принимают уровень на 12... 15 дБ (т. е. на пик-фактор реального музыкального сигнала) меньше предельного входного для АЦП. В результате из исходных 97,8 дБ остается всего 35.. .37 дБ реальных, что на 20 дБ меньше, чем у КК.

Вот почему, несмотря на субъективное отсутствие "шипа", многие фонограммы, воспроизводимые с КД, приводят к быстрой утомляемости и имеют заметно худшую "глубину стереопано-рамы", чем та же фонограмма, воспроизводимая с аналоговой виниловой грампластинки или качественной КК. Кстати, современные грампластинки, выполненные по технологии Direct Metal Mastering, обеспечивают динамический диапазон 60...65 дБ и высоко ценятся аудиофилами.

Нельзя не упомянуть и еще о двух "наездах" на К К - со стороны фирм-разработчиков цифровой компакт-кассеты DCC и мини-диска MD. С момента появления DCC (1989 г.) и MD (1993 г.) фирма Philips -разработчик DCC - пыталась убедить аудиофилов, что именно DCC через 1-2 года полностью вытеснит КК. С аналогичным заявлением, но уже в отношении MD, выступала и Sony - разработчик MD. Но... время шло, а КК до сих пор является основным бытовым носителем аудиопрограмм с возможностью записи. Более того, если вначале формат DCC был поддержан мировым гигантом Matsushita и рядом других известных фирм, то сегодня DCC производит только Philips, да и то всего несколько моделей (на фоне десятков моделей КК).

Фирма Sony, также удрученная субъективной оценкой качества звучания, проведенной немецким журналом "Audio", в результате которой MD расположился на последнем месте с 45 баллами из 100 после разделивших 1-2-е места проигрывателя компакт-дисков (85 баллов) и кассетного магнитофона (85 баллов) и занявших 3-4-е места проигрывателя виниловых грампластинок (80 баллов) и DCC-магнитофона (80 баллов), начала лихорадочно совершенствовать систему сжатия цифровых аудиоданных, в результате чего за 4 года было рождено четыре(!) версии алгоритма сжатия ATRAC 1 -ATRAC 4, причем предыдущие не совместимы со всеми последующими (т. е. "старые" MD-плейеры не способны воспроизводить "новые" записи)...

Тут самое время вспомнить, что в DCC и MD применено, как и в КД, 16-разрядное квантование по уровню, но для снижения потока записываемых на носитель данных использовано цифровое сжатие по алгоритмам соответственно PASC (Precision Adaptive Subband Coding) и ATRAC (Adaptive TRansforrn Acoustic Coding), уменьшающих поток цифровых данных с 2 Мбит/с до 384 кбит/с и 300 к бит/с, т. е. и DCC, и М D принципиально менее точно воспроизводят звук, чем КД.

Прогноз - дело неблагодарное, но справедливости ради давайте вспомним судьбу еще одного (теоретически превосходящего по качеству КД) формата R-DAT которому в момент его появления в 1987 г. также прочили место наследника К К. Показателен в этом смысле довольно точный прогноз автора этих строк, опубликованный в . В то время, как практически вся зарубежная и отечественная пресса писала о том, что к 1991 г. R-DAT полностью заменит КК, это была, пожалуй, единственная публикация, в которой R-DAT отводилось скромное место разве что в полупрофессиональных студиях звукозаписи.

В заключение, пользуясь случаем, выражаю глубокую признательность всем корреспондентам и почитателям, чья моральная, информационная и материальная поддержка сделали возможной разработку многих моих конструкций.

* См. также статью С. Агеева "Должен ли УМЗЧ иметь низкое выходное сопротивление?" в "Радио", 1ЭЭ7, № 4, с. 14-16. - Примеч. ред.

ЛИТЕРАТУРА

1. Сухов Н. УМЗЧ высокой верности. - Радио, 1 Э8Э, № 6, с. 55-57; № 7, с. 57-61.

2. Сухов Н. Что такое R-DAT. Радиоеже-годн ик. - М.: ДОСААФ, 1Э8Э, с. 1 65-176.

Раздел: [Усилители мощности низкой частоты (ламповые)]
Сохрани статью в:

Тясячи схем в категориях:
-> Прочее
-> Измерительная техника
-> Приборы
-> Схемыэлектрооборудования
->
-> Теоретические материалы
-> Справочные материалы
-> Устройства на микроконтроллерах
-> Зарядные устройства (для батареек)
-> Зарядные устройства (для авто)
-> Преобразователи напряжения (инверторы)
-> Все для кулера (Вентилятора)
-> Радиомикрофоны, жучки
-> Металоискатели
-> Регуляторы мощности
-> Охрана (Сигнализация)
-> Управление освещением
-> Таймеры (влажность, давление)
-> Трансиверы и радиостанции
-> Конструкции для дома
-> Конструкции простой сложности
-> Конкурс на лучшую конструкцию на микроконтроллерах
->

Большинство аудиолюбителей достаточно категорично и не готово к компромиссам при выборе аппаратуры, справедливо полагая, что воспринимаемый звук обязан быть чистым, сильным и впечатляющим. Как этого добиться?

