Морфология и структура вируса герпеса. Механизм размножения вируса герпеса в клетке. Поксвирусы. Репродукция поксвирусов

УДК 578.3:616.523

М.Т.Луценко, И.Н.Гориков

НЕКОТОРЫЕ СВЕДЕНИЯ О МОРФОЛОГИИ ГЕРПЕС-ВИРУСОВ И ИХ СВОЙСТВАХ

Дальневосточный научный центр физиологии и патологии дыхания Сибирского отделения РАМН,

Благовещенск

В настоящей работе представлены литературные сведения, характеризующие строение вирусов простого герпеса и их механизм взаимодействия с клетками-мишенями.

Ключевые слова: вирус, герпес.

SUMMARY M.T.Lutsenko, I.N.Gorikov

SOME DATA ABOUT HERPES-VIRUSES

MORPHOLOGY AND THEIR PROPERTIES

The reference data characterizing the structure of simple herpes viruses and the mechanism of their interaction with cells-targets are given in the work.

Key words: virus, herpes.

В вирионе герпеса выявляют 3 компонента: 1) нук-леонд, локализующийся в центральной части; 2) кап-сид, покрывающий нуклеоид и представленный капсомерами; 3) оболочки, которые окружают эти структурные образования . Оболочка вирионов герпеса обычно сохраняет гексагональную форму. Диаметр оболочки составляет от 170 до 210 нм. Встречаются два и более нуклеокапсида, имеющих общую оболочку. Часто обнаруживаются вирусные частицы, которые не имеют оболочки. Капсид обычно гексагональной формы. Каждая грань капсида является равносторонним треугольником, состоящим из 15 субъединиц (интервал между субъединицами 3 нм). При использовании метода негативного контрастирования установлено, что капсид герпесвирусов является икосаэдром. Капсомеры - это полые структуры, имеющие на поперечном срезе пента- и гексагональное строение. Ребро икосаэдра представлено 5 капсомерами. 12 вершин образованы одним из капсомеров и окружены пятью соседними. Другие капсомеры граней треугольников также ограничены пятью соседними. Капсомер сохраняет форму удлиненной призмы. Его размеры составляют 9,5 х 12,5 нм. На поперечном срезе вершины икосаэдра они имеют пентагональную форму. Остальные капсомеры поверхности капсида имеют гексогональную форму с внутренним отверстием до 4 нм. Таким образом, капсид вириона герпеса представлен 162 капсомерами, которые упакованы в симметричном порядке, в соотношении 5:3:2 (рис. 1). При проведении электронной микроскопии преобладают вирионы (с оболочкой или без нее), в центральную часть которых не проникает фосфорно-вольфрамовая кислота. Эти вирионы

условно названы «полными», то есть они содержат нуклеоид. Одновременно идентифицируются вирионы, у которых фосфорно-вольфрамовая кислота определяется в их центральной части. Данный морфологический факт позволяет назвать их «пустыми» ви-рионами и предположить отсутствие у них нуклеоида. У таких вирионов обычно четко контурируется капсид. В его составе выявляется до 24 капсомеров. По мнению автора , ограниченное оболочкой капсида гексагональное пространство, в котором четко контурируется фосфорно-вольфрамовая кислота, имеет средний размер 78 нм (рис. 2).

Рис. 2. Вирус простого герпеса. Срез зараженной клетки фибробласта. Незрелые вирионы в ядре клетки (по А.Ф.Бочарову). Увеличение ><160000.

Вирионы герпес-вирусов, характеризуются неправильной сферической формой . Они имеют диаметр 120-200 нм и 4 основных компонента: электронно-плотную сердцевину; икосаэдральный нуклеокапсид; электронно-плотную внутреннюю оболочку (tegument) и внешнюю мембрану (envelope). Сердцевина представлена ДНК, ассоциированной с белками. Диаметр капсида составляет от 100 до 110 нм. Он имеет форму икосаэдра, в котором выявляются до 162 капсомеров (150 гексамеров и 12 пентамеров). Последние размещаются по 5 на каждой фасетке (edge). Внутренняя оболочка представлена белковыми глобулярными молекулами, а наружная - двуслойной липидной мембраной с определяющимися в ее структуре белковыми выступами.

