Значение вирусов в природе и для человека. «Роль вирусов в природе и жизни человека. Что дала мне проделанная работа


Муниципальное общеобразовательное учреждение "средняя общеобразовательная школа №3"
                  Выполнила:
                      ученица 9А класса
                      Лозинская Ирина
                      Людвиговна.
ВИРУСЫ В ЖИЗНИ ЧЕЛОВЕКА
                      Руководитель:
                      Малинина Т.С.
                      Учитель биологии
                      МОУ"СОШ №3"

г. Губкинский 2005
Аннотация
Целью работы «Вирусы в жизни человека», написанной Лозинской Ириной ученицей 9а класса является: рассмотреть значение вирусов в жизни человека.
Задачи:

    Выяснить причины возникновения вирусов на Земле.
    Разобрать строение вирусов.
    Познакомиться с болезнями, которые вызывают вирусы.
    Провести статистическое исследование заболеваемости учащихся
    средней школы №3 г. Губкинского за последние 3 года.
    Проанализировать научную литературу.
Методами исследования, использованными в данной работе, были: анализ, обобщение, сравнение имеющихся в наличии материалов.
Работа имеет теоретическую и практическую направленность. С материалами работы могут познакомиться все желающие для общего развития.
Уникальность данной работы состоит в том, что в ней рассказано об истории развития вирусов, об их строении, жизнедеятельности. Работа открывает негативную сторону жизни вирусов; которая заключается в возникновении различных заболеваний человека, растений и животных.

Введение. 4
1. Гипотезы происхождения вирусов. 6
2. История открытия вирусов. 7

    2.1. Первое знакомство 7
    2.2. Составные части вирусов 7
    2.3. Лизогения 8
    2.4. Открытие Херши и Чейза 9
3. Заповеди вирусов. 11
4. Как устроены вирусы? 12
5. Кто их родители? 14
6. Взаимодействие вируса с клеткой. 15
7. Классификация вирусов. 18
8. Роль вирусов в жизни человека. Способы передачи
вирусных заболеваний. 19
9. Список черных дел вирусов: 20
    9.1. Грипп 22
    9.2. Оспа 22
    9.3. Полиомиелит 23
    9.4. Бешенство 23
    9.5. Вирусный гепатит 23
    9.6 Опухолеродные вирусы 24
    9.7. СПИД. 24
10. Особенности эволюции вирусов на современном этапе. 27
Заключение. 28
Библиографический список 29
Приложение
Статистические данные о вирусных заболеваниях и прививках
(вакцинации) по МОУ "СОШ №3" г. Губкинского 30
Схематический разрез вируса. 32

Введение

Цель: рассмотреть значение вирусов в жизни человека.

Задачи: 1. выяснить причины возникновения вирусов на Земле.
2. Разобрать строение вирусов.
3. Познакомиться с болезнями, которые вызывают вирусы.
4. Провести статистическое исследование заболеваемости учащихся средней школы №3 г. Губкинского за последние 3 года.
5. Проанализировать научную литературу.
Методами исследования, использованными в данной работе, были: анализ, обобщение, сравнение имеющихся в наличии материалов.
Считаю, что работа имеет теоретическую и практическую направленность. С материалами работы могут познакомиться все желающие для общего развития.
Для написания работы «Вирусы в жизни человека» нами были использованы: «Основы современной биологии», «Тайны третьего мира», «Общая биология», «От молекулы до человека».