Поиск данных по Вашему запросу:

Схемотехника усилителей мощности низких частот

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.

Пожалуй, основную роль в решении этого вопроса сыграет выбор усилителя.
Функция
Усилитель отвечает за качество и мощь воспроизведения звука. При этом при покупке стоит обратить внимание на следующие обозначения, знаменующие внедрение высоких технологий в производство аудио - аппаратуры:


  • Hi-fi. Обеспечивает максимальную чистоту и точность звука, освобождая его от посторонних шумов и искажений.
  • Hi-end. Выбор перфекциониста, готового немало заплатить за удовольствие различать мельчайшие нюансы любимых музыкальных композиций. Нередко к этой категории относят аппаратуру ручной сборки.

Технические характеристики, на которые следует обратить внимание:

  • Входная и выходная мощность. Решающее значение имеет номинальный показатель выходной мощности, т.к. краевые значения часто недостоверны.
  • Частотный диапазон. Варьируется от 20 до 20000 Гц.
  • Коэффициент нелинейных искажений. Здесь все просто - чем меньше, тем лучше. Идеальное значение, согласно мнению экспертов - 0,1%.
  • Соотношение сигнала и шума. Современная техника предполагает значение этого показателя свыше 100 дБ, что сводит к минимуму посторонние шумы при прослушивании.
  • Демпинг-фактор. Отражает выходное сопротивление усилителя в его соотношении с номинальным сопротивлением нагрузки. Иными словами, достаточный показатель демпинг-фактора (более 100) уменьшает возникновение ненужных вибраций аппаратуры и т.п.

Следует помнить: изготовление качественных усилителей - трудоемкий и высокотехнологичный процесс, соответственно, слишком низкая цена при достойных характеристиках должна Вас насторожить.

Классификация

Чтобы разобраться во всем многообразии предложений рынка, необходимо различать продукт по различным критериям. Усилители можно классифицировать:

  • По мощности. Предварительный - своеобразное промежуточное звено между источником звука и конечным усилителем мощности. Усилитель мощности, в свою очередь, отвечает за силу и громкость сигнала на выходе. Вместе они образуют полный усилитель.

Важно: первичное преобразование и обработка сигнала происходит именно в предварительных усилителях.

  • По элементной базе различают ламповые, транзисторные и интегральные УМ. Последние возникли с целью объединить достоинства и минимизировать недостатки первых двух, например, качество звука ламповых усилителей и компактность транзисторных.
  • По режиму работы усилители подразделяются на классы. Основные классы - А, В, АВ. Если усилители класса А используют много энергии, но выдают высококачественный звук, класса B с точностью до наоборот, класс AB представляется оптимальным выбором, представляя собой компромиссное соотношение качества сигнала и достаточно высокого КПД. Также различают классы C, D, H и G, возникшие с применением цифровых технологий. Также различают однотактные и двухтактные режимы работы выходного каскада.
  • По количеству каналов усилители могут быть одно-, двух- и многоканальными. Последние активно применяются в домашних кинотеатрах для формирования объемности и реалистичности звука. Чаще всего встречаются двухканальные соответственно для правой и левой аудиосистем.

Внимание: изучение технических составляющих покупки, конечно, необходимо, но зачастую решающим фактором является элементарное прослушивание аппаратуры по принципу звучит-не звучит.

Применение

Выбор усилителя в большей степени обоснован целями, для которых он приобретается. Перечислим основные сферы использования усилителей звуковой частоты:

  1. В составе домашнего аудиокомплекса. Очевидно, что лучшим выбором является ламповый двухканальный однотакт в классе А, также оптимальный выбор может составить трехканальный класса АВ, где один канал определен для сабвуфера, с функцией Hi - fi.
  2. Для акустической системы в автомобиле. Наиболее популярны четырехканальные усилители АВ или D класса, в соответствии с финансовыми возможностями покупателя. В автомобилях также востребована функция кроссовер для плавной регулировки частот, позволяющей по мере необходимости срезать частоты в высоком или низком диапазоне.
  3. В концертной аппаратуре. К качеству и возможностям профессиональной аппаратуры обоснованно предъявляются более высокие требования в силу большого пространства распространения звуковых сигналов, а также высокой потребности в интенсивности и длительности использования. Таким образом, рекомендуется приобретение усилителя классом не ниже D, способного работать почти на пределе своей мощности (70-80% от заявленной), желательно в корпусе из высокотехнологичных материалов, защищающем от негативных погодных условий и механических воздействий.
  4. В студийной аппаратуре. Все вышеизложенное справедливо и для студийной аппаратуры. Можно добавить о наибольшем диапазоне воспроизведения частот - от 10 Гц до 100 кГц в сравнении с таковым от 20 Гц до 20 кГц в бытовом усилителе. Примечательна также возможность раздельной регулировки громкости на различных каналах.