Генетический аппарат вирусов простого герпеса состоит из линейной двунитчатой ДНК . ДНК имеет молекулярную массу, которая варьирует от 80 до 150 х 1 Ое дальтон. Геном вируса в состоянии кодировать свыше 60 генных продуктов. В вирионах определяются более 30 полипептидов: 7 гликопротеидов (гликопротеиды gB, gC, gD, gE gF, gG и gX) четко визуализируются на поверхности и участвуют в образовании вируснейтрализующих антител . Шесть белков выявляются в капсиде, в том числе АТФаза и протеинкиназа. Другие протеины (в частности, тими-динкиназа) относятся к неструктурным белкам и синтезируются в процессе репродукции вируса в клетке хозяина. В возбудителях инфекции определяются антигены, которые связаны с внутренними белковыми молекулами и наружными гликопротеидами. Однако ключевыми иммуногенами остаются gB, gC и gD. В очищенных полных вирионах определяется более 20% липидов .

Репликация вирусов простого герпеса в клетке -многоступенчатый процесс (рис. 3). Вирус простого герпеса не имеет возможности размножаться самостоятельно и его воспроизведение осуществляется только в живой клетке. Процесс размножения возбудителя включает следующие этапы:

1) взаимодействие с рецептором на поверхности клетки хозяина;

2) пенетрация в клетку;

3) сбрасывание капсида;

4) транскрипция;

5) посттранскрипционное образование мРНК;

6) трансляция вирусного протеина;

7) образование и модификация протеина;

8) репликация вирусного генома (ДНК или РНК);

9) внутриклеточное накопление вирусных частиц;

10) выведение вирионов из инфицированной клетки.

На первом этапе вирус простого герпеса взаимодействует с клеточным рецептором и посредством эн-доцитоза внедряется в клетку. При обнажении капсида он появляется в цитозоле. Сформировавшийся комплекс ДНК - белок обычно поступает в ядро. Затем капсид разрушается и вирионная ДНК достигает нук-леоплазмы. Здесь она начинает функционировать, транскрибируясь клеточной РНК-полимеразой. При

этом выделяют сверхраннюю, раннюю и позднюю транскрипцию, процессинг мРНК, а также синтез кодируемых продуктов с частичным обратным их транспортом через кариолемму.

Рис. 3. Цикл репликации вируса герпеса (схема)

Затем ДНК реплицируется с формированием дочерних молекул, а также незрелых капсидов. При этом регистрируется их почкование через кариолемму, а также образование зрелых капсидов на мембранных структурах эндоплазматического ретикулума, их транспорт к поверхности через модифицированные элементы цитоплазматического ретикулума и выход наружу (рис. 3). Следует отметить, что в ядре клетки-хозяина в процессе репликации регистрируется транскрипция вирусной ДНК и происходит процесс трансформации образованной РНК в зрелую мРНК. В цитоплазме клетки-хозяина вирусная мРНК транслируется в протеин (наибольшее его количество образуется посредством расщепления и гликозилирования). Экспрессия гена вируса простого герпеса регулируется вирусными протеинами, которые приводят к последовательной экспрессии мРНК и белков. Репликация ДНК вируса происходит в ядре. Внутри ядерной мембраны из вновь синтезированной вирусной ДНК и вирусных протеинов капсида формируются вирусные частицы. Вирионы выходят из инфицированных клеток посредством их слияния с мембраной клеток или в результате лизиса цитолеммы клеточных элементов.

В процессе репродукции в инфицированной клетке вирус простого герпеса целенаправленно воздействует на ее ферментные системы, особенно на те, которые непосредственно участвуют в синтезе полинуклеотид-ной цепи возбудителя из нуклеозидов и мононуклеотидов (киназ, рибонуклеотидредуктаз, ДНК-полимераз и нуклеаз) . По мнению авторов, первостепенное значение во взаимодействии вируса и клетки имеет ти-мидин-киназа, которая катализирует фосфорилирова-ние тимидина с помощью АТФ и образованием тимидинмонофосфата и аденозиндифосфата. Известно, что тимидинкиназа участвует в фосфорилиро-вании дезоксицитидина, дезокскиуридина, ациклогуанозина, а также некоторых синтетических нуклеозидов, используемых при химиотерапии данной инфекции.

В репликации вирусной ДНК участвует вирусная ДНК-полимераза, взаимодействующая с вирусиндуци-рованным ДНК-связанным белком. Последний форми

рует комплексы с ДНК и выявляется с помощью электронной микроскопии.