          1. Гипотезы происхождения вирусов

          2. История открытия вирусов

          Первое знакомство
          В 80-е годы CIC века на юге России табачные плантации подверглись грозному нашествию. Отмирали верхушки растений, на листьях появлялись светлые пятна, год от года число пораженных полей увеличивалось, а причина заболеваний неизвестна.
          Профессора Петербургского университета, всемирно известные А. Н. Бекетов и А. С. Фелинцин послали небольшую экспедицию в Бесарабию и на Украину в надежде разобраться в причинах болезни. В экспедицию входили Д. И. Ивановский и В. В. Половцев.
          Д.И. Ивановский русский ученый в 1892 году открыл вирус табачной мозаики.
          На поиски возбудителей болезни Ивановский потратил несколько лет. Он собирал факты, делал наблюдения, расспрашивал крестьян о симптомах болезни. И экспериментировал. Он собрал листья с нескольких больных растений. Через 15 дней на этих листьях появились белёсые пятна. Значит, болезнь действительно заразна, и может передаваться от растения к растению. Ивановский последовательно устранял возможных переносчиков болезни – корневую систему растений, семена, цветки, пыльцу… Опыты показали, что дело не в них: болезнетворное начало поражает растения иным путём.
          Тогда молодой учёный ставит простой опыт. Он собирает больные листья, измельчает их и закапывает на участках со здоровыми растениями. Через некоторое время растения заболевают. Итак, первая удача – путь от больного растения к здоровому найден. Возбудитель передаётся листьями, попавшими в почву, перезимовывает и весной поражает посевы.
          Но о самом возбудителе он так ничего и не узнал. Его опыты показали лишь одно, – нечто заразное содержится в соке. В эти годы ещё несколько учёных в мире бились над опознанием этого «нечто». А. Майер в Голландии предложил, что заразное начало – бактерии.
          Однако Ивановский доказал, что Майер ошибся, посчитав носителями болезни бактерии.
          Профильтровав заразный сок через тонкопористые фарфоровые фильтры, он осадил на них бактерии. Теперь бактерии удалены… но заразность сока сохранилась.
          Проходит шесть лет и Ивановский обнаруживает, что столкнулся с непонятным агентом, вызывающим болезнь: он не размножается на искусственных средах, проникает сквозь самые тонкие поры, погибал при нагревании. Фильтруемый яд! Таким был вывод ученого.
          Но яд это – вещество, а возбудитель болезни табака был существом. Он отлично размножался в листьях растений.
          Так Ивановский открыл новое царство живых организмов, самых мелких из всех живых и потому невидимых в световом микроскопе. Проходящих сквозь тончайшие фильтры, сохраняющихся в соке годами и при этом не теряющих вирулентности. В 1889 году датский ботаник Мартин Виллем Бейринк, которого Майер заинтересовал болезнью табака, назвал вновь открытое существо вирусом, добавив, что вирус представляет собой «жидкое, живое, заразное начало».
          Составные части вируса
          В 1932 году молодому американскому биохимику Вендиллу Стенли тогдашний директор Рокфеллеровского института в Нью-Йорке Симон Флекенер предложил заняться вирусами. Стенли начал с того, что собрал тонну листьев табака, пораженных вирусом табачной мозаики, и решил получить сок из всей этой горы. Он отжал бутыль сока и начал исследовать сок доступными ему химическими методами. Разные фракции сока он подвергал воздействию всевозможных реактивов, надеясь получить чистый вирусный белок (Стенли был убеждён, что вирус это белок). Ему долгое время не удавалось избавиться от белков растительных клеток. Однажды, перепробовав разные методы подкисления и высаливания, Стенли получил почти чистую фракцию белка, отличавшегося по своему составу от белков растительных клеток. Учёный понял, что перед ним то, чего он так упорно добивался. Стенли выделил необыкновенный белок, растворил его в воде и поставил раствор в холодильник. Наутро в колбе вместо прозрачной жидкости лежали красивые шелковистые игольчатые кристаллы. Из тонны листьев Стенли добыл столовую ложку таких кристаллов. Затем Стенли отсыпал немного кристалликов, растворил их в воде, смочил этой водой марлю и ею натёр листья здоровых растений. Сок растений подвергся целому комплексу химических воздействий. После такой «массированной обработки» вирусы, скорее всего, должны были погибнуть.
          Натёртые листья заболели, а через пару недель характерная мозаика белых пятен покрыла все растения, затем повторил эту операцию опять, а после четвёртого или пятого «переливания» вируса отжал сок из листьев, подверг его той же химической обработки и снова получил точно такие же кристаллы. Странные свойства вируса пополнились ещё одним – способностью кристаллизироваться.
          Эффект кристаллизации был настолько ошеломляющим, что Стенли надолго отказался от мысли, что вирус - это существо. Так как все ферменты (катализаторы реакции в живых организмах) – белки, и количество многих ферментов также увеличивается по мере развития организма, и они могут кристаллизироваться, Стенли заключил, что вирусы – чистые белки, скорее ферменты.
          Вскоре учёные убедились, что кристаллизировать можно не только вирус табачной мозаики, но и ряд других вирусов.
          Вендел Стенли в 1946 году был удостоен Нобелевской премии.
          Спустя пять лет английские биохимики Ф. Боуден и Н. Пири нашли ошибку в определении Стенли. 94% содержимого вируса табачной мозаики состоял из белка, а 6% представляло собой нуклеиновую кислоту. Вирус был на самом деле не белком, а нуклеопротеином – соединением белка и нуклеиновой кислоты.
          Как только биологам стали доступны электронные микроскопы, учёные установили, что кристаллы вирусов состоят из тесно прижатых друг к другу нескольких сотен миллиардов частиц. В одном кристалле вируса полиомиелита столько частиц, что ими можно заразить не по одному разу всех жителей Земли. Когда же удалось рассмотреть в электронном микроскопе отдельные вирусные частицы, то оказалось что они бывают разной формы – и шарообразные, и палочковидные, и в виде сандвича, и в форме булавы, но всегда наружная оболочка вирусов состоит из белка, а внутреннее содержимое представлено нуклеиновой кислотой.
          Лизогения
          Когда вирусологи поближе познакомились с жизнью вирусов, они обнаружили у них ещё одно неожиданное свойство. Раньше считали, что любая частица вируса, попав в клетку, начинает там размножаться и, в конце концов, клетка погибает. Но в 1921 году, а затем в середине 30 – х. годов в институте Пастера в Париже была описана странная картина. К бактериям добавляли бактериофаги. Через какой-то промежуток времени клетки должны были погибнуть, но, удивительно, часть их осталась жить, и продолжала размножаться. Каким – то образом эти клетки получили иммунитет к фагам. Учёные выделили такие клетки, очистили их от фагов, затем стали регулярно высевать их и однажды обнаружили, что в свободной от фагов культуре бактерий, откуда не возьмись, снова появляются фаговые частицы.
          Исчезнув на время, как будто спрятавшись внутрь клетки, фаги снова заявили о своём существовании. Эти же фаги испытали на свежих ещё не заражённых культурах бактерий. Фаги по-прежнему вели себя необычно. Часть из них, как и полагалось, вызывало гибель клеток, но многие исчезали внутри клеток, а как только это происходило, клетки получали способность противостоять заражению другими такими же вирусами.
          Процесс исчезновения вирусов назвали лизогенизацией, а клетки, заражённые такими вирусами, стали именовать лизогенными. Всякие попытки обнаружить всякие фаги внутри лизогенных бактерий окончились неудачно. Вирус прикреплялся к какой-то структуре клетки и без неё не размножался.
          С помощью микроманипулятора учёные Львов и Тутман отделил от общей массы лизогенных бактерий одну клетку, и начали за ней наблюдать. Клетка поделилась один раз, дав начало двум молоденьким клеткам, те, в свою очередь, через положенное время дали потомство. Клетка, подозреваемая в том, что она спрятала внутри бактериальный вирус, ничем от других не отличалась. Сменилось 15 поколений бактерий, но терпеливые учёные постоянно наблюдали с помощью микроскопа, заменяя друг друга через определённые промежутки времени. Во время 19 деления одна из клеток лопнула точно так, как разрывались обычные бактерии, заражённые обычным вирусом.
          Учёные определили, что лизогенные клетки, хотя и несут в себе вирус или его часть, но до поры до времени этот вирус не инфекционен. Такой внутри клеточный вирус они назвали провирусом, или, если речь шла о бактериофагах, профагом.
          Затем они доказали, что провирус, попав в бактерию, не исчезает. Через 18 поколений его удалось обнаружить. Оставалось предположить, что всё это время профаг размножался вместе с бактерией.
          Впоследствии было доказано, что обычно профаги не могут размножаться сами по себе, как это делают все остальные вирусы, а размножаются только тогда, когда размножается сама бактерия.
          И, наконец, третья честь этого открытия принадлежит Львову, Симиновичу и Кылдгарду – способ выделения из состояния равновесия провируса. Воздействуя небольшими дозами ультрафиолетовых лучей на лизогенные клетки, удавалось вернуть их профагам способность размножаться независимо от клеток. Такие освобождённые фаги вели себя точно так, как вели себя их предки: размножались и разрушали клетки. Львов сделал из этого верный, единственный вывод – ультрафиолет нарушает связь профага с какой-то из внутри клеточных структур, после чего и наступает обычное ускорение размножения фагов.
          Открытие Херши и Чейза
          В 1952 появилась сенсационная работа двух американских исследователей – Альфреда Херши и Марты Чейз.
          Херши и Чейз решили проверить, насколько верна картина нарисованная прежними исследователями. На поверхности клетки в электронный микроскоп фаги были видны. Но разглядеть их внутри клеток в те годы никому не удавалось. Тем более нельзя было увидеть процесс проникновения фага в клетку. Стоило только подставить клетку с налипшими фагами под пучок электронов, как электроны убивали всё живое, и то, что отражалось на экране микроскопа, было лишь посмертной маской некогда живых существ.
          Учёным помогли методы радиационной химии. Пробирки с суспензией они давали нужную порцию меченных радиоактивным фосфором и серой фагов. Через каждые 60 секунд отбирались пробы, и в них определялось содержание отдельно фосфора и от дельно серы, как в клетках, так и вне них.
          Спустя две с половиной минуты, было отмечено, что количество «горячего» фосфора на поверхности клеток оказалось равным 24%, а серы снаружи было в три раза больше - 76%. Ещё через две минуты стало ясно, что никакого равновесия между фосфором и серой не наступает и впоследствии сера упорно не желала лезть внутрь клеток, а оставалась снаружи. Через 10 минут – время достаточное, чтобы не мене 99% фагов прикрепилось и проникло внутрь бактерии, – клетки подвергли интенсивному встряхиванию: оторвали все, что прилипло к ним снаружи, а затем отделили центрифугированием бактериальные клетки от фаговых частиц. При этом более тяжелые клетки бактерии осели на дно пробирок, а лёгкие фаговые частицы остались в жидком состоянии. Так называемом надосаке.
          Дальше надо было измерить отдельно радиоактивность осадка и надосадка. Отличить излучение серы от фосфора учёные смогли, а по величине радиоактивности им не трудно было высчитать, сколько фагов попало внутрь клеток и сколько осталось снаружи. Для контроля они тут же провели биологическое определение числа фагов в надосадке. Биологическое определение даёт цифру 10%.
          Результаты опытов Херши и Чейза исключительно важны для последующего развития генетики. Они доказали роль ДНК в наследственности.