Таким образом, чтобы долгое время наслаждаться чистым и качественным звуком, целесообразно заранее изучить все многообразие предложений и подобрать вариант аудио аппаратуры, максимально отвечающий Вашим запросам.

Изготовление высококачественного УМЗЧ - еще не решение проблемы, так как он - лишь одно из звеньев цепи устройств, образующих звуковоспроизводящий комплекс. И создавать такой комплекс следует системно, начиная с разработки требований, основанных как на желаемых результатах, так и на имеющихся возможностях. При этом в расчет должны приниматься не только технические характеристики звуковоспроизводящего тракта, но и параметры громкоговорителей, акустические параметры помещения, вопросы эргономики и надежности. Многие из этих требований взаимно противоречивы, поэтому решение такой задачи под силу только большому, связанному общей идеей коллективу конструкторов, каким является армия радиолюбителей.

Хотелось бы продолжить разработку идей, способствующих достижению высоких результатов при изготовлении высококачественных комплексов различной степени сложности. И начать не с их электрических характеристик, а с состава и конструктивного оформления.

По мнению автора, в радиокомплекс, кроме усилительно-коммутационного устройства, должны входить ЭПУ, кассетный магнитофон-приставка и тюнер с основными параметрами, обеспечивающими суммарный эффект, соответствующий акустическим характеристикам громкоговорителей. В комплекс может входить и катушечный магнитофон с более высокими параметрами, чем другие блоки, для перезаписи программ с кассет и катушек. Конструктивно названные части радиокомплекса должны быть объединены в неделимый музыкальный центр. Существующее мнение о возможном дальнейшем развитии радиокомплекса, блоки которого соединены между собой многочисленными кабелями, не разделяется автором. Дело в том, что при согласованных характеристиках блоков, обеспечивающих заданное качество вуковоспроизведения, улучшение параметров одного из них не приведет к улучшению суммарного эффекта. Последний может быть получен только в том случае, если радио-комплекс состоит из элементов с различными, заведомо худшими параметрами качества, а это в корне неверно. Но если даже такой радиокомплекс удовлетворяет по звучанию своего владельца при работе на громкоговорители низкой группы сложности, то он немедленно перестанет его удовлетворять после замены их акустической системой более высокой группы: сразу начнут проявляться недостатки слабых звеньев.

Таким образом, при замене громкоговорителей неминуемо возникает необходимость замены и других блоков, а в случае согласованности их характеристик - и всего радиокомплекса. Поэтому-то и целесообразно выполнять его в виде объединенных в музыкальный центр блоков, согласованных по основным параметрам. Такая конструкция комплекса обеспечивает повышение надежности, улучшение качественных и эргономических характеристик. Выигрыш в надежности обусловливается отсутствием соединительных кабелей и невозможностью неправильных соединений, в технических характеристиках – облегчением борьбы с фоновыми наводками, в эргономике -возможностью целесообразного размещения органов управления и самих узлов при компоновке музыкального центра в целом.

Тезис: громкоговорители - важнейший компонент радиокомплекса, вряд ли требует особых пояснений. Можно говорить о качестве любого звена звуковоспроизводящего тракта, о влиянии его параметров на качество звуковоспроизведения, но если электроакустический, преобразователь не может преобразовать электрические сигналы в звуковые в определенном диапазоне частот с приемлемым уровнем искажений, то никакое улучшение других узлов тракта, как правило, не приведет к пропорциональному улучшению звучания. Конечно, степень демпфирования громкоговорителей выходным сопротивлением УМЗЧ может в некоторой степени влиять на качество воспроизведения, но только до тех пор, пока она не достигнет предельного для данного электроакустического преобразователя значения. Частотной коррекцией усилителя можно расширить диапазон воспроизводимых акустической системой частот, но в ущерб другому параметру - динамическому диапазону усиливаемых без нелинейных искажений сигналов.

Громкоговорители приходится выбирать не только по параметрам и стоимости, но и с учетом возможности их размещения в жилом помещении, где они, видимо, не должны являться главным элементом интерьера. Последнее обстоятельство часто является определяющим: далеко не каждая семья рискнет сделать главным украшением своей квартиры два громоздких и не всегда изящно оформленных громкоговорителя.

