Конденсаторы: назначение, устройство, принцип действия. Электрическая емкость – это отношение заряда конденсатора к напряжению на нем Плоский конденсатор потенциал

Во всех радиотехнических и электронных устройствах кроме транзисторов и микросхем применяются конденсаторы. В одних схемах их больше, в других меньше, но совсем без конденсаторов не бывает практически ни одной электронной схемы.

При этом конденсаторы могут выполнять в устройствах самые разные задачи. Прежде всего, это емкости в фильтрах выпрямителей и стабилизаторов. С помощью конденсаторов передается сигнал между усилительными каскадами, строятся фильтры низких и высоких частот, задаются временные интервалы в выдержках времени и подбирается частота колебаний в различных генераторах.

Свою родословную конденсаторы ведут от , которую в середине XVIII века в своих опытах использовал голландский ученый Питер ван Мушенбрук. Жил он в городе Лейдене, так что нетрудно догадаться, почему так называлась эта банка.

Собственно это и была обыкновенная стеклянная банка, выложенная внутри и снаружи оловянной фольгой - станиолем. Использовалась она в тех же целях, как и современная алюминиевая, но тогда алюминий открыт еще не был.

Единственным источником электричества в те времена была электрофорная машина, способная развивать напряжение до нескольких сотен киловольт. Вот от нее и заряжали лейденскую банку. В учебниках физики описан случай, когда Мушенбрук разрядил свою банку через цепь из десяти гвардейцев взявшихся за руки.

В то время никто не знал, что последствия могут быть трагическими. Удар получился достаточно чувствительным, но не смертельным. До этого не дошло, ведь емкость лейденской банки была незначительной, импульс получился очень кратковременным, поэтому мощность разряда была невелика.

Как устроен конденсатор

Устройство конденсатора практически ничем не отличается от лейденской банки: все те же две обкладки, разделенные диэлектриком. Именно так на современных электрических схемах изображаются конденсаторы. На рисунке 1 показано схематичное устройство плоского конденсатора и формула для его расчета.

Рисунок 1. Устройство плоского конденсатора

Здесь S - площадь пластин в квадратных метрах, d - расстояние между пластинами в метрах, C - емкость в фарадах, ε - диэлектрическая проницаемость среды. Все величины, входящие в формулу, указаны в системе СИ. Эта формула справедлива для простейшего плоского конденсатора: можно просто расположить рядом две металлические пластины, от которых сделаны выводы. Диэлектриком может служить воздух.

Из этой формулы можно понять, что емкость конденсатора тем больше, чем больше площадь пластин и чем меньше расстояние между ними. Для конденсаторов с другой геометрией формула может быть иной, например, для емкости одиночного проводника или . Но зависимость емкости от площади пластин и расстояния между ними та же, что и у плоского конденсатора: чем больше площадь и чем меньше расстояние, тем больше емкость.

На самом деле пластины не всегда делаются плоскими. У многих конденсаторов, например металлобумажных, обкладки представляют собой алюминиевую фольгу свернутую вместе с бумажным диэлектриком в плотный клубок, по форме металлического корпуса.

Для увеличения электрической прочности тонкая конденсаторная бумага пропитывается изолирующими составами, чаще всего трансформаторным маслом. Такая конструкция позволяет делать конденсаторы с емкостью до нескольких сотен микрофарад. Примерно так же устроены конденсаторы и с другими диэлектриками.

Формула не содержит никаких ограничений на площадь пластин S и расстояние между пластинами d. Если предположить, что пластины можно развести очень далеко, и при этом площадь пластин сделать совсем незначительной, то какая-то емкость, пусть небольшая, все равно останется. Подобное рассуждение говорит о том, что даже просто два проводника, расположенные по соседству, обладают электрической емкостью.

Этим обстоятельством широко пользуются в высокочастотной технике: в некоторых случаях конденсаторы делаются просто в виде дорожек печатного монтажа, а то и просто двух скрученных вместе проводков в полиэтиленовой изоляции. Обычный провод-лапша или кабель также обладают емкостью, причем с увеличением длины она увеличивается.

Кроме емкости C, любой кабель обладает еще и сопротивлением R. Оба этих физических свойства распределены по длине кабеля, и при передаче импульсных сигналов работают как интегрирующая RC - цепочка, показанная на рисунке 2.

Рисунок 2.

На рисунке все просто: вот схема, вот входной сигнал, а вот он же на выходе. Импульс искажается до неузнаваемости, но это сделано специально, для чего и собрана схема. Пока же речь идет о влиянии емкости кабеля на импульсный сигнал. Вместо импульса на другом конце кабеля появится вот такой «колокол», а если импульс короткий, то он может и вовсе не дойти до другого конца кабеля, вовсе пропасть.

Исторический факт

Здесь вполне уместно вспомнить историю о том, как прокладывали трансатлантический кабель. Первая попытка в 1857 году потерпела неудачу: телеграфные точки - тире (прямоугольные импульсы) искажались так, что на другом конце линии длиной 4000 км разобрать ничего не удалось.

Вторая попытка была предпринята в 1865 году. К этому времени английский физик У. Томпсон разработал теорию передачи данных по длинным линиям. В свете этой теории прокладка кабеля оказалась более удачной, сигналы принять удалось.

За этот научный подвиг королева Виктория пожаловала ученого рыцарством и титулом лорда Кельвина. Именно так назывался небольшой город на побережье Ирландии, где начиналась прокладка кабеля. Но это просто к слову, а теперь вернемся к последней букве в формуле, а именно, к диэлектрической проницаемости среды ε.

Немножко о диэлектриках

Эта ε стоит в знаменателе формулы, следовательно, ее увеличение повлечет за собой возрастание емкости. Для большинства используемых диэлектриков, таких как воздух, лавсан, полиэтилен, фторопласт эта константа практически такая же, как у вакуума. Но вместе с тем существует много веществ, диэлектрическая проницаемость которых намного выше. Если воздушный конденсатор залить ацетоном или спиртом, то его емкость возрастет раз в 15…20.