При первичном поражении наблюдается репликация возбудителя в месте его инвазии. Обычно вирус проникает в ганглии посредством гематогенного распространения или через аксоплазму. Вирус простого герпеса характеризуется длительной персистенцией .

Латентность - один из механизмов сохранения возбудителей в клетке человеческого организма, иммунная система которого исключает создание условий для полноценного развития острого инфекционно-воспалительного процесса при взаимодействии макро- и микроорганизма (вируса). В формировании хронической вирусной инфекции первостепенное значение имеют:

а) существование генетически детерминированной резистентности клеток к вирусу герпеса. В таком случае размножение возбудителей происходит без цито-деструктивного эффекта или при этом регистрируется селекция устойчивых клеточных элементов, в которых определяются вирионы;

б) хронизация герпетической инфекции отмечается в случае постоянного воздействия на возбудитель значительного количества ингибиторов (антител, интерферона, противовирусных препаратов и т.д.);

в) возможно, что эволюция различных видов возбудителей привела к существованию вирусов в виде нук-леотидов различной степени гетерогенности и ин-фекционности ДНК-транскриптов РНК в геноме клеток. Данные вирусные образования, по всей вероятности, могут формировать ассоциации с другими возбудителями в клетках с определенной генетически обусловленной резистентностью;

г) выявляются герпетические вирусы, обладающие устойчивостью к иммунокомпетентным клеткам ;

д) часто при взаимодействии вирусов герпеса с клетками не наблюдается их разрушение, а в процессе де-ления таких вирусов визуализируется передача последних в дочерние клетки. При этом в воспроизводстве вирионов активное участие принимают внутриклеточные цитоплазматические структуры .

Пусковыми моментами в реактивации герпеса являются: тегшв, различные стрессовые ситуации, травмы и нарушения пищеварения . В реактивации персистирующих медленных вирусных инфекций кардинальную роль играет проживание человека в условиях Азиатской части Крайнего Севера Российской Федерации . Тем более что экспериментально установлено увеличение адсорбции вируса герпеса на поверхности клетки при низких температурах, в то время как остальные этапы взаимодействия данного возбудителя с мембраной клеток в основном осуществляются при более высокой температуре окружающей среды . На этом фоне нельзя исключить специфический характер взаимоотношений, складывающийся между бактериальной флорой, колонизирующей воз-духоносносные пути, мочевыделительные, половые органы и пищеварительный тракт с находящимися в персистирующей форме вирусами. Однако известно,

что при определенных условиях низкие температуры способствуют сохранению популяции микроорганизмов и увеличению числа их колоний . По мнению авторов, при понижении температуры окружающей среды повышается вирулентность бактерий (увеличивается их подвижность, определяющая их хемотакси-ческие свойства, возрастает капсулообразование и синтез биополимеров с токсической функцией, а также ферментов, характеризующих патогенные свойства возбудителей). Таким образом, в регионах с низкими температурами может складываться особый характер взаимоотношений между системой «бактерии - ДНК - вирусы». В литературе приводится весьма убедительные клинико-иммунологические и вирусологические данные, указывающие на специфику резистентности населения, проживающего на Крайнем Севере: преобладание стертых и хронических форм заболеваний; низкий уровень иммунологической резистентности детей пришлого населения по сравнению с коренными жителями Севера; нарушение календаря прививок в результате длительных противопоказаний, что приводит к увеличению числа людей, восприимчивых к вирусным инфекциям . Показано, что в суровых климатических условиях на резистентность организма влияют:

1) дизадаптация мигрирующего населения при переезде на постоянное место жительства и при кратковременном пребывании людей в период отпуска в южных районах России;

2) воздействие неблагоприятных биологических, геохимических и техногенных факторов (полярная ночь, дефицит микро- и макроэлементов, авитаминоз, краевая патология (гельминтозы, вирусные инфекции, передающиеся кровососущими насекомыми), а также ультрафиолетового излучения и радиационного фона;

3) различия в восприимчивости и в течении инфекции у коренного и пришлого населения, обусловленные сроками проживания на Севере и их морфофункциональными особенностями;

4) организационные и иммунологические проблемы вакцинопрофилактики, обусловленные низкой плот-ностью населения, что приводит к росту числа серонегативных пациенток среди привитых женщин;

5) своеобразием половозрастной и социальной структуры населения, формирующей неиммунные группы и носителей инфекции .