Для ликвидации разрыва между желаемым качеством звуковоспроизведения и возможностями размещения громкоговорителей в квартире основные усилия промышленности и радиолюбителей-конструкторов следует, видимо, направить на создание достаточно высококачественных малогабаритных, эстетически грамотно оформленных и доступных но цене акустических систем. Их частотный диапазон, по мнению автора, должен быть не уже 30…16 000 Гц. Дальнейшее его расширение для бытовой радиоаппаратуры вряд ли целесообразно. Коэффициент гармоник в указанном диапазоне частот не должен превышать 3 % при номинальной мощности 25 Вт.

Практически такие же требования по частотной характеристике следует предъявить н ко второму по значимости звену радиокомплекса - УМЗЧ: оптимальным диапазоном частот дли него можно считать 20-20000 Гц (при спаде АЧХ на краях не более – 3 дБ). Не принципиальным был бы и коэффициент гармоник, который вполне мог бы достигать 0,5-1%, если бы нелинейность амплитудной характеристики УМЗЧ не приводила к появлению негармонических составляющих в спектре усиливаемого сигнала, называемых нитермодуляционными искажениями. Именно они, а не гармонические составляющие, являются источником неприятных призвуков. Частотные компоненты, лежащие за верхней границей звукового.диапазона и, следовательно, не слышимые ухом, при близком их расположении на частотной оси могут порождать комбинационные частоты, попадающие в область максимальной чувствительности человеческого уха . Высокая крутизна характеристик биполярных транзисторов, а следовательно, и кривизна (нелинейность) приводят к появлению комбинационных составляющих довольно высокого (6-го – 10-го) порядка со значительными уровнями.

Борьба с интермодуляционными искажениями, возникающими при ограничении сигнала, довольно проста: достаточно правильно выбрать амплитуду напряжения на входе УМЗЧ.

Пикфактор многочастотного сигнала близок, к пикфактору шума и наиболее вероятно равен 3. Следовательно, величина входного напряжения для неискаженного звуковоспроизведения должна быть в 3 раза меньше максимального значения, при котором выходной синусоидальный сигнал еще не искажается. Требуемый уровень входного напряжения подбирают при установке регулятора громкости в положение, соответствующее максимальной громкости. Следует, однако, учесть, что средняя мощность на выходе при этом будет примерно равна 0.1 от номинальной, и громкость звучании для выбранной акустической системы и конкретного помещения будет определяться именно ею. Учитывая, что наиболее типичный объем жилого помещения, составляющий 40-60 м 3 , требует подведения средней мощности около 4 Вт, номинальная суммарная мощность стереофонического УМЗЧ должна составлять 40 Вт – по 20 Вт на канал. Это значение и следует, по мнению автора, считать минимальным для высококачественного звуковоспроизведения.

Очевидно, что при указанной выходной мощности интермодуляционные искажения должны быть ниже уровня шумов УМЗЧ. Однако измерить интермодуляционные искажения с уровнем -70 дБ (0,03%) в присутствии основного сигнала большого уровни можно только при наличии анализатора спектра с динамическим диапазоном не менее 80 дБ. К сожалению, такие приборы практически недоступны большинству радиолюбителей. Косвенно о величине интермодуляционных искажений можно судить по коэффициенту гармоник, однако измерить и этот параметр на уровне -70 дБ также практически нечем: подходящего измерителя нелинейных искажений среди доступных радиолюбителю нет.

Правда, существует известный метод взаимной компенсации входного и выходного сигналов УМЗЧ. Оценка искажений таким способом наиболее приемлема для радиолюбителей, однако при уровнях -70 дБ и в этом случае возникают определенные трудности. Поэтому первоочередной задачей радиолюбителей-конструкторов, по мнению автора, следует считать разработку доступных для повторения интермодулометров. А до их появления придется пользоваться менее объективными, но более доступными методами.

Метод экспертиз, дает хорошие результаты и доступен широкому кругу радиолюбителей. Наблюдения Ю. Солнцева хорошо согласуются с наблюдениями автора. Некоторые выводы из них стоит повторить, придав им смысл критериев оценки качества. Это, во-первых, достижение наилучшего звучания высококачественных фонограмм при установке органов регулировки АЧХ предварительного усилителя в среднее положение. Всякое желание придать АЧХ форму, отличную от линейной, особенно в области высших частот, всегда свидетельствует о нелинейности амплитудной характеристики УМЗЧ, приводящей к появлению интермодуляционных и гармонических составляющих в спектре выходного сигнала.

Во-вторых, испытание усилителя сигналом того же музыкального содержания, но с внесенными в него гармоническими искажениями, например, при записи на магнитофон относительно невысокого качества. Чем линейнее УМЗЧ, тем менее будет кажущееся отличие от оригинала. Наличие в спектре фонограммы гармонических составляющих, еще не очень снижающих качество при воспроизведении через УМЗЧ с линейной амплитудной характеристикой, приводит к интермодуляционным искажениям и негармоническому засорению выходного сигнала при прослушивании через усилитель с недостаточно линейной характеристикой, что сразу улавливается даже не очень искушенным слухом.