Но подобные вещества обладают кроме высокой ε еще и достаточно высокой проводимостью, поэтому такой конденсатор заряд держать будет плохо, он быстро разрядится сам через себя. Это вредное явление называется током утечки. Поэтому для диэлектриков разрабатываются специальные материалы, которые позволяют при высокой удельной емкости конденсаторов обеспечивать приемлемые токи утечки. Именно этим и объясняется такое разнообразие видов и типов конденсаторов, каждый из которых предназначен для конкретных условий.

Наибольшей удельной емкостью (соотношение емкость / объем) обладают . Емкость «электролитов» достигает до 100 000 мкФ, рабочее напряжение до 600В. Такие конденсаторы работают хорошо только на низких частотах, чаще всего в фильтрах источников питания. Электролитические конденсаторы включаются с соблюдением полярности.

Электродами в таких конденсаторах является тонкая пленка из оксида металлов, поэтому часто эти конденсаторы называют оксидными. Тонкий слой воздуха между такими электродами не очень надежный изолятор, поэтому между оксидными обкладками вводится слой электролита. Чаще всего это концентрированные растворы кислот или щелочей.

На рисунке 3 показан один из таких конденсаторов.

Рисунок 3. Электролитический конденсатор

Чтобы оценить размеры конденсатора рядом с ним сфотографировался простой спичечный коробок. Кроме достаточно большой емкости на рисунке можно разглядеть еще и допуск в процентах: ни много ни мало 70% от номинальной.

В те времена, когда компьютеры были большими и назывались ЭВМ, такие конденсаторы стояли в дисководах (по-современному HDD). Информационная емкость таких накопителей теперь может вызвать лишь улыбку: на двух дисках диаметром 350 мм хранилось 5 мегабайт информации, а само устройство весило 54 кг.

Основным назначением показанных на рисунке суперконденсаторов был вывод магнитных головок из рабочей зоны диска при внезапном отключении электроэнергии. Такие конденсаторы могли хранить заряд несколько лет, что было проверено на практике.

Чуть ниже с электролитическими конденсаторами будет предложено проделать несколько простых опытов, чтобы понять, что может делать конденсатор.

Для работы в цепях переменного тока выпускаются неполярные электролитические конденсаторы, вот только достать их почему-то очень непросто. Чтобы как-то эту проблему обойти, обычные полярные «электролиты» включают встречно-последовательно: плюс-минус-минус-плюс.

Если полярный электролитический конденсатор включить в цепь переменного тока, то сначала он будет греться, а потом раздастся взрыв. Отечественные старые конденсаторы разлетались во все стороны, импортные же имеют специальное приспособление, позволяющее избежать громких выстрелов. Это, как правило, либо крестовая насечка на донышке конденсатора, либо отверстие с резиновой пробкой, расположенное там же.

Очень не любят электролитические конденсаторы повышенного напряжения, даже если полярность соблюдена. Поэтому никогда не надо ставить «электролиты» в цепь, где предвидится напряжение близкое к максимальному для данного конденсатора.

Иногда в некоторых, даже солидных форумах, начинающие задают вопрос: «На схеме означен конденсатор 470µF * 16V, а у меня есть 470µF * 50V, можно ли его поставить?». Да, конечно можно, вот обратная замена недопустима.

Конденсатор может накапливать энергию

Разобраться с этим утверждением поможет простая схема, показанная на рисунке 4.

Рисунок 4. Схема с конденсатором

Главным действующим лицом этой схемы является электролитический конденсатор C достаточно большой емкости, чтобы процессы заряда - разряда протекали медленно, и даже очень наглядно. Это дает возможность наблюдать работу схемы визуально с помощью обычной лампочки от карманного фонаря. Фонари эти давно уступили место современным светодиодным, но лампочки для них продаются до сих пор. Поэтому, собрать схему и провести простые опыты очень даже просто.

Может быть, кто-то скажет: «А зачем? Ведь и так все очевидно, да если еще и описание почитать…». Возразить тут, вроде, нечего, но любая, даже самая простая вещь остается в голове надолго, если ее понимание пришло через руки.

Итак, схема собрана. Как она работает?

В положении переключателя SA, показанном на схеме, конденсатор C заряжается от источника питания GB через резистор R по цепи: +GB __ R __ SA __ C __ -GB. Зарядный ток на схеме показан стрелкой с индексом iз. Процесс заряда конденсатора показан на рисунке 5.

Рисунок 5. Процесс заряда конденсатора

На рисунке видно, что напряжение на конденсаторе возрастает по кривой линии, в математике называемой экспонентой. Ток заряда прямо-таки зеркально отражает напряжение заряда. По мере того, как напряжение на конденсаторе растет, ток заряда становится все меньше. И только в начальный момент соответствует формуле, показанной на рисунке.

Через некоторое время конденсатор зарядится от 0В до напряжения источника питания, в нашей схеме до 4,5В. Весь вопрос в том, как это время определить, сколько ждать, когда же конденсатор зарядится?

Постоянная времени «тау» τ = R*C

В этой формуле просто перемножаются сопротивление и емкость последовательно соединенных резистора и конденсатора. Если, не пренебрегая системой СИ, подставить сопротивление в Омах, емкость в Фарадах, то результат получится в секундах. Именно это время необходимо для того, чтобы конденсатор зарядился до 36,8% напряжения источника питания. Соответственно для заряда практически до 100% потребуется время 5* τ.

Часто, пренебрегая системой СИ, подставляют в формулу сопротивление в Омах, а емкость в микрофарадах, тогда время получится в микросекундах. В нашем случае результат удобнее получить в секундах, для чего придется микросекунды просто умножить на миллион, а проще говоря, переместить запятую на шесть знаков влево.

Для схемы, показанной на рисунке 4, при емкости конденсатора 2000мкФ и сопротивлении резистора 500Ω постоянная времени получится τ = R*C = 500 * 2000 = 1000000 микросекунд или ровно одна секунда. Таким образом, придется подождать приблизительно 5 секунд, пока конденсатор зарядится полностью.

Если по истечении указанного времени переключатель SA перевести в правое положение, то конденсатор C разрядится через лампочку EL. В этот момент получится короткая вспышка, конденсатор разрядится и лампочка погаснет. Направление разряда конденсатора показано стрелкой с индексом iр. Время разряда также определяется постоянной времени τ. График разряда показан на рисунке 6.