          3. Заповеди вирусов

          4. Как устроены вирусы

          Сравнивая живое и неживое, необходимо особо остановиться на вирусах, так как они обладают свойствами и того и другого. Что же такое вирусы?
          Вирусы настолько малы, что их не видно даже в самый сильный световой микроскоп. Их удалось рассмотреть только после создания электронного микроскопа, разрешающая способность которого в 100 раз больше чем у светового.
          Сейчас нам известно, что вирусные частицы не являются клетками; они представляют собой скопление нуклеиновых кислот (которые составляют единицы наследственности, или гены), заключенные в белковую оболочку.
          Размеры вирусов колеблются от 20 до 300 нм. В среднем они в 50 раз меньше бактерий. Их нельзя увидеть в световой микроскоп, так как их длины меньше длины световой волны.
          Вирусы состоят из различных компонентов:
          а) сердцевина - генетический материал (ДНК или РНК). Генетический аппарат вируса несет информацию о нескольких типах белков, которые необходимы для образования нового вируса: ген, кодирующий обратную транскриптазу и другие.
          б) белковая оболочка, которую называют капсидом.
          Оболочка часто построена из идентичных повторяющихся субъединиц - капсомеров. Капсомеры образуют структуры с высокой степенью симметрии.
          в) дополнительная липопротеидная оболочка.
          Она образована из плазматической мембраны клетки-хозяина. Она встречается только у сравнительно больших вирусов (грипп, герпес).
          В отличие от обычных живых клеток вирусы не употребляют пищи и не вырабатывают энергии. Они не способны размножаются без участия живой клетки. Вирус начинает размножаться лишь после того, как он проникнет в клетку определенного типа. Вирус полиомиелита, например, может жить только в нервных клетках человека или таких высокоорганизованных животных, как обезьяны.
          Изучению вирусов, инфицирующих некоторые бактерии в кишечнике человека, показало, что цикл размножения этих вирусов протекает следующим образом: вирусная частица прикрепляется к поверхности клетки, после чего нуклеиновая кислота вируса (ДНК) проникает внутрь клетки, а белковая оболочка остается снаружи. Вирусная нуклеиновая кислота, оказавшись внутри клетки, начинает самовоспроизводиться, используя в качестве строительного материала вещества клетки-хозяина. Затем, опять таки из продуктов обмена клетки, вокруг вирусной нуклеиновой кислоты образуется белковая оболочка: так формируется зрелая вирусная частица. Вследствие этого процесса некоторые жизненно важные частицы клетки-хозяина разрушаются, клетка гибнет, ее оболочка лопается, освобождаются вирусные частицы, готовые к заражению других клеток. Вирусы вне клетки представляют собой кристаллы, но при попадании в клетку “оживают”.
          Итак, ознакомившись с природой вирусов, посмотрим, насколько они удовлетворяют сформулированным критериям живого. Вирусы не являются клетками и в отличие от живых организмов с клеточной структурой не имеют цитоплазмы. Они не получают энергии за счет потребления пищи. Казалось бы, их нельзя считать живыми организмами. Однако вместе с тем вирусы проявляют свойства живого. Они способны приспосабливаться к окружающей среде путем естественного отбора. Это их свойство обнаружилось при изучении устойчивости вирусов к антибиотикам. Допустим, что больного с вирусной пневмонией лечат каким-то антибиотиком, но вводят его в количестве, недостаточном для разрушения всех вирусных частиц. При этом те вирусные частицы, которые оказались более устойчивыми к антибиотику и их потомство наследует эту устойчивость. Поэтому в дальнейшем этот антибиотик окажется не эффективным, штамма созданного естественным отбором.
          Но, пожалуй, главным доказательством того, что вирусы относятся к миру живого, является их способность к мутациям. В 1859 году, но всему земному шару широко распространилась эпидемия азиатского гриппа. Это явилось следствием мутации одного гена в одной вирусной частицы у одного больного в Азии. Мутантная форма оказалась способной преодолеть иммунитет к гриппу, развивающийся у большинства людей в результате перенесенной ранее инфекции. Широко известен и другой случай мутации вирусов, связанный с применением вакцины против полиомиелита. Эта вакцина состоит из живого вируса полиомиелита, ослабленного настолько, что он не вызывает у человека никаких симптомов. Слабая инфекция, которой человек практически не замечает, создает против болезни вирусных штаммов того же типа. В 1962 году было зарегистрировано несколько тяжелых случаев полиомиелита, вызванных, по-видимому, этой вакциной. Вакцинировано было несколько миллионов: в отдельных случаях произошла мутация слабого вирусного штамма, так что он приобрел высокую степень вирулентности. Поскольку мутация свойственна только живым организмам, вирусы следует считать живыми, хотя они просто организованны и не обладают всеми свойствами живого.
          Итак, мы перечислили характерные особенности живых организмов, отличающие их от неживой природы, и теперь нам легче представить себе какие объекты изучает биология.
          Химический состав вирусов
          Просто организованные вирусы представляют собой нуклеопротеины, т.е. состоят из нуклеиновой кислоты (ДНК или РНК) и несколько белков, образующих оболочку вокруг нуклеиновой кислоты. Белковая оболочка называется капсидом. Примером таких вирусов является вирус табачной мозаики. Его капсид содержит всего один белок с небольшой молярной массой. Сложно организованные вирусы имеют дополнительную оболочку, белковую или липопротеиновую. Иногда в наружных оболочка сложных вирусов помимо белков содержатся углеводы, например у возбудителей гриппа и герпеса. И их наружная оболочка является фрагментом ядерной или цитоплазматической мембраны клетки-хозяина, из которой вирус выходит во внеклеточную среду. Геном вирусов могут быть представлены, как однониточными, так и двунитчатыми ДНК и РНК. Двунитчатая ДНК встречается у вирусов оспы человека, оспы овец, свиней, аденовирусов человека, двунитчатая РНК служит генетической матрицей у некоторых вирусов насекомых и других животных. Широко распространены вирусы, содержащие однонитчатую РНК.