К объективным методам оценки качества УМЗЧ, как, впрочем, и любого радиоэлектронного устройства, следует отнести экспертизу схемотехнических решений. Конечно, такая оценка требует определенных знаний в области радиоэлектроники и не под силу радиослушателям без радиотехнической подготовки, однако она вполне доступна радиолюбителям, способным сравнить схемотехнические особенности того или иного усилителя по предлагаемой ниже методике.

Прежде всего следует обратить внимание на выходной каскад УМЗЧ. Известно, что добиться приемлемого уровня нелинейных искажений в усилителях, работающих в режиме В, при малой выходной мощности очень трудно.

Известно также, что режим А в УМЗЧ приводит к недопустимому снижентю КПД и существенным конструктивным затратам на отвод тепла от выходных транзисторов.

Промежуточный режим АВ тоже нелишен недостатков: он требует тщательного выбора режима транзисторов выходного каскада и температурной стабилизации их тока покоя. Применение различных тепловых ООС конструктивно сложно и недопустимо инерционно. Токосъемы подстроечных резисторов, с помощью которых устанавливают ток покоя выходных транзисторов, со временем окисляются и могут стать причиной выхода транзисторов оконечного каскада из строя.

Наиболее удачным решением, по мнению автора, является сочетание усилителей, работающих в режимах А и В (и даже А и С), причем такое, в котором при малой выходной мощности работает только первый из них, а при большой мощности - оба (маломощный усилитель, работающий в режиме А, является одновременно возбудителем выходного каскада, транзисторы которого работают в режиме В и закрыты при малых уровнях сигнала). Это позволяет отказаться от стабилизации рабочей точки транзисторов оконечного каскада, обеспечив постоянство режима только маломощного усилителя. ООС в подобных усилителях работает в режимах как малого, так и большого сигналов, что достигается прямой связью входа и выхода оконечного каскада.

Для повышения линейности амплитудных характеристик предварительных усилителей напряжение питания должно значительно (в 5-10 раз) превосходить амплитуду необходимого выходного напряжения. Это особенно важно для усилительных каскадов темброблоков и эквалайзеров, в которых линейность усиления должна обеспечиваться при максимальном подъеме АЧХ в соответствующих областях звукового диапазона частот.

С этой же целью предварительные усилители должны быть выполнены на основе дифференциальных каскадов в комбинации с эмиттерными повторителями. Преимущество первых – значительно большая линейность по сравнению с каскадом ОЭ (для получения коэффициента гармоник, равного 1%, на вход каскада ОЭ достаточно подать напряжение 1 мВ тогда как дифференциальный каскад вносит такие искажения при уровне, в 18 раз большем), вторых - 100 %-ная ООС по току, исправляющая искажения, и низкое выходное сопротивление, уменьшающее наводки.

Очень существенно распределение усиления по тракту радиокомплекса. С одной стороны, номинальное входное напряжение УМЗЧ должно гарантировать отсутствие фоновых наводок и значительное превышение сигнала над шумом (те же 70 дБ), с другой стороны – оно не должно приводить к искажениям сигнала в предварительных усилителях из-за захода пиков сложного сигнала в область ограничения.

Наиболее правильным было бы выбрать чувствительность УМЗЧ максимально возможной (по превышению над шумами), а с фоновыми наводками бороться схемотехническими и конструктивными решениями. Одним из них дожег быть, например, применение симметричного входного каскада УМЗЧ с заключением обоих проводов, идущих к нему от предварительного усилителя, в общий экран и соединением этого экрана и одного из сигнальных проводов с общим проводом на плате предварительного усилителя. К чисто конструктивным решениям следует отнести объединение блоков радиокомплекса в музыкальный центр, где все они питаются от одного сетевого трансформатора; рациональное размещение узлов (в первую очередь, сетевого трансформатора, двигателей ЭПУ и магнитофона) по отношению один к другому, входам, усилителей, коммутационным устройствам, регуляторам громкости и тембра; правильное выполнение экранировки и шины общего провода.

Все названные схемотехнические условия обеспечения высокого качества усилительной части радиокомплекса, на первый взгляд, требуют существенного его усложнения. Однако применение ОУ во всех звеньях тракта позволяет добиться нужных результатов при простоте реализации.