Рисунок 6. График разряда конденсатора

Конденсатор не пропускает постоянный ток

Убедиться в этом утверждении поможет еще более простая схема, показанная на рисунке 7.

Рисунок 7. Схема с конденсатором в цепи постоянного тока

Если замкнуть переключатель SA, то последует кратковременная вспышка лампочки, что свидетельствует о том, что конденсатор C зарядился через лампочку. Здесь же показан и график заряда: в момент замыкания переключателя ток максимальный, по мере заряда конденсатора уменьшается, а через некоторое время прекращается совсем.

Если конденсатор хорошего качества, т.е. с малым током утечки (саморазряда) повторное замыкание выключателя к вспышке не приведет. Для получения еще одной вспышки конденсатор придется разрядить.

Конденсатор в фильтрах питания

Конденсатор ставится, как правило, после выпрямителя. Чаще всего выпрямители делаются двухполупериодными. Наиболее распространенные схемы выпрямителей показаны на рисунке 8.

Рисунок 8. Схемы выпрямителей

Однополупериодные выпрямители также применяются достаточно часто, как правило, в тех случаях, когда мощность нагрузки незначительна. Самым ценным качеством таких выпрямителей является простота: всего один диод и обмотка трансформатора.

Для двухполупериодного выпрямителя емкость конденсатора фильтра можно рассчитать по формуле

C = 1000000 * Po / 2*U*f*dU, где C емкость конденсатора мкФ, Po мощность нагрузки Вт, U напряжение на выходе выпрямителя В, f частота переменного напряжения Гц, dU амплитуда пульсаций В.

Большое число в числителе 1000000 переводит емкость конденсатора из системных Фарад в микрофарады. Двойка в знаменателе представляет собой число полупериодов выпрямителя: для однополупериодного на ее месте появится единица

C = 1000000 * Po / U*f*dU,

а для трехфазного выпрямителя формула примет вид C = 1000000 * Po / 3*U*f*dU.

Суперконденсатор - ионистор

В последнее время появился новый класс электролитических конденсаторов, так называемый . По своим свойствам он похож на аккумулятор, правда, с несколькими ограничениями.

Заряд ионистора до номинального напряжения происходит в течение короткого времени, буквально за несколько минут, поэтому его целесообразно использовать в качестве резервного источника питания. По сути ионистор прибор неполярный, единственное, чем определяется его полярность это зарядкой на заводе - изготовителе. Чтобы в дальнейшем эту полярность не перепутать она указывается знаком +.

Большую роль играют условия эксплуатации ионисторов. При температуре 70˚C при напряжении 0,8 от номинального гарантированная долговечность не более 500 часов. Если же прибор будет работать при напряжении 0,6 от номинального, а температура не превысит 40 градусов, то исправная работа возможна в течение 40 000 часов и более.

Наиболее распространенное применение ионистора это источники резервного питания. В основном это микросхемы памяти или электронные часы. В этом случае основным параметром ионистора является малый ток утечки, его саморазряд.

Достаточно перспективным является использование ионисторов совместно с солнечными батареями. Здесь также сказывается некритичность к условию заряда и практически неограниченное число циклов заряд-разряд. Еще одно ценное свойство в том, что ионистор не нуждается в обслуживании.

Пока получилось рассказать, как и где работают электролитические конденсаторы, причем, в основном в цепях постоянного тока. О работе конденсаторов в цепях переменного тока будет рассказано в другой статье - .

Электрическая емкость

При сообщении проводнику заряда на его поверхности появляется потенциал φ, но если этот же заряд сообщить другому проводнику, то потенциал будет другой. Это зависит от геометрических параметров проводника. Но в любом случае потенциал φ пропорционален заряду q .

Единица измерения емкости в СИ – фарада. 1 Ф = 1Кл/1В.

Если потенциал поверхности шара

(5.4.3)
(5.4.4)

Чаще на практике используют более мелкие единицы емкости: 1 нФ (нанофарада) = 10 –9 Ф и 1пкФ (пикофарада) = 10 –12 Ф.

Необходимость в устройствах, накапливающих заряд, есть, а уединенные проводники обладают малой емкостью. Опытным путем было обнаружено, что электроемкость проводника увеличивается, если к нему поднести другой проводник – за счет явления электростатической индукции .

Конденсатор – это два проводника, называемые обкладками , расположенные близко друг к другу.

Конструкция такова, что внешние, окружающие конденсатор тела, не оказывают влияние на его электроемкость. Это будет выполняться, если электростатическое поле будет сосредоточено внутри конденсатора, между обкладками.

Конденсаторы бывают плоские, цилиндрические и сферические.

Так как электростатическое поле находится внутри конденсатора, то линии электрического смещения начинаются на положительной обкладке, заканчиваются на отрицательной, и никуда не исчезают. Следовательно, заряды на обкладках противоположны по знаку, но одинаковы по величине.

Емкость конденсатора равна отношению заряда к разности потенциалов между обкладками конденсатора:

(5.4.5)

Помимо емкости каждый конденсатор характеризуется U раб (или U пр. ) – максимальное допустимое напряжение, выше которого происходит пробой между обкладками конденсатора.

Соединение конденсаторов

Емкостные батареи – комбинации параллельных и последовательных соединений конденсаторов.

1) Параллельное соединение конденсаторов (рис. 5.9):

В данном случае общим является напряжение U :

Суммарный заряд:

Результирующая емкость:

Сравните с параллельным соединением сопротивлений R :

Таким образом, при параллельном соединении конденсаторов суммарная емкость

Общая емкость больше самой большой емкости, входящей в батарею.

2) Последовательное соединение конденсаторов (рис. 5.10):

Общим является заряд q.

Или , отсюда

(5.4.6)

Сравните с последовательным соединением R :

Таким образом, при последовательном соединении конденсаторов общая емкость меньше самой маленькой емкости, входящей в батарею:

Расчет емкостей различных конденсаторов

1. Емкость плоского конденсатора

Напряженность поля внутри конденсатора (рис. 5.11):

Напряжение между обкладками:

где – расстояние между пластинами.