          5. Кто их родители

          6. Взаимодействие вируса с клеткой

          Вирусы – самые маленькие из живущих на земле организмов. Долгие годы учёные спорили, являются ли они вообще организмами. Многие считали, что это химические соединения, большие молекулы, подобные ферментам. Вирусы состоят всего из двух частей: белковой оболочке и спрятанной внутри нуклеиновой кислоты, несущей наследственную запись о свойствах вирусной частицы. Вирус может прикрепляться к оболочке клетки, «пробуравить» там крошечное отверстие и в него впрыснуть свою нуклеиновую кислоту.
          При образовании пиноцитозных вакуолей вместе с капельками жидкости межклеточной среды случайно внутрь клетки могут попадать и вирусы, циркулирующие в жидкостях организма. Однако, как правило, проникновению вируса в цитоплазму клетки предшествует связывание его с особым белком-рецептором, находящимся на клеточной поверхности. Связывание с рецептором осуществляется благодаря наличию специальных белков на поверхности вирусной частицы, которые «узнают» соответствующий рецептор на поверхности чувствительной клетки. Участок поверхности клетки, к которому присоединился вирус, погружается в цитоплазму и превращается в вакуоль. Вакуоль, стенка которой состоит из цитоплазматической мембраны, может сливаться с другими вакуолями или с ядром. Так вирус доставляется в любой участок клетки.
          Очутившись внутри бактерии, она приступает к подрывной деятельности. В короткое время нуклеиновая кислота вируса с помощью приютившей её клетки синтезирует сотни своих копий. С этих копий изготавливается нужное число белковых оболочек. И порой получается несколько тысяч новеньких вирусных частиц.
          Рецепторный механизм проникновения вируса в клетку обеспечивает специфичность инфекционного процесса. Так, вирус гепатита. А. или В. проникает и размножается только в клетках печени, аденовирусы и вирус гриппа - в клетках эпителия слизистой оболочки верхних дыхательных путей, вирус, вызывающий воспаление головного мозга, - в нервных клетках, вирус эпидемического паротита (свинка) – в клетках околоушных слюнных желез и т. д.
          Инфекционный процесс начинается, когда проникшие в клетку вирусы начинают размножаться, т. е. происходит редупликация вирусного генома и само сборка капсида. Для осуществления редупликации нуклеиновая кислота должна освободиться от капсида. После синтеза новой молекулы нуклеиновой кислоты она одевается, синтезированными в цитоплазме клетки – вирусными белками – образуется капсид. Накопление вирусных частиц приводит к выходу их из клетки. Для некоторых вирусов это происходит путем «взрыва», в результате чего целостность клетки нарушается и она погибает. Другие вирусы выделяются способом, напоминающим почкование. В этом случае клетки организма могут долго сохранять свою жизнеспособность.
          Иной путь проникновения в клетку у вирусов бактерий – бактериофагов. Толстые клеточные стенки не позволяют белку-рецептору вместе с присоединившимся к нему вирусом погружаться в цитоплазму, как это происходит при инфицировании клеток животных. Поэтому бактериофаг вводит полый стержень в клетку и вталкивает через нее ДНК (или РНК), находящуюся в его головке. Геном бактериофага попадает в цитоплазму, а капсид остается снаружи. В цитоплазму бактериальной клетки начинается редупликация генома бактериофага, синтез его белков и формирование капсида. Через определенный промежуток времени бактериальная клетка гибнет, и зрелые фаговые частицы выходят в окружающую среду.
          Потомство одной ничтожной вирусной частицы разрушает клетку. Действуя внутри клетки, вирус подрывает все её жизненные ресурсы: он захватывает места синтеза белков, забирает энергию клетки, накладывает вето на запасные строительные блоки.

          Жизнедеятельность бактериальных вирусов.
          Спустя 25 лет после открытия вируса, канадский ученый Феликс Д’Эрел, используя метод фильтрации, открыл новую группу вирусов, поражающих бактерии. Они так и были названы бактериофагами (или просто фагами).

          Строение бактериальных вирусов.

          Головка, содержащая ДНК

          Воротничок

          Полый стержень
          Чехол со спиральной
          симметрией






          Базальная пластина.

          Шипы отростка

          Хвостатые нити

          Фаг, так называемый T 2 и по форме напоминающий головастика прикрепляется к бактериальной клетке и затем впрыскивает в неё длинную одиночную нить ДНК. Бактериальная клетка содержит собственную ДНК, которая управляет всеми процессами её жизнедеятельности. Но как только в бактериальную клетку внедряется вирусная ДНК, она захватывает власть над «фабриками клетки» и начинает «посылать команды» на синтез составных частей вирусов за счет веществ бактерии. Вещества бактериальной клетки всё больше и больше расходуются на строительство вирусной ДНК и вирусного белка и в конце концов она погибает.
          После того как, вирусная ДНК попадает в бактериальную клетку, она становится способной синтезировать целые вирусные частицы. Менее чем через 30 минут оболочка клетки лопается, и сотни образовавшихся в ней вирусов выходят наружу. Каждая из таких вирусных частиц может теперь вновь заразить бактерию, и через некоторое время это приводит к гибели всей популяции бактерий.

          7. Классификация вирусов

          Дезоксивирусы
          ДНК двунитчатая
          Без внешних оболочек: аденовирусы, паповавирусы.
          С внешними оболочками: герпес – вирусы.
          Смешанный тип симметрии: Т четные бактериофаги.
          Без определённого типа симметрии: оспенные вирусы.
          ДНК однонитчатая.
          Без внешних оболочек: крысиный вирус Килхама, аденосателлиты, фаг?? 174.
          Рибовирусы.
          РНК двунитчатая.
          Без внешних оболочек: ретровирусы, вирусы раневых опухолей растений.
          РНК однонитчатая.
          Без внешних оболочек: полиовирус, энтеровирусы, риновирусы, вирус табачной мозаики.
          С внешними оболочками: вирусы гриппа, парагриппа, бешенства, онкогенные РНК-содержащие вирусы.

          «Портреты» вирусов различных типов строения:
          А - вирус табачной мозаики со спиральным типом симметрии;
          Б – ретровирус с кубическим типом симметрии;
          В – аномальные формы вирусов;
          Г – сложноустроенные вирусы гриппа (1), оспы (2) и фаг (3)
          8. Роль вирусов в жизни человека
          Способы передачи вирусных заболеваний

          Контагиозная передача
          (при непосредственном физическом контакте)
          В результате непосредственного физического контакта с больными людьми или животными передаются сравнительно немногие болезни. К контагиозным вирусным болезням относится трахома (болезнь глаз, очень распространенная в тропических странах), обычные бородавки и обыкновенный герпес – «лихорадка» на губах.