По некоторым данным, при эпидемиологическом и иммунологическом изучении цитомегаловирусной инфекции у рожениц и новорожденных коренного и пришлого населения на Крайнем Севере, у переселившихся из других регионов России женщин отмечается более частое обнаружение цитомегаловИ-руса в клетках (30,8%) по сравнению с аборигенами (12,2%) .

При исследовании специфического иммунитета комплементсвязывающие антитела определяются у 51,9% женщин коренного населения и у 52,9% - пришлого населения в родах. В то же время наблюдается более низкий показатель серопозитивных небеременных пациенток (35,3%) среди коренного населения и

более высокий показатель (38,1%) - среди приезжих женщин. Обнаруженные авторами достоверные различия (р<0,05) между небеременными и беременными пациентками позволяют говорить о значении геста-ционного процесса в реактивации цитомегаловируса у женщин.

Как показывают исследования, выделение вируса простого герпеса возрастает у беременных в течение некоторых зимних и весенне-летних месяцев. Пик заболеваемости герпетической инфекцией в зимний период года связан с понижением температуры, а в летний период - с повышением солнечной активности и радиационного фона .

В нарушении характера взаимоотношений в системе «человек - вирус простого герпеса», ключевую роль могут играть вирусы гриппа А, а также РНК- и ДНК-респираторные вирусы. Так, в период эпидемии гриппа А или циркуляции других возбудителей изменения иммунного статуса у пациентов способствуют активации вируса герпеса и его переходу в инфекционную форму, обусловливающую субклиническую или клиническую картину заболевания . При гриппе А, а также во время выявления вспышек гриппа

B, парагриппа 1-3 типов, риносцинтиальной и аденовирусной инфекции у больных клинически диагностируется герпес в виде высыпаний на губах, на коже крыльев носа, на щеках, ушных раковинах и коже век, а также на слизистой оболочке полости рта. Герпетические высыпания у больных с гриппом А появляются на губах и коже лица на 3-4 сутки заболевания . Клинические признаки герпеса определяются у 14-25% всех пациентов с гриппом.

В развитии герпетической инфекции важное значение имеют факторы и ингибиторы адсорбции возбудителя, и специфический противовирусный иммунитет. Существуют химические вещества, которые могут нарушать установление контакта между вирусом герпеса и цитолеммой соматической клетки благодаря конкуренции за различные рецепторы, обеспечивающие процесс адсорбции возбудителя .

ЛИТЕРАТУРА

1. Баринский И.Ф. Семейство Нсгрс8\"тс1ас // Общая и частная вирусология / под ред. В.М.Жданова,

C.Я.Гайдамович. М.: Медицина, 1982. Т.2. С.".375-412.

2. Глинских Н.П. Неизвестная эпидемия: герпес (патогенез, диагностика, клиника, лечение). Смоленск: Фармаграфикс, 1997. 162 с.

3. Дубов А.В. Адаптация системы человек-вирус в условиях Крайнего Севера // Адаптация человека в различных климатогеографических и производственных условиях: тез. докл. III Всесоюз. конф. Новосибирск, 1981. Т.З. С.98-99.

4. Особенности эпидемиологии инфекционных болезней на Азиатском Крайнем Севере / Егоров И.Я. [и др.] // Эпид. и инф. болезни. 1999. №3. С.60-62.

5. Клиника генитальной герпетической инфекции во время беременности / Малевич Ю.К. [и др.] // Акуш. игин. 1986. № 10. С.69-71.

6. Малевич Ю.К., Коломиец А.Г. Патогенез перинатальной герпетической инфекции // Вопр. охраны мат. и дет. 1987. Т.32, №1. С.64-68.

7. Петрович Ю.А., Терехина Н.А. Ферментная стратегия вируса простого герпеса // Успехи соврем, биол. 1990. Т. 109, Вып.1. С.77-89.

8. Смородинцев А.А., Коровин А.А. Грипп. JL: Медгиз, 1961. 372 с.

9. Соколов М.И. Острые респираторные вирусные инфекции: этиология, лабораторная диагностика, эпидемиология, профилактика. М.: Медицина, 1968. 259

10. Соловьев В.Д., Баландин И.Г. Биохимические основы взаимодействия вируса и клетки. М.: Медицина, 1969. 124 с.