Принципиальная схема этого усилителя (на отечественных деталях) приведена на рис. 1. Его первый каскад выполнен на ОУ DA1, включенном вместе с транзисторами VT1 и VT2 таким образом, чтобы, во-первых, увеличить скорость нарастания напряжения на выходе усилителя, а во-вторых, обеспечить номинальное напряжение питания ОУ. Предоконечный каскад (VT3 и VT4) работает в режиме А, выходной (VT5 и VT6) – в режиме В. Диоды VD1 и VD2 гарантируют отсутствие тока покоя выходного каскада при изменении тока через транзисторы VT3 и VT4 (за счет их нагрева) в 1,5-2 раза. Цель ООС, общая для постоянного и переменного токов, не содержит конденсатора большой емкости и обладает малой постоянной времени для переходных процессов. Элементы R10, R11 C5 и L1 корректируют ФЧХ цепи ООС, обеспечивая при правильной настройке малый уровень интермодуляционных искажений и коэффициента гармоник. Параметры этих элементов связаны простым соотношением (L1 = R10R11C5) и могут быть легко рассчитаны для каждого конкретного случая.

При напряжении питания ±30 В, сопротивлении нагрузки 4 Ом и входном напряжении 100 мВ УМЗЧ отдает максимальную мощность 100 Вт. При номинальной мощности 60 Вт коэффициент гармоник на частоте 1000 Гц не превышает 0,006 %.

Автором этот УМЗЧ испытан при напряжении питания ±20 В и сопротивлении нагрузки 4 Ом (были изменены номиналы элементов R5, R6, С5, R11). Номинальное входное напряжение было выбрано равным 0,75 В (при желании его можно изменить в любую сторону подбором резистора R3). Налаживание свелось к установке тока покоя транзисторов VT3 и VT4 (в пределах 10-20 мА) подбором резисторов R7 и R8 при отсутствии тока через транзисторы VT5 и VT6. При питании от стабилизированного источника УМЗЧ в диапазоне частот 20-20000 Гц обеспечивал максимальную выходную мощность 40 Вт, от нестабилизированного - около 35 Вт. Коэффициент гармоник на частоте 1000 Гц при выходной мощности 20 Вт, измеренный векторным индикатором нелинейных искажений, не превышал 0,01 %. Испытания проводились совместно с И. T. Акулиничевым. Субъективно усилитель обеспечивает более высокое качество звуковоспроизведения, чем УМЗЧ музыкального центра «Вега-115-стерео», удовлетворяя критериям оценки. Полученные результаты подтвердили возможность создания простого в схемотехническом отношении высококачественного УМЗЧ.

Возможный вариант печатной платы показан на рис. 2. Она рассчитана на установку резисторов МЛТ и конденсаторов КМ (о назначении элементов, изображенных штриховыми линиями, будет сказано далее). Катушка L1 намотана в два слоя (9+7 витков) проводом ПЭВ-2, 0,8 на оправке диаметром 7 мм и для жесткости пропитана клеем «Момент-1».

Описанный УМЗЧ не имеет защиты от короткого замыкания в нагрузке и не содержит устройств, защищающих громкоговорители при пробое одного из его транзисторов. По мнению автора, эти функции вполне способны выполнить калиброванные плавкие предохранители.

Схемотехнические решения, примененные в усилителе, гарантируют отсутствие щелчков в громкоговорителях при включении и выключении питания.

При использовании совместно с УМЗЧ предварительного усилителя, у которого на выходе присутствует постоянное напряжение, возможно появление щелчков по его вине. В этом случае можно применить устройство защиты акустической системы, выполненное по схеме рис. 3. Срабатывает оно при появлении на выходе УМЗЧ напряжения более 1,2 В любой полярности, в том числе и в случае, если напряжения на выходах каналов имеют разную полярность. Задержка подключения громкоговорителей - 1,5-2 с. Применение стабилитронов VD5 и VD6 с малым напряжением стабилизации предохраняет ОУ DA1 от перегрузок по входу при значительных уровнях постоянного напряжения на выходах каналов стереоусилителя. Для питания устройства необходима отдельная обмотка сетевого трансформатора напряжением 5-6 В.

Для получения нулевого потенциала на выходе рокот-фильтра необходимо через резисторы сопротивлением 68-82 кОм подать на базу транзисторов V1 и V1′ дополнительное смещение от источника положительного напряжения.

В заключение несколько слов о выборе деталей. Параметры усилительного тракта в значительной мере зависят от элементной базы. В частности, ОУ которые предполагается использовать в предварительном или корректирующем усилителях, не должны содержать в выходном каскаде транзисторов, работающих в режиме В, как это, например, имеет место в К153УД1. ОУ, предназначенные для УМЗЧ, аналогичных по схеме приведенному на рис. 1, обязательно должно иметь двухтактный выходной каскад, работающий в режиме АВ (К140УД6, К154УД1, К154УД2, К154УДЗ, К140УД7, К544УД2 и т. п.). Кроме того, желательно использовать ОУ со скоростью нарастания выходного напряжения не менее 2 В/мкс.