Так как заряд , то

. (5.4.7)

Как видно из формулы, диэлектрическая проницаемость вещества очень сильно влияет на емкость конденсатора. Это можно увидеть и экспериментально: заряжаем электроскоп, подносим к нему металлическую пластину – получили конденсатор (за счет электростатической индукции, потенциал увеличился). Если внести между пластинами диэлектрик с ε, больше, чем у воздуха, то емкость конденсатора увеличится.

Из (5.4.6) можно получить единицы измерения ε 0:

(5.4.8)

.

2. Емкость цилиндрического конденсатора

Разность потенциалов между обкладками цилиндрического конденсатора, изображенного на рисунке 5.12, может быть рассчитана по формуле:

Основы > Задачи и ответы > Электрическое поле

Электрическая емкость (страница 1)


1 Во сколько раз изменится емкость проводящего шара радиуса R, если он сначала помещен в керосин (диэлектрическая проницаемость e 1=2), а затем в глицерин (диэлектрическая проницаемость e 2 = 56,2)?
Решение:
626. Емкости проводящего шара в керосине и в глицерине

Их отношение

2 Плоский конденсатор имеет емкость С=5 пФ. Какой заряд находится на каждой из его пластин, если разность потенциалов между ними V =1000 В?

Решение:
Заряд на пластине, заряженной положительно, q=CV= 5нКл.

3 Поверхностная плотность заряда на пластинах плоского вакуумного конденсатора s = 0,3 мкКл/м2. Площадь пластины 5= 100 см2, емкость конденсатора С= 10 пФ. Какую скорость приобретает электрон, пройдя расстояние между пластинами конденсатора?

Решение:

4 Плоский воздушный конденсатор состоит из трех пластин, соединенных, как показано на рис. 77. Площадь каждой пластины s =100 см2, расстояние между ними d=0,5 см. Найти емкость конденсатора. Как изменится емкость конденсатора при погружении его в глицерин (диэлектрическая проницаемость e = 56,2)?

Решение:
Конденсатор из трех пластин можно рассматривать как два плоских воздушных конденсатора с емкостью e 0 S/d , соединенных параллельно (рис. 77). Поэтому общая емкость (без диэлектрика)

При погружении конденсатора в глицерин его емкость

5 Конденсатор состоит из n латунных листов, проложенных стеклянными прокладками толщины d=2 мм. Площади латунного листа и стеклянной прокладки равны S =200 см2, диэлектрическая проницаемость стекла e = 7. Найти емкость конденсатора, если n = 21 и выводы конденсатора присоединены к крайним листам.

Решение:

6 Маленький шарик, имеющий заряд q =10нКл, подвешен на нити в пространстве плоского воздушного конденсатора, круглые пластины которого расположены горизонтально. Радиус пластины конденсатора R =10см. Когда пластинам конденсатора сообщили заряд Q = 1 мкКл, сила натяжения нити увеличилась вдвое. Найти массу шарика.

Решение:

7 Между вертикальными пластинами плоского воздушного конденсатора подвешен на нити маленький шарик, несущий заряд q =10 нКл. Масса шарика m = 6 г, площадь пластины конденсатора S = 0,1 м2. Какой заряд Q надо сообщить пластинам конденсатора, чтобы нить отклонилась от вертикали на угол a = 45°?

Решение:
Напряженность электрического поля внутри плоского конденсатора связана с зарядом Q на его пластинах соотношением

На шарик внутри конденсатора действуют сила тяжести mg, сила натяжения нити Т и сила F=qE со стороны электрического поля (рис. 335). При равновесии шарика в пространстве конденсатора (см. задачу 591) qF=mg tg
j , или

8 Какой заряд пройдет по проводам, соединяющим пластины плоского воздушного конденсатора и источник тока с напряжением V =6,3 В, при погружении конденсатора в керосин (диэлектрическая проницаемость e = 2)? Площадь пластины конденсатора S =180 см2, расстояние между пластинами d=2 мм.

Решение:
Если q1 и q2 - заряды на пластинах до и после погружения конденсатора в керосин, то

9 Плоский воздушный конденсатор зарядили до разности потенциалов Vo = 200 В. Затем конденсатор отключили от источника тока. Какой станет разность потенциалов между пластинами, если расстояние между ними увеличить от d о = 0,2 мм до d =0,7 мм, а пространство между пластинами заполнить слюдой (диэлектрическая проницаемость e = 7)?

Решение:
Заряд на пластинах не изменяется, поэтому

10 Пластины плоского воздушного конденсатора присоединены к источнику тока с напряжением V=600 В. Площадь квадратной пластины конденсатора So = 100 см2, расстояние между пластинами d= 0,1 см. Какой ток будет проходить по проводам при параллельном перемещении одной пластины вдоль другой со скоростью v = 6 см/с (рис. 78)?

Решение:
При перемещении пластины емкость конденсатора в данный момент времени определяется той частью площади пластин, по которой они перекрывают друг друга. В моменты времени t1 и t2 площади

где l =10 см-длина стороны пластины. В эти моменты времени конденсатор имеет емкости

а заряды на его пластинах

11 Найти заряд, который нужно сообщить двум параллельно соединенным конденсаторам с емкостями C1 = 2 мкФ и С 2 =1 мкФ, чтобы зарядить их до разности потенциалов V =20кВ.

Решение:
Общий заряд параллельно соединенных конденсаторов


12 Два одинаковых плоских конденсатора соединены параллельно и заряжены до разности потенциалов V о = 6 В. Найти разность потенциалов V между пластинами конденсаторов, если после отключения конденсаторов от источника тока у одного конденсатора уменьшили расстояние между пластинами вдвое.

Решение:


13 Два конденсатора с емкостями С1 = 1 мкФ и С2 = 2мкФ зарядили до разностей потенциалов V1 =20B и V2 = 50 В. Найти разность потенциалов V после соединения - конденсаторов одноименными полосами.

Решение:
14 Конденсатор емкости C1 = 20 мкФ, заряженный до разности потенциалов V1 = 100B, соединили параллельно с заряженным до разности потенциалов V1 =40 В конденсатором, емкость которого С 2 неизвестна (соединили одноименно заряженные обкладки конденсаторов). Найти емкость С 2 второго конденсатора, если разность потенциалов между обкладками конденсаторов после соединения оказалась равной V =80 В.