11. Сомов Г.П., Варвашевич Т.Н. Влияние низкой температуры на вирулентность некоторых патогенных бактерий // Журн. микробиол. 1992. №4. С.62-66.

12. Соринсон С.Н. Инфекционные болезни в поликлинической практике: руководство для врачей. СПб.: Гиппократ, 1993. 320 с.

13. Сухих Г.Т., Валько JI.B., Кулаков В.И. Иммунитет и генитальный герпес. Н.Новгород-Москва: Издательство НГМА, 1997. 224 с.

14. Эпидемиологические и иммунологические исследования цитомегалии у рожениц и новорожденных среди коренного и пришлого населения на Крайнем Севере / Тюкавкин В.В. [и др.] // Вопросы вирусол. 1985. №2. С.215-219.

15. Шубладзе А.К., Бычкова Е.Н., Баринский И.Ф. Вирусемия при острых и хронических инфекциях. М.: Медицина, 1974. 176 с.

16. Vaughan P.J., Purifoy D.J., Powell K.L. DNA-binding protein associated with herpes simplex virus DNA polymerase // J. Virol. 1985. Vol.53. P.501-508.

17. Wildy P. Portraits of viruses. Herpes virus // Intervirology. 1986. Vol.25. P.117-140.

Поступила 11.10.2010

Михаил Тимофеевич Луценко, руководитечъ лаборатории, 675000, г. Благовещенск, ул. Калинина, 22;

Mikhail Т. Lutsenko, 22, Kalinin Str., Blagoveschensk, 675000;

Микробиология: конспект лекций Ткаченко Ксения Викторовна

2. Вирус герпеса

2. Вирус герпеса

Семейство Herpesviridae включает в себя подсемейства:

1) a-herpesviruses (I и II типов, герпес-зостер);

2) b-herpesviruses;

3) g-aherpesviruses.

Относятся к ДНК-овым вирусам. ДНК двухнитевая, линейная. Геном состоит из двух фрагментов: длинного и короткого. Нить ДНК намотана на центральную белковую культуру. Капсидная оболочка построена из простых белков, имеет кубический тип симметрии. Имеется суперкапсидная оболочка (липидная мембрана со слоем гликопротеидов), неоднородная по строению, образует шиповидные отростки.

Герпес-вирусы относительно нестабильны при комнатной температуре, термолабильны и быстро инактивируются растворителями и детергентами.

a-герпес типа I вызывает афтозный стоматит в раннем детском возрасте, лабиальный герпес, реже – герпетический кератит и энцефалит.

a-герпес типа II вызывает генитальный герпес, герпес новорожденных, является предрасполагающим фактором к развитию рака шейки матки.

Герпес-зостер является возбудителем опоясывающего лишая и ветряной оспы. Это типичная герпес-вирусная инфекция. Клинически проявляется появлением пузырьков на коже по ходу ветвей соответствующих нервов. Заболевание протекает тяжело, но быстро наступает выздоровление.

После перенесенной инфекции остается пожизненный иммунитет. Однако возможны рецидивы болезни, связанные с персистенцией вируса в нервных ганглиях.

После перенесенного герпес-вирусного заболевания вирус пожизненно персистирует в нервных ганглиях (чаще тройничного нерва). При снижении защитных сил организма происходит развитие вирусной инфекции.

b-герпес (цитомегаловирус) при размножении в клетках культуры вызывает цитопатические изменения. Имеет сродство с клетками слюнных желез и почек, вызывая в них образование крупных многоядерных включений. При развитии заболевания имеют место вирусемия, поражение внутренних органов, костного мозга, ЦНС, развитие иммунопатологических заболеваний.

g-герпес-вирус (вирус Эпштейна-Бара) вызывает инфекционный мононуклеоз. Может являться предрасполагающим фактором в развитии опухолей.

Диагностика:

1. a-герпес-вирус:

1) выявление характерных многоядерных гигантских клеток с тельцами включений в соскобах из области поражений;

2) культивирование в куриных эмбрионах;

3) биологическая проба;

4) серологические исследования (РСК, ИФА);

5) метод прямой иммунофлюоресценции с моноклональными антигенами.