Некоторые из названных ОУ требуют балансировки или включения корректирующей цепи. На этот случай в печатной плате (рис. 2) предусмотрены отверстия для установки балансировочных резисторов R15, RI6 (их суммарное сопротивление - около 10 кОм) и корректирующего конденсатора С13. Печатный проводник, к которому припаяны выводы резисторов R15, R16, соединяют с соответствующим выводом питания ОУ. При использовании ОУ К544УД2, К154УД1-У154УДЗ на входе УМЗЧ рекомендуется включить ФНЧ. состоящий из резистора R14 (10 кОм) и конденсатора С12 (150 пФ).

В усилителях с. входным и выходным потенциалом, близким к 0, нельзя использовать в качестве переходных оксидные конденсаторы, в том числе и неполярные. Все оксидные конденсаторы требуют подачи поляризующего напряжения, в 410 раз превышающего амплитуду приложенного переменного напряжения. Невыполнение этого условия снижает надежность усилителя и может привести к дополнительным искажениям.

Все транзисторы, через которые проходит сигнал в усилительном тракте, обязательно должны быть высокочастотными, а используемые во входных каскадах - малошумящими. В усилителях мощности желательно применять транзисторы с металлическим корпусом, так как обеспечить хороший отвод тепла при существующей конструкции металло-пластмассовых корпусов удается с большим трудом.

Используемая литература:

  1. Лексины Валентин и Виктор. О заметности нелинейных искажений усилителя мощности.- Радио, 1984, .№ 2, с. 33-35.
  2. Солнцев Ю, Высококачественный усилитель мощности.-Радио, 1984, № 5, с. 29-34
  3. Солнцев Ю. Какой же Кг допустим? -Радио, 1985, .№ 2, с. 26-28.
  4. Атаев Д.. Болотников В. Как снизить уровень помех в тракте ЗЧ.- Радио, 1984, № 4, с. 43-45; № 5, с. 35, 36.
  5. Атаев Д., Болотников В. Унификация в радиолюбительских конструкциях.- Радио, 1983, № 12, с. 32-35.
  6. Пикерсгнль А., Беспалов И. Феномен «транзисторною» звучания.- Радио, 1981, № 12, с. 36-38.
  7. Ефимов А., Ефимов Б., Томас Г. Выбор мощности стереофонических усилителей.- Радио, 1977, № 6, с. 39-41.
  8. Акулиинчев И. Селекция сигнала искажений.- Радио. 1983, № 10, с. 42-44.
  9. Тнтце У., Шенк К. Полупроводниковая схемотехника.- М.: Мир, 1982.
  10. Schmidt G. Current dumping amplifier.- Elector. 1978, .№ 7/8.
  11. Роганов В. Устройство защиты громкоговорителей.- Радио, 1981. № 11, с. 44. 45.
  12. Агеев А. Усилительный блок любительского радиокомплекса.- Радио, 1982, № 8, с. 31-35.
  13. Солнцев Ю. Высококачественный предварительный усилитель.- Радио, 1985, № 4, с. 32-35.
  14. Лексины Валентин и Виктор. Предусилитель-корректор с рокот-фильтром,- Радио. 1983, № 7, с. 48-50.

Схема № 1

Выбор класса усилителя . Сразу предупредим радиолюбителя - делать усилитель класса A на транзисторах мы не будем. Причина проста - как было сказано во введении, транзистор усиливает не только полезный сигнал, но и поданное на него смещение. Проще говоря, усиливает постоянный ток. Ток этот вместе с полезным сигналом потечет по акустической системе (АС), а динамики, к сожалению, умеют этот постоянный ток воспроизводить. Делают они это самым очевидным образом - вытолкнув или втянув диффузор из нормального положения в противоестественное.

Попробуйте прижать пальцем диффузор динамика - и вы убедитесь, в какой кошмар превратится при этом издаваемый звук. Постоянный ток по своему действию с успехом заменяет ваши пальцы, поэтому динамической головке он абсолютно противопоказан. Отделить же постоянный ток от переменного сигнала можно только двумя средствами - трансформатором или конденсатором, - и оба варианта, что называется, один хуже другого.

Принципиальная схема

Схема первого усилителя, который мы соберем, приведена на рис. 11.18.

Это усилитель с обратной связью, выходной каскад которого работает в режиме В. Единственное достоинство этой схемы - простота, а также однотипность выходных транзисторов (не требуется специальные комплементарные пары). Тем не менее, она достаточно широко применяется в усилителях небольшой мощности. Еще один плюс схемы - она не требует никакой настройки, и при исправных деталях заработает сразу, а нам это сейчас очень важно.