Решение:


15 Конденсатор емкости С1=4мкФ, заряженный до разности потенциалов V1 = 10B, соединен параллельно с заряженным до разности потенциалов V2 = 20 В конденсатором емкости С 2 = 6 мкФ (соединили разноименно заряженные обкладки конденсаторов). Какой заряд окажется на пластинах первого конденсатора после соединения?

Решение:
Заряды конденсаторов до их соединения q 1 = C 1 V 1 и q 2 = C 2 V 2 . После соединения разноименно заряженных обкладок конденсаторов общий заряд q = |q 2 -q 1 | = (C 1 + C 2 )V и заряд первого конденсатора где V-разность потенциалов между обкладками конденсаторов после соединения; отсюда

16 Конденсатор, заряженный до разности потен¬циалов V1 = 20 В, соединили параллельно с заряженным до разности потенциалов V2 = 4 В конденсатором емкости С 2 = 33 мкФ (соединили разноименно заряженные обкладки конденсаторов). Найти емкость С 1 первого конденсатора, если разность потенциалов между обкладками конденсаторов после их соединения V =2 В.

Решение:
После соединения разноименных обкладок общий заряд q = CV равен разности зарядов q1 = C1V1 и q2 = C2V2 отдельных
конденсаторов, где С=С1 + С2 - общая емкость после соединения. Таким образом,

17 Конденсатор емкости С1 = 1 мкФ, заряженный до разности потенциалов V1 = 100B, соединили с конденсатором емкости С 2 = 2 мкФ, разность потенциалов V2 на обкладках которого неизвестна (соединили разноименно заряженные обкладки конденсаторов). Найти разность потенциалов V2 , если разность потенциалов между обкладками конденсаторов после соединения оказалась равной V =200 В.

Решение:
До соединения заряды первого и второго конденсаторов

После соединения разноименных обкладок общий заряд

Двойной знак мы здесь поставили потому, что заранее не известно, какой из зарядов, q2 или q1 больше; отсюда
Решение со знаком минус соответствует случаю, когда знаки зарядов на пластинах первого конденсатора после соединения пластин не меняются, а со знаком плюс-случаю, когда эти знаки становятся обратными. Так как в нашем случае , а величина |V2| должна быть всегда положительной, то существует лишь одно решение-со знаком плюс. В результате |V2| = 350 В.
18 Два проводящих шара с радиусами R 1 и R 2 расположены так, что расстояние между ними во много раз больше радиуса большего шара. На шар радиуса R 1 помещен заряд q. Каковы будут заряды на шарах после соединения их проводником, если второй шар не был заряжен? Емкостью проводника, соединяющего шары, пренебречь.

Решение:

19 R 1 = 8см и R 2 = 20 см, находящихся на большом расстоянии друг от друга, имели электрические заряды q 1=40 нКл и q2 =- 20 нКл. Как перераспределятся заряды, если шары соединить проводником? Емкостью проводника, соединяющего шары, пренебречь.

Решение:
Соединение шаров проводником эквивалентно параллельному соединению конденсаторов. После соединения

20 Два проводящих шара с радиусами R 1 = 10см и R2 = 5см, заряженных до потенциалов j 1 =20B и j 2 = 10В, соединяются проводником. Найти поверхностные плотности зарядов на шарах s 1 и s 2 после их соединения. Расстояние между шарами велико по сравнению с их радиусами. Емкостью проводника, соединяющего шары, пренебречь.

Решение:
Заряды на шарах до и после соединения Общий потенциал шаров после соединения определим из условия сохранения заряда
Заряды на первом и втором шарах после соединения

Поверхностные плотности зарядов на шарах

21 Плоский воздушный конденсатор, заряженный до разности потенциалов V о = 800 В, соединили параллельно с таким же по размерам незаряженным конденсатором, заполненным диэлектриком. Какова диэлектрическая проницаемость e диэлектрика, если после соединения разность потенциалов между пластинами конденсаторов оказалась равной V =100В?

Решение:

22 Найти емкость С трех плоских воздушных конденсаторов, соединенных параллельно. Размеры конденсаторов одинаковы: площадь пластины S =314 см2, расстояние между пластинами d= 1 мм. Как изменится емкость трех конденсаторов, если пространство между пластинами одного конденсатора заполнить слюдой (диэлектрическая проницаемость e1 = 7), а другого - парафином (диэлектрическая проницаемость e 2 = 2)?

Решение:
Емкость трех конденсаторов без диэлектрика При заполнении двух конденсаторов диэлектриками емкость трех конденсаторов

23 В заряженном плоском конденсаторе, отсоединенном от источника тока, напряженность электрического поля равна Ео . Половину пространства между пластинами конденсатора заполнили диэлектриком с диэлектрической проницаемостью e (толщина диэлектрика равна расстоянию между пластинами). Найти напряженность электрического поля Е в пространстве между пластинами, свободном от диэлектрика.

Решение:

Если d-расстояние между пластинами и С0-емкость конденсатора без диэлектрика, то разность потенциалов между пластинами конденсатора (без диэлектрика)
и заряд на пластинах Конденсатор, половина которого заполнена диэлектриком, можно рассматривать как два соединенных параллельно конденсатора (рис. 341), причем один не содержит диэлектрика и имеет емкость а в другом все пространство между пластинами заполнено диэлектриком, и поэтому его емкость Полная емкость конденсатора, половина которого заполнена диэлектриком, При отключенном источнике тока заряд на пластинах сохраняется, поэтому разность потенциалов между пластинами V=q/C, и напряженность электрического поля в пространстве между пластинами, свободном от диэлектрика,

24 Два последовательно соединенных конденсатора с емкостями C1 = 1 мкФ и С2 = 3 мкФ подключены к источнику тока с напряжением V =220 В. Найти напряжение на каждом конденсаторе.

Решение:
Если V1 и V2 - напряжения на первом и втором конденсаторах, то V= V1 + V2, а заряды на них одинаковы и равны
q=C1V1=C2V2; отсюда

При последовательном соединении конденсаторов на конденсаторе меньшей емкости напряжение больше, чем на конденсаторе большей емкости.