2. b-герпес-вирус:

1) обнаружение крупных цитомегаловирусных клеток в моче и слюне;

2) культивирование в культуре фибробластов эмбриона человека;

3) серологическое исследование (РСК);

4) иммунофлюоресценция.

3. g-герпес-вирус:

1) выделение вируса в культуре фибробластов;

2) микроскопия мазков осадка мочи, слюны для выявления типичных гигантских клеток;

3) серологические методы (РСК, РПГА и РН).

1) противовирусные препараты (ацикловир);

2) интерферон.

Из книги Удивительная биология автора Дроздова И В

«Зловредный» вирус В 1887 г. в Крыму плантации табака поразила неизвестная болезнь: листья растений покрывались сложным абстрактным рисунком, растекавшимся по листу, словно краска, переливающаяся с одного листа на другой, от одного растения к другому. Сельское хозяйство

Из книги Микробиология: конспект лекций автора Ткаченко Ксения Викторовна

2. Вирус герпеса Семейство Herpesviridae включает в себя подсемейства:1) a-herpesviruses (I и II типов, герпес-зостер);2) b-herpesviruses;3) g-aherpesviruses.Относятся к ДНК-овым вирусам. ДНК двухнитевая, линейная. Геном состоит из двух фрагментов: длинного и короткого. Нить ДНК намотана на центральную

Из книги Микробиология автора Ткаченко Ксения Викторовна

3. Вирус краснухи Относится к семейству Togaviridae, роду Rubivirus.Это сферические оболочечные вирусы с икосаэдральным нуклеокапсидом, заключенным в липидную оболочку. Средняя величина рубивирусов – 60 нм. Поверхность вирусов покрыта гликопротеиновыми спикулами, содержащими

Из книги Тайные тропы носителей смерти автора Даниэл Милан

1. Вирус полиомиелита Относится к семейству Picornaviridae, роду энтеровирусов.Это относительно небольшие вирусы с икосаэдральной симметрией. Средний размер вирусных частиц – 22–30 нм. Устойчивы к действию жировых растворителей. Геном образует несегментированная молекула

Из книги Планета вирусов автора Циммер Карл

ЛЕКЦИЯ № 26. ВИЧ (вирус иммунодефицита человека) 1. Структура ВИЧ относится к семейству ретровирусов.Вирион имеет сферическую форму, диаметром 100–150 нм. Кубический тип симметрии. Наружная (суперкапсидная) оболочка вируса состоит из бимолекулярного слоя липидов, который

Из книги Эволюция человека. Книга 2. Обезьяны, нейроны и душа автора Марков Александр Владимирович

1. Вирус бешенства Относится к семейству Rhabdoviridae, роду Lyssavirus.Рабдовирусы отличают пулевидная форма, наличие оболочки, спиральная симметрия; геном образован РНК. Средние размеры вириона – 180 ? 75 нм; один конец закруглен, другой плоский; поверхность выпуклая с шарообразными

Из книги В мире незримого автора Блинкин Семен Александрович

1. Вирус гепатита А Вирус гепатита А относится к семейству пикорнавирусов, роду энтеровирусов.Вирус гепатита А по морфологии сходен с другими представителями рода энтеровирусов. Геном образует однонитевая молекула +РНК; он содержит три основных белка. Не имеет

Из книги автора

2. Вирус гепатита В Относится к семейству Hepadnaviridae. Это икосаэдральные, оболочечные ДНК-содержащие вирусы, вызывающие гепатиты у различных животных и человека. Геном образует неполная (с разрывом одной цепи) кольцевая двухнитевая молекула ДНК. В состав нуклеокапсида

Из книги автора

53. Вирус бешенства. Флавивирусы Вирус бешенства. Относится к семейству Rhabdoviridae, роду Lyssavirus.Рабдовирусы отличают пулевидная форма, наличие оболочки, спиральная симметрия; геном образован РНК.Бешенство – острая инфекция ЦНС, сопровождающаяся дегенерацией нейронов

Из книги автора

54. Вирус гепатита А и В Вирус гепатита А относится к семейству пикорнавирусов, роду энтеровирусов.Вирус гепатита А по морфологии сходен с другими представителями рода энтеровирусов. Геном образует однонитевая молекула +РНК. Не имеет суперкапсидной оболочки.Основной