          9. Список чёрных дел вирусов

          Некоторые наиболее известные вирусные Заболевания человека
          Название болезни
          Возбудитель Поражаемые области тела Способ распространения
          Тип вакцинации
          Грипп Микровирус одного их трех типов – А, В и С – с различной степенью вирулентности Дыхательные пути: эпителий, выстилающий трахеи и бронхи. Капельная инфекция Убитый вирус: штамм убитого вируса должен соответствовать штамму вируса, вызывающего заболевание
          Простуда Самые разные вирусы, чаще всего риновирусы (РНК – содержащие вирусы) Дыхательные пути: обычно только верхние Капельная инфекция Живой или инактивированный вирус вводится путем внутримышечной инъекции; вакцинация не очень эффективна, так как существует множество самых разных штаммов риновирусов
          Оспа Вирус натуральной оспы (ДНК – содержащий вирус), один из вирусов оспы Дыхательные пути, затем – кожа Капельная инфекция (возможна контагиозная передача через раны на коже). Живой ослабленный (аттенуированный) вирус вносят в царапину на коже; сейчас не применяется.
          Свинка (эпидемический паротит) Дыхательные пути, затем генерализованная инфекция по всему телу через кровь; особенно поражаются слюнные железы, а у взрослых мужчин также и семенники Капельная инфекция (или контагиозная передача через рот с заразной слюной) Живой аттенуированный вирус
          Корь Ксовирус (РНК – содержащий вирус) Дыхательные пути (от ротовой полости до бронхов), затем переходит на кожу и кишечник Капельная инфекция Живой аттенуированный вирус
          Коревая краснуха (краснуха) Вирус краснухи Дыхательные пути, шейные лимфатические узлы, глаза и кожа Капельная инфекция Живой аттенуированный вирус
          Полиомиелит (детский паралич) Вирус полиомиелита (пикорнавирус; РНК – содержащий вирус, известно три штамма) Глотка и кишечник, затем кровь; иногда двигательные нейроны спинного мозга, тогда может наступить паралич Капельная инфекция или через человеческие испражнения Живой аттенуированный вирус вводится перорально, обычно на кусочке сахара
          Желтая лихорадка Арбовирус, т.е. вирус, переносимый членистоногими (РНК – содержащий вирус) Выстилка кровеносных сосудов и печень Переносчики – членистоногие, например клещи, комары Живой аттенуированный вирус (очень важно также контролировать численность возможных переносчиков)
          Схематическое изображение строения основных вирусов, поражающих человека и животных. ДНК содержащие вирусы: 1-оспы; 2-паравакцины;3-герпеса;4- аденовирус;5-попававирус; 6-пикорнавирус. РНК содержащие вирусы: 7-гриппа; 8- парагриппа;9-везикулярного стоматита; 10-реовирус;11-энцефалита;12- полиомиелита.

          Грипп - не столь уж тяжелая болезнь, однако им болеют ежегодно многие миллионы людей, а периодически возникают пандемии (повальные эпидемии) уносят немало жизней.
          В 1886 и 1887 годах грипп зарегистрирован в России; летом 1889 года в Бухаре активность возбудителя повысилась, а позднее в том же году инфекция распространилась и на другие районы России и в Западную Европу. Так началась пандемия гриппа 1889-1890 годов. При второй и третьей эпидемиях число смертельных случаев прогрессивно увеличивалось. Самая зловещая черта этой эпидемии состояла в том, что она, по-видимому, дала толчок какому-то процессу, и теперь грипп с нами не расстается, или, как писал эпидемиолог Гринвуд «нам никак не удается вернуть утраченные позиции».
          В 1918 году, после окончания первой мировой войны, разразилась небывалая пандемия гриппа, получившего название «испанки».
          За полтора года пандемия охватила все страны, поразив более миллиарда человек. Болезнь протекала исключительно тяжело: около 25 миллионов человек погибло – больше, чем от ранений на всех фронтах первой мировой войны за четыре года.
          Никогда позже грипп не вызывал столь высокой смертности: смертность была невысокой во время всех последующих эпидемий и пандемий, хотя процент смертных случаев при гриппе невысок, массовость заболевания приводит к тому, что во время каждой большой эпидемии гриппа от него умирают тысячи больных, особенно стариков и детей. Отмечено, что во время эпидемий резко повышается смертность от болезней лёгких, сердца и сосудов.
          Грипп остаётся «королём» эпидемий. Ни одна болезнь не может за короткое время охватить сотни миллионов людей, а гриппом во время пандемии заболевает более миллиарда людей! Так было не только в памятную пандемию 1918 года, но сравнительно недавно – в 1957 году, когда разразилась пандемия «азиатского» гриппа, и в 1968 году, когда появился «гонконгский» грипп. Известно несколько разновидностей вируса гриппа – А, В, С, и др.; под воздействием факторов внешней среды их число может увеличится. В связи с тем, что иммунитет при гриппе кратковременный и специфичный, возможно неоднократное заболевание в один сезон. По статистическим данным, ежегодно болеют гриппом в среднем 20-35% населения.
          Источником инфекции является больной человек; больные легкой формой как распространители вируса, наиболее опасны, так как своевременно не изолируются – ходят на работу, пользуются городским транспортом, посещают зрелищные места.
          Инфекция передается от больного к здоровому человеку воздушно-капельным путем при разговоре, чихании, кашле или через предметы домашнего обихода.

          Оспа – одно из древнейших заболеваний. Описание оспы нашли в египетском папирусе Аменофиса?, составленном за 4000 лет до нашей эры. Оспенные поражения сохранились на коже мумии, захороненной в Египте за 3000 лет до нашей эры. Упоминание оспы, которую китайцы назвали «ядом из материнской груди», содержится в древнейшем китайском источнике – трактате «Чеу-Чеуфа» (1120 год до нашей эры). Первое классическое описание оспы дал арабский врач Разес.
          и т.д.................

В природе

Вирусы регулируют численность своих хозяев.

Вирусы являются фактором изменения генетической информации организмов (с помощью вирусов происходит горизонтальное переноса генов, то есть передача генетической информации между особями различных видов; наиболее эффективными факторами изменчивости генома является ретровирусы, которые могут переносить гены из клетки в клетку различных животных, например одинаковые участки вирусной ДНК обнаружены в геномах мыши, кота, свиньи и человека).

для человека

Причинение вирусных заболеваний растений, человека и животных.

Использование в биологическом методе борьбы с вредными видами (например, вирус миксоматоза для борьбы с массовым размножением кроликов в Австралии).

Применение в генетической инженерии (например, для переноса генов в клетки бактерий).

Для распознавания и лечения бактериальных заболеваний (например, эффективным в настоящее время является лечение бактериозам с помощью бактериофагов в сочетании с антибиотиками, так как многие формы патогенных бактерий становятся устойчивыми к определенным лекарствам).