25 Два последовательно соединенных конденсатора с емкостями C1 = 1 мкФ и С2 = 2 мкФ подключены к источнику тока с напряжением V =900 В. Возможна ли работа такой схемы, если напряжение пробоя конденсаторов Vnp = 500 В?

Решение:
Напряжения на первом и втором конденсаторах
(см. задачу 24). Работать при указанном в условии задачи напряжении пробоя конденсаторов нельзя, ибо произойдет пробой первого, а затем и второго конденсаторов.

26 Два последовательно соединенных конденсатора подключены к источнику тока с напряжением V= 200 В (рис. 79). Один конденсатор имеет постоянную емкость C1 = 0,5 мкФ, а другой - переменную емкость С2 (от Cmin = 0,05 мкФ до С m ах = 0,5 мкФ). В каких пределах изменяется напряжение на переменном конденсаторе при изменении его емкости от минимальной до максимальной?

Решение:
При изменении емкости переменного конденсатора С2 от Cmin до С max , напряжение на нем V изменяется в пределах (см. задачу 24)

27 При последовательном соединении трех различных конденсаторов емкость цепи Со = 1 мкФ, а при параллельном соединении емкость цепи С=11мкФ. Найти емкости конденсаторов С2 и С3, если емкость конденсатора С1 = 2 мкФ.

Решение:

28 При последовательном соединении трех различных конденсаторов емкость цепи Со = 0,75 мкФ, а при параллельном соединении емкость цепи С = 7 мкФ. Найти емкости конденсаторов С2 и С3 и напряжения на них V2 и V3 (при последовательном соединении), если емкость конденсатора C1 = 3 мкФ, а напряжение на нем V1 =20B.

Решение:
При последовательном соединении конденсаторов имеем

при параллельном

Из этих уравнений находим

Согласно теореме Виета С2 и С3 должны быть корнями квадратного уравнения

Решая его, найдем

Заряды на всех конденсаторах при последовательном соединении равны между собой:


29 Три последовательно соединенных конденсатора с емкостями С1 = 100пФ, С2 = 200 пФ, С3 = 500 пФ подключены к источнику тока, который сообщил им заряд q =10нКл. Найти напряжения на конденсаторах V 1 , V 2 и V3 , напряжение источника тока V и емкость всех конденсаторов Со.

Решение:
При последовательном соединении конденсаторов заряд каждого конденсатора равен q, поэтому

Напряжение источника тока равно полному напряжению на всех конденсаторах:

Так как при последовательном соединении
то

30 Три последовательно соединенных конденсатора с емкостями С1=0,1мкФ, С2 = 0,25 мкФ и С3 = 0,5 мкФ подключены к источнику тока с напряжением V =32 В. Найти напряжения V 1 , V 2 и V3 на конденсаторах.

Решение:

31 Два одинаковых воздушных конденсатора емкости С=100пФ соединены последовательно и подключены к источнику тока с напряжением V = 10 В. Как изменится заряд на конденсаторах, если один из них погрузить в диэлектрик с диэлектрической проницаемостью e = 2?

Решение:
При последовательном соединении конденсаторов заряды на конденсаторах равны. До погружения одного из них в диэлектрик заряд на каждом конденсаторе

после погружения одного из них в диэлектрик заряды конденсаторов будут


Учитывая, что

Изменение заряда на конденсаторах

32 Два плоских воздушных конденсатора с одинаковыми емкостями соединены последовательно и подключены к источнику тока. Пространство между пластинами одного из конденсаторов заполняют диэлектриком с диэлектрической проницаемостью e = 9. Во сколько раз изменится напряженность электрического поля Е в этом конденсаторе?

Решение:
Первоначальная напряженность электрического поля в каждом конденсаторе

где d-расстояние между пластинами конденсатора. После заполнения одного конденсатора диэлектриком напряженность электрического поля в нем


Отношение напряженностей


33 Решить предыдущую задачу для случая, когда конденсаторы после зарядки отключаются от источника тока.

Решение:
После отключения конденсатора от источника тока и заполнения его диэлектриком заряд на нем не изменяется:

Напряженность электрического поля в конденсаторе, заполненном диэлектриком,

Отношение напряженностей

34 Два плоских воздушных конденсатора с одинаковыми емкостями С=10пФ соединены последовательно. Насколько изменится емкость конденсаторов, если пространство между пластинами одного из них заполнить диэлектриком с диэлектрической проницаемостью e = 2?

Решение:
Изменение емкости соединенных конденсаторов

35 В плоский воздушный конденсатор с площадью обкладок S и расстоянием между ними d введена параллельно обкладкам проводящая пластинка, размеры которой равны размерам обкладок, а ее толщина намного меньше d. Найти емкость конденсатора с проводящей пластинкой, если пластинка расположена на расстоянии l от одной из обкладок конденсатора.

Решение:

После введения пластинки образовалось два последовательно включенных конденсатора с емкостями

(рис. 342). Их общую емкость определим из соотношения

где С-первоначальная емкость конденсатора. Таким образом, после введения пластинки при любом ее положении С
0 = С.

36 В плоский воздушный конденсатор с площадью обкладок S и расстоянием между ними d введена параллельно обкладкам проводящая пластинка, размеры которой равны размерам обкладок, а толщина d п = d/3

Решение:

Введение проводящей пластинки между обкладками конденсатора приводит к образованию двух последовательно включенных конденсаторов с расстояниями между обкладками d1 и d2 и емкостями

(рис.343). Их общую емкость находим из соотношения

При -первоначальная емкость конденсатора.

37 Плоский воздушный конденсатор заряжен до разности потенциалов Vo = 50 В и отключен от источника тока. После этого в конденсатор параллельно обкладкам вносится проводящая пластинка толщины d п = 1 мм. Расстояние между обкладками d=5 мм, площади обкладок и пластинки одинаковы. Найти разность потенциалов V между обкладками конденсатора с проводящей пластинкой.

Решение:
Емкости конденсатора до и после внесения проводящей пластинки толщины dn (см. задачу 36)
Заряд конденсатора, отключенного от источника тока, не изменяется:

отсюда разность потенциалов между обкладками конденсатора после внесения проводящей пластинки

38 В плоский воздушный конденсатор с площадью обкладок S и расстоянием между ними d вводится параллельно обкладкам диэлектрическая пластинка толщины d1e , площади обкладок и пластинки одинаковы и равны S. Найти емкость конденсатора с диэлектрической пластинкой.