Из книги автора

Вирус - животное - человек Шаг за шагом мы проследили долгий и сложный путь, которым ученые шли к объяснению отношений между вирусом Тягиня и комарами. Но это лишь одно звено (важное, но не единственное) в той цепи, по которой в природе циркулирует инфекция. Не менее

Из книги автора

Взгляд со звезд Вирус гриппа Инфлюэнца. Если закрыть глаза и произнести это слово вслух, оно звучит очень мило. Так могла бы называться очаровательная древняя итальянская деревня. Слово «инфлюэнца» и в самом деле итальянское, оно означает «воздействие». Кроме того, это

Из книги автора

Рогатый кролик Вирус папилломы человека Истории о рогатых кроликах ходили на протяжении столетий. В конечном итоге они приобрели форму мифа о рогатом кролике. Если, пребывая в Вайоминге, вы зайдете в магазин, торгующий открытками, то у вас есть все шансы обнаружить на

Из книги автора

Молодая чума Вирус иммунодефицита человека Каждую неделю Центр по контролю и предотвращению заболеваний (США) выпускает брошюру, называемую «Еженедельный отчет о заболеваемости и смертности населения». Выпуск, пришедшийся на 4 июля 1981 года, был обыкновенным для такого

Из книги автора

Вирус мозга? По мнению Ричарда Докинза (2005), распространение компьютерных вирусов, обычных биологических вирусов и различных идей (мемов), в том числе всевозможных суеверий, основано на одном и том же механизме. "Эгоистичный" и вовсе не обязательно приносящий пользу своему

Из книги автора

Вирус кори тоже укрощен О том, что корь является вирусной инфекцией, стало известно в 1911 г., но выделить вирус удалось лишь в 1954 г. Десятки лет продолжалось изучение методов культивирования коревого вируса. Трудность изучения объяснялась особыми свойствами вируса. Вне


Ранняя стадия репродукции герпесвирусов . В ранней стадии синтезируются «ранние белки», кодируемые проксимальной третью молекулы ДНК. Они проявляют регуляторные свойства, включая активацию транскрипции других участков вирусного генома, кодирующих ДНК-полимеразу и ДНК-связывающие белки.

Поздняя стадия репродукции герпесвирусов . В позднюю стадию вирусная ДНК-полимераза индуцирует репликацию материнской ДНК. В результате образуются молекулы ДНК дочерней популяции. Часть дочерней ДНК считывают клеточные полимеразы, что вызывает транскрипцию концевых генов, кодирующих структурные протеины (белки оболочки и гликопротеины шипов).

Сборка дочерних популяций герпесвирусов осуществляется в ядре, где капсидные белки окружают молекулы ДНК, формируя нуклеокапсиды. Финальная стадия морфогенеза герпесвирусов - формирование суперкапсида на внутренней поверхности ядерной мембраны. Зрелые дочерние популяции отпочковываются от модифицированной ядерной мембраны, транспортируются через цитоплазму и выделяются наружу.
α-герпес -вирусы, включающие HSV-1, HSV-2 и VZV, характеризуются быстрой репликацией вируса и цитопатическим действием на культуры инфицированных клеток. Репродукция α-герпес-вирусов протекает в различных типах клеток, вирусы могут сохраняться в латентной форме, преимущественно в ганглиях.
β-герпес -вирусы видоспецифичны, поражают различные виды клеток, которые при этом увеличиваются в размерах (цитомегалия), могут вызывать иммуносупрессивные состояния. Инфекция может принимать генерализованную или латентную форму, в культуре клеток легко возникает персистентная инфекция. К этой группе относятся CMV, HHV-6, HHV-7.
γ-герпес -вирусы характеризуются тропностью к лимфоидным клеткам (Т- и В-лимфоцитам), в которых они длительно персистируют и которые могут трансформировать, вызывая лимфомы, саркомы. В эту группу входят вирус Эпштейна-Барр и HHV-8-герпес - вирус, ассоциированный с саркомой Капоши (KSHV). KSHV является наиболее близким по геномной организации Т-клеточно-тропному обезьяньему герпес-вирусу Саймири (HVS).