Итак, вирусы являются необходимым звеном в структуре живой природы и играют как отрицательную, так и положительную роль для человека.

Синдром приобретенного иммунодефицита (СПИД)

Синдром приобретенного иммунодефицита - это инфекционное вирусное заболевание, возбудители которого повреждают иммунную систему и делают организм беззащитным против любого заболевания.

Актуальность. Первые случаи СПИДа (по англ. AIDS) были зарегистрированы в 1981 году в США. Сегодня за сутки в мире четыреста тысяч человек заражаются этой болезнью.

Сорок два миллиона мужчин, женщин и детей инфицированы в настоящее время вирусом иммунодефицита человека, вызывающего СПИД.

Если не принимать срочные меры, к концу десятилетия число инфицированных достигнет 110 000 000. Украина, согласно докладу ООН (2005), занимает шестое место в мире по уровню распространения эпидемии ВИЧ / СПИД.

Этиология. Возбудителем заболевания является вирус иммунодефицита человека (ВИЧ), который относится к РНК-содержащих сложных вирусов с высокой специфичностью. Этот вирус парази-

Схема строения вириона СПИД на поперечном срезе (по Р. К. Галлом, Л. Монтанье, 1988 ) : 1 - "шипы" оболочки, в состав которых входят два белка; 2 - липидная двухслойная мембрана; 3 - белок Р17; 4 - сердцевина; 5 - обратная транскриптаза; 6 - белок Р24 / 25; 7 - две идентичные РНК, которые несут генетическую информацию; 8 - Интеграза; 9 - протеиназа

ет в лейкоцитах, разрушает их и лишает организм защиты от различных инфекционных заболеваний. Сейчас известно три типа возбудителя: ВИЧ-1 и ВИЧ-2, являются очень распространенными в Западной Европе, и ВИЧ-3, на который страдают преимущественно американцы и африканцы. Эти возбудители отнесены к семье Retroviridae. ВИЧ имеет высокую генетическую изменчивость, не дает возможности получить эффективную вакцину, а также устойчивую тест-систему.

Патогенез. ВИЧ имеет родство с Т-лимфоцитами, которые определяют клеточный иммунитет. Путем слияния мембран в цитоплазму клетки проникает вирусная РНК, на ее основе в результате действия ревертазы образуется ДНК-копия, которая транспортируется в ядро и встраивается в ДНК клетки. ДНК-копия может храниться годами, поэтому инкубационный период болезни может длиться от двух месяцев до 10 лет.

При воздействии на зараженные Т-лимфоциты различных факторов (инфекция другими вирусами, стресс, голодание и т.д.) происходит экспрессия вирусных генов и начинают образовываться вирионы. Они выходят из клетки через цитоплазматическую мембрану. В результате интенсивного образования вирионов Т-лимфоциты погибают, и это приводит к потере организмом защитных реакций. После этого активизируется так называемая условно-патогенная флора организма и резко повышается вероятность смертельных заболеваний, поражений нервной системы, развития онкологических заболеваний. Основными проявлениями СПИДа являются: общая слабость, растущее истощение, увеличение лимфатических узлов, долговременные повышение температуры, необъяснимая потеря веса, повышенная потливость ночью, различные проявления воспалительных процессов в органах и системах органов: в легких → часто развиваются инфекции легких (наиболее распространенная пневмония) на коже → появление коричневых и синих пятен и узелков, которые быстро распространяются; в нервной системе → развитие нервно-психических расстройств; в пищеварительной системе → стойкие нарушения работы желудка и кишечника.

Выделяют 4 сновные стадии развития СПИДа: 1) стадия инкубации (с момента заражения до появления признаков заболевания, 2) стадия первичных проявлений болезни, которые обусловлены исключительно самим вирусом; 3) стадия вторичных проявлений болезни, обусловленные угнетением иммунитета; 4) терминальная стадия, приводит к неминуемой смерти.

Источник возбудителя инфекции. Источником ВИЧ-инфекции является инфицированный человек.

Механизм передачи. Основными путями передачи возбудителя является заражение: 1) через кровь (при переливании, операциях) 2) половым путем; 3) через плаценту от матери к ребенку; 4) через материнское молоко. Во внешней среде вирус СПИДа неустойчив, погибает в течение 20 минут, быстро разрушается всеми дезинфицирующими растворами.

Схема размножения вируса СПИД (по В. А. Хезелтайн, Ф. Вонг-Сталь, 1988 ) : 1 - заражена клетка находится в латентном состоянии; Второй клетке начинается умеренное размножения вируса; 3 - лизис (разрушение ) клетки и выход вирусных частиц наружу

Профилактика. Современный угрожающее состояние по распространению ВИЧ-инфекции вызван, прежде всего, сексуальной распущенностью, наркоманией, проституцией, гомосексуализмом и неосторожностью в повседневной жизни. Основными путями предупреждения ВИЧ-инфекции являются: а) отказ от употребления наркотиков и допингов; б) пользования одноразовым или стерильным инструментом; в) воздержание от случайных половых контактов, использование презервативов, хранение супружеской верности; г) отсутствие неестественных контактов. В наше время радикальных средств лечения СПИДа не существует, поэтому в борьбе с заболеванием особенно важны такие профилактические меры, как личная гигиена, половое воспитание, создание консультативных пунктов, просветительская работа и тому подобное.

Итак, синдром приобретенного иммунодефицита является одной из самых опасных болезней нашего времени, которая очень быстро распространяется по всему земному шару.


Существование вирусовбыло впервые установлено при изучении мозаичной болезни табака. До 1930-х годов вирусы рассматривались как мельчайшие бактерии. В 1933 году эта точка зрения была опровергнута. Уэндел Стэнли, работавший в Рокфеллеровском институте, получил экстракт вируса табачной мозаики и инфицированных растений и очистил его. Очищенный вирус осаждался в виде кристаллов. Кристаллизация - это один из главных тестов на наличии химически чистого соединения, не содержащего примеси: таким образом, стало ясно, что химической точки зрения вирус намного проще живого организма.

Вирусы в первые были открыты в 1892 г. выдающимся русским биологом Д.И. Ивановым, который стал основателем вирусологии.

Сейчас известно около 200 форм животных вирусов, 170 растительных вирусов и 50 бактериальных вирусов. Никто не знает, сколько существует вирусов, почти всегда можно выделить новые вирусы.