Рассмотрим работу этой схемы. Усиливаемый сигнал подается на базу транзистора VT1. Усиленный этим транзистором сигнал с резистора R4 подается на базу составного транзистора VT2, VT4, а с него - на резистор R5.

Транзистор VT3 включен в режиме эмиттерного повторителя. Он усиливает положительные полуволны сигнала на резисторе R5 и подает их через конденсатор C4 на АС.

Отрицательные же полуволны усиливает составной транзистор VT2, VT4. При этом падение напряжения на диоде VD1 закрывает транзистор VT3. Сигнал с выхода усилителя подается на делитель цепи обратной связи R3, R6, а с него - на эмиттер входного транзистора VT1. Таким образом, транзистор VT1 у нас и играет роль устройства сравнения в цепи обратной связи.

Постоянный ток он усиливает с коэффициентом усиления, равным единице (потому что сопротивление конденсатора C постоянному току теоретически бесконечно), а полезный сигнал - с коэффициентом, равным соотношению R6/R3.

Как видим, величина емкостного сопротивления конденсатора в этой формуле не учитывается. Частота, начиная с которой конденсатором при расчетах можно пренебречь, называется частотой среза RC-цепочки. Частоту эту можно рассчитать по формуле

F = 1 / (R×C) .

Для нашего примера она будет около 18 Гц, т. е. более низкие частоты усилитель будет усиливать хуже, чем он мог бы.

Плата . Усилитель собран на плате из одностороннего стеклотекстолита толщиной 1.5 мм размерами 45×32.5 мм. Разводку печатной платы в зеркальном изображении и схему расположения деталей можно скачать . Видеоролик о работе усилителя в формате MOV скачать для просмотра можно . Хочу сразу предупредить радиолюбителя - звук, воспроизводимый усилителем, записывался в ролике с помощью встроенного в фотоаппарат микрофона, так что говорить о качестве звука, к сожалению, будет не совсем уместно! Внешний вид усилителя приведен на рис. 11.19.

Элементная база . При изготовлении усилителя транзисторы VT3, VT4 можно заменить любыми, рассчитанными на напряжение не менее напряжения питания усилителя, и допустимым током не менее 2 А. На такой же ток должен быть рассчитан и диод VD1.

Остальные транзисторы - любые с допустимым напряжением не менее напряжение питания, и допустимым током не менее 100 мА. Резисторы - любые с допустимой рассеиваемой мощностью не менее 0.125 Вт, конденсаторы - электролитические, с емкостью, не менее указанной на схеме, и рабочим напряжением на менее напряжения питания усилителя.

Радиаторы для усилителя . Прежде чем попробовать изготовить нашу вторую конструкцию, давайте, уважаемый радиолюбитель, остановимся на радиаторах для усилителя и приведем здесь весьма упрощенную методику их расчета.

Во-первых, вычисляем максимальную мощность усилителя по формуле:

P = (U × U) / (8 × R), Вт ,

где U - напряжение питания усилителя, В; R - сопротивление АС (обычно оно составляет 4 или 8 Ом, хотя бывают и исключения).

Во-вторых, вычисляем мощность, рассеиваемую на коллекторах транзисторов, по формуле:

P рас = 0,25 × P, Вт .

В-третьих, вычисляем площадь радиатора, необходимую для отвода соответствующего количества тепла:

S = 20 × P рас, см 2

В-четвертых, выбираем или изготавливаем радиатор, площадь поверхности которого будет не менее рассчитанной.

Указанный расчет носит весьма приблизительный характер, но для радиолюбительской практики его обычно бывает достаточно. Для нашего усилителя при напряжении питания 12 В и сопротивлении АС, равным 8 Ом, «правильным» радиатором была бы алюминиевая пластина размерами 2×3 см и толщиной не менее 5 мм для каждого транзистора. Имейте ввиду, что более тонкая пластина плохо передает тепло от транзистора к краям пластины. Хочется сразу предупредить - радиаторы во всех остальных усилителях тоже должны быть «нормальных» размеров. Каких именно - посчитайте сами!

Качество звучания . Собрав схему, вы обнаружите, что звук усилителя не совсем чистый.

Причина этого - «чистый» режим класса В в выходном каскаде, характерные искажения которого даже обратная связь полностью скомпенсировать не способна. Ради эксперимента попробуйте заменить в схеме транзистор VT1 на КТ3102ЕМ, а транзистор VT2 - на КТ3107Л. Эти транзисторы имеют значительно больший коэффициент усиления, чем КТ315Б и КТ361Б. И вы обнаружите, что звучание усилителя значительно улучшилось, хотя все равно останутся заметными некоторые искажения.

Причина этого также очевидна - больший коэффициент усиления усилителя в целом обеспечивает большую точность работы обратной связи, и больший ее компенсирующий эффект.

Продолжение читайте