Решение:

Если в конденсатор ввести тонкую проводящую пластинку, параллельную его обкладкам, то на ее поверхности появятся равные заряды противоположного знака. При этом электрическое поле в конденсаторе не изменится и емкость конденсатора останется прежней (ср. с задачей 35). Емкость конденсатора с диэлектрической пластинкой можно найти, предположив, что на поверхностях этой пластинки нанесены тонкие проводящие слои. В этом случае образуются три последовательно соединенных конденсатора с емкостями

где d2 и d3 - расстояния между поверхностями диэлектрической пластинки и обкладками, причем d2 + d3 = d-d1 (рис. 344). Общая емкость конденсатора С определяется из формулы

отсюда

39 Пространство между обкладками плоского конденсатора заполнено тремя диэлектрическими пластинками равной толщины d=2 мм из стекла (e 1 =7), слюды (e 2 = 6) и парафина (e 3 = 2). Площади обкладок и пластинок одинаковы и равны S =200 см2. Найти емкость С такого конденсатора.

Решение:

40 В плоский воздушный конденсатор с площадью обкладок S и расстоянием между ними d внесена параллельно обкладкам диэлектрическая пластинка с диэлектрической проницаемостью e = 2, которая расположена так, как показано на рис. 80. Во сколько раз изменится емкость конденсатора при внесении в него пластинки?

Решение:

Представим конденсатор с диэлектрической пластинкой в виде двух параллельно включенных конденсаторов, первый из которых не содержит диэлектрика и имеет емкость

- первоначальная емкость конденсатора, а во втором площадь обкладки равна площади диэлектрической пластинки S/2 (рис. 345, а). Затем второй конденсатор представим в виде двух последовательно соединенных конденсаторов, один из которых не содержит диэлектрика и имеет емкость С2 = С0, а другой полностью заполнен диэлектриком и имеет емкость
(рис. 345, б). Емкость этих двух конденсаторов

Емкость всех трех конденсаторов

Отношение емкостей

Здесь мы считаем, что размеры обкладок намного больше расстояния между ними, и поэтому пренебрегаем краевыми эффектами, т. е. отличием электрического поля на краях обкладок и диэлектрической пластинки от однородного. В противном случае емкость первоначального конденсатора не равна емкости трех конденсаторов, изображенных на рис. 345, б.

41 Найти общую емкость конденсаторов, включенных по схеме, изображенной на рис. 81. Емкости конденсаторов С1 = 3 мкФ, С2 = 5 мкФ, С3 = 6 мкФ и С4 = 5 мкФ.

Решение:

42 Найти общую емкость конденсаторов, включенных по схеме, изображенной на рис. 82. Емкость каждого конденсатора равна С0.

Решение:

Схема включения, представленная на рис. 82, эквивалентна схеме, изображенной на рис. 346, а. Ввиду равенства емкостей всех конденсаторов разность потенциалов между точками а и b равна нулю, конденсатор С4 всегда не заряжен, и схема упрощается (рис. 346, б). Общая емкость конденсаторов

43 Найти разность потенциалов между точками а и b в схеме, изображенной на рис. 83. Емкости конденсаторов С 1 =0,5мкФ и С2=1мкФ, напряжения источников тока V1 =2 В и V 2 = 3 В.

Решение:

44 Бумажный конденсатор емкости C1 = 5 мкФ и воздушный конденсатор емкости С2 = 30 пФ соединены последовательно и подключены к источнику тока с напряжением V =200 В. Затем воздушный конденсатор заливается керосином (диэлектрическая проницаемость e = 2). Какой заряд q протечет при этом по цепи?

Решение:

45 Два одинаковых плоских воздушных конденсатора соединены последовательно и подключены к источнику тока. Во сколько раз изменится напряженность электрического поля в одном из них, если другой заполнить диэлектриком с диэлектрической проницаемостью e = 4?

Решение:
Вначале разность потенциалов между обкладками каждого конденсатора была V
1 = V /2, где V-напряжение источника тока. После заполнения одного из них диэлектриком

где q-заряд на каждой обкладке, a
-разности потенциалов между обкладками до и после заполнения конденсатора диэлектриком. Так как напряженность электрического поля в конденсаторе пропорциональна разности потенциалов между его обкладками, то отношение напряженностей до и после заполнения

46 На точечный заряд, находящийся внутри плоского конденсатора, имеющего заряд q, действует сила F. На какую величину D F изменится эта сила, если конденсатор в течение времени t заряжать током I ?

Решение:

47 Конденсаторы, соединенные по схеме, изображенной на рис. 84, подключают в точках а и b к источнику тока с напряжением V =80 В, а затем отключают от него. Найти заряд, который протечет через v точку а, если замкнуть ключ К. Емкости конденсаторов v С1 = С2 = С3 = С0 и С4 = ЗС0, где С0=100мкФ.

Решение:
После подключения к источнику тока заряд каждого конденсатора в последовательной цепи amb равен q" = С " V, где С " = С 1 С 3 /(С 1 +С 3 )-емкость цепи amb, а заряд каждого конденсатора в. последовательной цепи anb равен q" = C"V, где С" = С 2 С 4 /(С 2 +С 4 )-емкость цепи anb. Разность потенциалов между точками а и т равна V " = q"/C 1 = C 3 V/(C 1 +C 3 ); разность потенциалов между точками а я n равна V"=q"/C 2 =C 4 V/(C 2 +C 4 ). После отключения от источника тока схему можно рассматривать как две параллельные цепи из последовательно включенных конденсаторов (man из C 1 и С2 и mbn из С3 и С4), заряженных до разности потенциалов

При замыкании ключа К разность потенциалов между точками m и n становится равной нулю. Цепь man разряжается, и через точку а протекает заряд q = CV, где C=C 1 C 2 /(C 1 +C 2 )-емкость этой цепи. Таким образом,

48 Четыре конденсатора соединены по схеме, изображенной на рис. 85. Полюсы источника тока можно присоединить либо к точкам а и b , либо к точкам m и n . Емкости конденсаторов С1 = 2 мкФ и С2 = 5 мкФ. Найти емкости конденсаторов Сх и Су, при которых заряды на обкладках всех конденсаторов по модулю будут равны между собой независимо от того, каким способом будет присоединен источник тока.