Немалую роль вирусы играют в эволюции организмов. Вирусы - мощный мутагенный фактор. После вирусных заболеваний у человека и животных резко возрастает число повреждённых хромосом. Таким образом, вирусы являются поставщиками новых мутаций для естественного отбора. Геном вируса может включаться в геном хозяина, и вирусы могут переносить генетическую информацию. С помощью электронного микроскопа изучена структура вирусов. Вирус табачной мозаики, например имеет палочковидную форму; его длина составляет 300нм и диаметр 15нм. В состав вируса входит единственная молекула РНК в 6000 нуклеотидов. Выводя основные группы вирусов такие как РНК - содержащиеся вирусы, ДНК - содержащиеся вирусы, вироиды и многие другие. Одно-цепочные РНК - содержащиеся вирусы подразделяются на вирусы позитивным (плюс нитевым) и негативным (минус нитевым) геномами. В первом случае РНК функционирует как матричная, во втором случае на ней образуется комплиментарная цепь, которая служит для синтеза мРНК вируса. Позитивные делятся на оболочные и безоболочные. Например, вирус табачной мозаики имеет оболочку, а вирус полиамилита и ящура не имеет оболочку. К позитивным вирусам относятся арбовирусы они переносят жёлтую лихорадку.

Негативные вирусы вызывают бешенство, корь, свинка, болезнь Ньюкасла домашних птиц.

ДНК содержащиеся вирусы вызывают паппиломы и герпес. Заражение герпесом приводит к появлению язвенных и гнойных пузырьков. Также герпес вызывает заболевание половых органов, ветряную оспу, лишай и некоторые виды рака. Гепатит "Б" вызывает, содержащиеся частично двух цепочную ДНК, а гепатит "А" вызывает РНК - содержащихся вирусов. Вероиды - это мельчайшие из известных возбудителей болезни; они намного меньше вирусных генов и лишены белковой оболочки. Известные вероиды растений, они состоят из однонитевой молекулы РНК, которая автономно реплицируется в заряжённых клетках. Один из вироидов стал причиной гибели миллионов кокосовых пальм на Филиппинах.

Вирусы также поражают бактерии, которые называются бактериофагами или фагами. Один из распространенных фагов - Т4. Он имеет сложную структуру, чем у вирусов. Длина его 100нм, а сам фаг состоит из пяти "частей": чехла отростка, способного к сокращению, базальной пластинки и нитей отростка. Длинная молекула ДНК уложена в виде спирали головки фага.

Вирусы размножаются, используя генетический аппарат клетки. Размножение вируса происходит в три этапа: вирусные нуклеиновые кислоты "заставляют" клетку синтезировать новые вирусы ферменты; синтезируются в необходимом количестве вирус специфические нуклеиновых кислот и белков; происходит сборка вирусных частей.

Вирусы являются одной из самых распространённых форм существования органической материи на планете по численности: воды мирового океана содержат около 250 миллионов частиц бактериофагов на миллилитр воды. Вирусы играют важную роль в регуляции численности популяций видов живых организмов.

В жизни человека вирусы играют отрицательную роль – вызывают заболевания органов:
- дыхания (грипп);
- пищеварения (гепатит);
- нервной системы (полиомиелит, энцефалит, бешенство);
- а также кожи и слизистых оболочек (герпес, оспа);
- угнетающие иммунитет (СПИД).

В современном мире человечество ищет такой препарат, который мог бы заставить исчезнуть СПИДу.

Синдром приобретённого иммунной дефицита (СПИД) впервые обнаружен в 1981 году в Калифорнии (США). Вирус иммунной дефицита человека (ВИЧ) передаётся через кровь и поражает иммунную систему человека, который становится беззащитным против других болезней. Человек, заражённый СПИДом, может не болеть в течение пяти лет. Лекарств против СПИДа нет. И ещё не удалось спасти ни одного человека. В 1993 году число заражённых СПИДом достигло 15 миллионов человек. Первое декабря объявлен днём всемирной борьбы с о СПИДом. Единственная спасение от СПИДа - личная профилактика т.е.:

Пользование одноразовыми шприцами.

Пользоваться презервативами.

Оспа - вирусная инфекционная болезнь, исчезнувшая в 20 веке в бывшем СССР, оспа не отмечалась с 1937 года. Последний случай был зарегистрирован осенью 1977 году в Эфиопии. В 1980 году "ВОЗ" (всемирная организация здравоохранения) официально объявила о полной ликвидации оспы на Земле.

И наконец грипп, который образует целые эпидемии приводящие к летальному исходу. Зимой 1968/69 года в США было зарегистрировано 50 млн. случаев кон конского гриппа, при этом 70000 человек погибло. Колоссальная эпидемия гриппа 1918/19 г. охватила весь земной шар, проходила в виде трёх волн и унесла 20 млн. человек.

Более тысячи известных заболеваний растений вызываются вирусами, относящиеся примерно к 100 различным типам. Вирусные болезни растений, как правило, распространяются с помощью беспозвоночных - насекомых. Сосущие насекомые, такие как тля и цикадки переносят вирус вместе с соком. Вирусы растений содержат РНК, за исключением каулимовирусы и геминивирусы. В большинстве случаев капсид вирусов растений состоит из одного типа белка.

Вирусы вызывают рак у многих групп животных. Помимо ретро вирусов существует группа ДНК - содержащиеся. Герпесвирусов (вирус Эпгитейна-Барр), вызывающий два типа рака у человека.

Взаимодействуя с клеткой организма хозяина, вирус изменяет процессы жизнедеятельности, строение и ведет к гибели. Вирусы вызывают заболевания клеток человека, животных, растений. В природе вирусы регулируют численность своих хозяев. Таким образом происходит естественный отбор – самые сильные организмы (способны вырабатывать антитела) имеют шанс выжить.



Гимназия №10

Реферат


на тему:

«Роль вирусов в природе и жизни человека»

Выполнил:

ученик 10 класса Б,

Хлудков Николай

г. Новокузнецк 2011

План:
І. Вирусы

ІІ. Пути проникновения вируса в организм хозяина

ІІІ. Защитные реакции организма против вирусных инфекций

ІV. Роль вирусов в биосфере

V. Во избежание заражения

Вывод
І. Вирусы

Вирус представляет собой молекулы нуклеиновых кислот (ДНК или РНК, некоторые, имеют оба типа молекул - мимивирусы), заключённые в белковую оболочку и способны инфицировать живые организмы.

От других инфекционных агентов вирусы отличает капсид.

Капсид - это внешняя оболочка вируса, состоящая из белков. Капсид выполняет несколько функций:

Защита генетического материала вируса от механических и химических повреждений.

Определение к возможности заражения клетки.

На начальных стадиях заражения клетки: прикрепление к клеточной мембране, разрыв мембраны и внедрение в клетку генетического материала вируса.

В зависимости от структуры и хим. состава оболочки различают простые и сложные вирусы .

Простые вирусы состоят из НК и капсида. Имеют различную форму: палочко-, шаро-, и нитевидную.

Сложные вирусы покрыты дополнительно липопротеидной мембраной, для распознавания рецепторов клетки. Могут ещё содержать углеводы и ферменты. Это вирусы полиомиелита, гепатита В, оспы. Могут выдерживать высокую температуру вне клетки.

Строение вируса ВИЧ.


ІІ. Пути проникновения вируса в организм хозяина
Пути проникновения в орг. человека различны:

Воздушно-капельным путём от больного человека (грипп, корь, оспа);

С пищей (вирус ящура);

Через повреждённую поверхность кожи (бешенство, герпес, оспа);

Половым путём (ВИЧ, герпес);

Через кровососущих (комары – жёлтую лихорадку, клещи – энцефалит, крымскую лихорадку);

При переливание крови, операциях передаются вирусы СПИДа и гепатита В;
ІІІ. Защитные реакции организма против вирусных инфекций
Защита организмов от вирусов принадлежит иммунной системе .

При попадании вирусной частицы в организм вырабатываются антитела, защитные белки – иммуноглобулины, они предотвращают попадание в клетку вируса. В случае если вирус все же попал внутрь клетки, то вырабатываются другие защитные белки – интерфероны.

В одних случаях, организм после перенесенного заболевания вырабатывает стойкий иммунитет к этому виду вируса (оспа, корь). В других случаях возможно повторное заболевание (грипп).
ІV. Роль вирусов в биосфере
Вирусы являются одной из самых распространённых форм существования органической материи на планете по численности: воды мирового океана содержат около 250 миллионов частиц бактериофагов на миллилитр воды. Вирусы играют важную роль в регуляции численности популяций видов живых организмов.

В жизни человека вирусы играют отрицательную роль – вызывают заболевания органов:

Дыхания (грипп);

Пищеварения (гепатит);

Нервной системы (полиомиелит, энцефалит, бешенство);

А также кожи и слизистых оболочек (герпес, оспа);

Угнетающие иммунитет (СПИД).
V. Во избежание заражения
Во избежание заражением вирусами необходимо придерживаться правил личной гигиены: не пить некипяченую воду, не употреблять в пищу немытые овощи и фрукты, недостаточно обработанные мясо и рыбу.

Следует делать профилактические прививки.

Вывод
Взаимодействуя с клеткой организма хозяина, вирус изменяет процессы жизнедеятельности, строение и ведет к гибели. Вирусы вызывают заболевания клеток человека, животных, растений. В природе вирусы регулируют численность своих хозяев. Таким образом происходит естественный отбор – самые сильные организмы (способны вырабатывать антитела) имеют шанс выжить.

вирус инфекций заражение


Литература
1. Материалы интернета;

2. Н.Е. Кучеренко, Ю.Г. Вервес, П.Г. Балан, и др. – К. Генеза, 1998. – 464:ил.

Вирусы вызывают ряд заболеваний растений, животных, бактерий. Проникновение вирусов в клетки организма обуславливает в нем инфекционные процессы.

Инфекция – это комплекс процессов, которые происходят при взаимодействии инфекционного агента (бактерии, грибы, вирусы) с организмом хозяина.

Инфекции бывают острые и хронические. Различают несколько видов вирусной инфекции:

  1. Острая инфекция вызывает гибель клетки после образования нового поколения вирусов.
  2. Хроническая инфекция характеризуется тем, что на протяжении продолжительного времени в клетке образуются новые поколения вирусов. Процессы продуцирования вирусов могут чередоваться с торможением их. Вирусная инфекция может передаваться от материнской клетки дочерней.
  3. Латентная (скрытая) инфекция характеризуется тем, что вирусы не выделяются в окружающую среду. Возбудителя тяжело обнаружить (например, вирусы герпеса). Латентная инфекция по действию определенных факторов может перейти или в ocтpyю, или в хроническую.
  4. Смешанная – это такая инфекция, когда клетку поражают два или больше разных видов вирусов. Один из них может подавлять или усиливать размножение другого.

Арбовирусы

Вирусы попадают в организм с пищей (например, вирус энтерита собак), через поврежденную или неповрежденную кожу (вирусы бешенства, герпеса, папилломы и т. п.), воздушно-капельным (через органы дыхания, например вирусы гриппа, кори и т. п.), половым путем (вирусы герпеса, СПИДа и т. п.), во время переливания крови или хирургических операций (вирусы СПИДа, гепатита В и т. п.), при участии переносчиков (например, насекомых, клещей – вирусы клещевого энцефалита, желтой лихорадки, вирусы растений и т. п.). Вирусы, которые передаются человеку и позвоночным животным членистоногими, называются арбовирусами .

Проникшие в организм вирусы распространяются по кровеносной, лимфатической (вирусы кори, ВИЧа и т. п.) и нервной системах (вирусы бешенства, полиомиелита) животных и человека, по ведущим тканям – у растений.

Антитела

В организме человека и животных в ответ на проникновение вирусов вырабатываются антитела – иммуноглобулины. Антитела изменяют структуру вирусной оболочки или блокируют ее прикрепительные белки. При этом вирусы не могут связываться с рецепторными участками плазматической мембраны клеток. В клетке могут вырабатываться защитные белки интерфероны, которые не имеют специфичности по отношению к определенным видам вирусов и подавляют их размножение. Их применяют в медицине против вирусных инфекций. Вирусы уничтожаются также при помощи определенных видов лейкоцитов.

Карантин

Вирусы могут обуславливать массовые эпидемические заболевания человека, животных и растений (например, вирусы гриппа, гепатита). Больных необходимо изолировать от здоровых до их выздоровления, лечить с помощью антивирусных препаратов. Такая изоляция называется карантином . Следует также уничтожать переносчиков вирусных заболеваний. Для профилактики вирусных заболеваний надо делать профилактические прививки. Профилактической прививкой удалось преодолеть такие опасные заболевания человека, как оспа и полиомиелит.

Вирусы, вызывающие заболевания человека: полиомиелита, гриппа, брюшного тифа, бешенства, ВИЧа, энцефалита, герпеса, ветряной.оспы, раковых заболеваний и др. У домашних животных – чуму кур, чумку собак, ящур и т. п. У культурных растений – мозаичность, пятнистость, некрозы, опухоли и т. п. Вирусы, стимулирующие образование опухолей, называются онкогенными (от греч. онкос – нарост, опухоль, генос – происхождение).

В природе вирусы способствуют регуляции численности хозяев. Значительное количество бактериофагов (всего насчитывается свыше 100) специализируется на уничтожении определенных микроорганизмов. Большинство из этих микроорганизмов являются возбудителями инфекционных заболеваний человека и животных (холеры, дизентерии, брюшного тифа и т. п.).

Человеком вирусы используются в биологическом методе борьбы с вредными видами насекомых, клещей и других животных, в генетической инженерии. Например, проблему массового размножения кролей в Австралии удалось решить с помощью вируса.

Возможно, вирусы играют определенную роль в эволюции прокариот, поскольку встраиваются в наследственный материал клетки хозяина. Они способны передавать наследственную информацию oт одних особей этих организмов к другим. Это возможно как в пределах одного вида, так и между разными.

Вирусы могут переносить гены между клетками одного организма, между клетками разных организмов, разных видов и классов.

В наше время вирусы рассматриваются не только как возбудители болезней, но и как переносчики генетической информации.