Решение:

49 Два одинаковых плоских воздушных конденсатора вставлены друг в друга так, что расстояние между любыми двумя соседними пластинами d=5 мм. Каждый конденсатор соединен с источником тока, напряжение которого V =100В, одна из пластин каждого конденсатора заземлена (рис. 86). Какова напряженность электрического поля Е между пластинами а и b?

Решение:
Относительно земли пластина а имеет потенциал
а пластина b-потенциал Разность потенциалов между ними и напряженность электрического поля

50 Найти поверхностную плотность заряда на пластинах плоского конденсатора, если электрон, не имевший начальной скорости, пройдя путь от одной пластины к другой, приобретает скорость м/с. Расстояние между пластинами d=3 см.

Решение:

51 Конденсатору емкости С = 2 мкФ сообщен заряд q=1 мКл. Обкладки конденсатора соединили проводником. Найти количество теплоты Q, выделившееся в проводнике при разрядке конденсатора, и разность потенциалов между обкладками конденсатора до разрядки.

Решение:
По закону сохранения энергии количество теплоты, выделившееся при разрядке конденсатора, равно электрической энергии.
запасенной в конденсаторе:

Разность потенциалов между обкладками конденсатора до разрядки V=q/C=500 В.

52 При разрядке батареи, состоящей из n = 20 параллельно включенных конденсаторов с одинаковыми емкостями С = 4 мкФ, выделилось количество теплоты Q=10 Дж. До какой разности потенциалов были заряжены конденсаторы?

Решение:
Энергия, запасенная в n конденсаторах,

отсюда разность потенциалов

53 Какое количество теплоты Q выделится при заземлении заряженного до потенциала j = 3000 В шара радиуса R = 5 см?

Решение:
Емкость шара

Вся электрическая энергия заряженного шара перейдет в теплоту:

54 Какой заряд q сообщен шару, если он заряжен до потенциала j =100 В, а запасенная им электрическая энергия W = 2,02 Дж?

Решение:
Электрическая энергия, запасенная шаром,

55 Найти количество теплоты Q, выделившееся при соединении верхних незаземленных обкладок конденсаторов с емкостями С1 = 2 мкФ и С2 = 0,5 мкФ (рис. 87). Разности потенциалов между верхними обкладками конденсаторов и землей V1 =100 В и V 2=-50В.
Решение:
До соединения конденсаторов их заряды

а их общая энергия

После соединения конденсаторов их полный заряд

где V-разность потенциалов между верхними обкладками и землей; отсюда

После соединения верхних обкладок конденсаторов их общая энергия

Выделившееся количество теплоты равно разности начальной и конечной энергий конденсаторов:

При V1 = V2 нет перехода зарядов, поэтому теплота не выделяется. Если потенциалы V1 и V2 имеют одинаковые знаки, то теплоты выделяется меньше, чем в случае разных знаков потенциалов.
56 Найти количество теплоты Q, выделившееся при соединении одноименно заряженных обкладок конденсаторов с емкостями С1 = 2мкФ и С2 = 0,5 мкФ. Разности потенциалов между обкладками конденсаторов V1 = 100 В и V2 = 50 В.

Решение:
Выделившееся количество теплоты равно разности энергий конденсаторов до и после соединения (см. задачу 55):

Систему проводников очень боль­шой электроемкости вы можете об­наружить в любом радиоприемнике или купить в магазине. Называется она конденсатором. Сейчас вы узна­ете, как устроены подобные системы и от чего зависит их электроемкость.

Конденсатор. Большой электро­емкостью обладают системы из двух проводников, называемые кон­денсаторами. Конденсатор представ­ляет собой два проводника, разде­ленные слоем диэлектрика, толщина которого мала по сравнению с раз­мерами проводников. Проводники в этом случае называются обкладками конденсатора.

Простейший плоский конденсатор состоит из двух одинаковых парал­лельных пластин, находящихся на малом расстоянии друг от друга (рис. 1). Если заряды пластин одинаковы по модулю и противо­положны по знаку, то силовые линии электрического поля начинаются на положительно заряженной обкладке конденсатора и оканчиваются на от­рицательно заряженной. Поэтому почти все электрическое по­ле сосредоточено внутри конден­сатора.

У сферического конденсатора, со­стоящего из двух концентрических сфер, все поле сосредоточено между ними.

Для зарядки конденсатора нужно присоединить его обкладки к полю­сам источника напряжения, напри­мер к полюсам батареи аккумуля­торов. Можно также соединить одну обкладку с полюсом батареи, у которой другой полюс заземлен, а вто­рую обкладку конденсатора зазем­лить. Тогда на заземленной об­кладке останется заряд, противопо­ложный по знаку и равный по мо­дулю заряду другой обкладки. Такой же по модулю заряд уйдет в землю.

Под зарядом конденсатора пони­мают абсолютное значение заряда одной из обкладок.

Электроемкость конденсатора определяется формулой.

Электрические поля окружающих тел почти не проникают внутрь кон­денсатора и не влияют.на разность потенциалов между его обкладками. Поэтому электроемкость конденса­тора практически не зависит от на­личия вблизи него каких-либо дру­гих тел.

Первый конденсатор, названный лейденской банкой, был создан в середине XVIII в. Было обнаружено, что гвоздь, вставленный в стеклян­ную банку с ртутью, накапливает большой электрический заряд. В та­ком конденсаторе ртуть служила од­ной обкладкой, а ладони экспериментатора, держащего банку,- дру­гой. Впоследствии обе обкладки ста­ли делать из тонкой латуни или станиоля.

Электроемкость плоского кон­денсатора. Геометрия плоского кон­денсатора полностью определяется площадью S его пластин и рас­стоянием d между пластинами. От этих величин и должна зависеть ем­кость плоского конденсатора. Чем больше площадь пластин, тем боль­ший заряд можно на них нако­пить: q~S. С другой стороны, на­пряжение между пластинами соглас­но формуле пропорционально расстоянию между ними. Поэтому емкость