ВПГ тип 2 (Herpes simplex virus тип 2 - HSV-2), или герпесвирус человека ГВЧ-2;
3. Вирус ветряной оспы - опоясывающего герпеса (Varicella-zoster virus - VZV), или герпесвирус человека ГВЧ-3;
4. Вирус Эпстайна-Барр - ВЭБ (Epstein-Barr virus, EBV), или герпесвирус человека ГВЧ-4;
5. Цитомегаповирус - ЦМВ, или герпесвирус человека ГВЧ-5;
6. Герпесвирус человека тип б - ГВЧ-6 (Human herpesvirus - HHV-6), или герпесвирус человека ГВЧ-б;
7. Герпесвирус человека тип 7 - ГВЧ-7 (Human herpesvirus - HHV-7);
8. Герпесвирус человека тип 8 - ГВЧ-8 (Human herpesvirus - HHV-8).

"Подсемейство включает также В-вирус обезьян старого света, вызывающий летальное неврологическое поражение.

Рис. 4.26.


Рис. 4.28

Репродукция . После прикрепления к рецепторам клетки оболочка вириона сливается с клеточной мембраной (1, 2). Освободившийся нуклеокапсид (3) доставляет в ядро клетки ДНК вируса. Далее происходит транскрипция части вирусного генома (с помощью клеточной ДНК-зависимой РНК-полимеразы); образовавшиеся иРНК (4) проникают в цитоплазму где происходит синтез (трансляция) самых ранних альфа-белков (I), обладающих регулирующей активностью. Затем синтезируются ранние бета-белки (П) - ферменты, включая ДНК-зависимую ДНК-полимеразу и тимидинкиназу, участвующие в репликации геномной ДНК вируса. Поздние гамма- белки (Ш) являются структурными белками, включая капсид и гликопротеины (А, В, С, D, Е, F, G, X). Гликопротеины диффузно прилегают к ядерной оболочке (5). Формирующийся капсид (6) заполняется вирусной ДНК и почкуется через модифицированные мембраны ядерной оболочки (8). Перемещаясь через аппарат Гольджи, вирионы транспортируются через цитоплазму и выходят из клетки путем экзоцитоза (9) или лизиса клетки (10).

Клинически значимые представители семейства

Вирус простого герпеса относится к семейству Herpesviridae, роду Simplexvirus. Вызывает простой герпес (herpes simplex), характеризующийся везикулезными высыпаниями на коже, слизистых оболочках, поражением центральной нервной системы и внутренних органов, а также пожизненным носительством (персистенцией) и рецидивами болезни.
Вирус простого герпеса включает два типа: ВПГ-1 и ВПГ-2; распространен повсеместно, поражает большую часть населения Земли и существует в организме в латентной форме до момента реактивации.
ВПГ-1 поражает преимущественно область рта, глаз, ЦНС, а ВПГ-2 - гениталии, за что и получил название генитального штамма.
Структура. Структура ВПГ сходна с другими герпесвирусами. Геном ВПГ кодирует около 80 белков, необходимых для репродукции вируса, взаимодействия вируса с клетками организма и иммунным ответом. ВПГ кодирует 11 гликопротеинов, являющихся прикрепительными белками (gB, дС, gD, дН), белками слияния (дВ), структурными белками, иммунными белками «уклонения» (дС, дЕ, gl) и др. Например, СЗ-компонент комплемента связывается с дС, а Fc-фрагмент IgG связывается с gE/gl- комплексом, маскируя вирус и вирус-инфицированные клетки. Существуют гликопротеины, имеющие общие антигенные детерминанты (gB, gD) для ВПГ-1 и ВПГ-2.

Рис. 4.27. Электронограмма ультратонкого среза вируса Эпстайна-Барр (по А. Ф. Быковскому)


Рис. 4.29. Электронограмма ультратонкого среза ВПГ: 1 - оболочка; 2 - капсид; 3 - тегумент. (По А. Ф. Быковскому и др.)


Рис. 4.30.

Микробиологическая диагностика . Исследуют содержимое герпетических везикул, слюну, соскобы с роговой оболочки глаз, кровь, сперму, мочу, цереброспинальную жидкость и мозг, при летальном исходе. В мазках, окрашенных по Романовскому-Гимзе, наблюдают синцитий - гигантские многоядерные клетки с увеличенной цитоплазмой и внутриядерными включениями Каудри. Заражают культуру клеток HeLa, Нер-2, человеческих эмбриональных фибробластов. Проводят внутримозговое заражение куриных эмбрионов или мышей-сосунков, у которых развивается энцефалит. Идентификация вируса: РИФ и ИФА с использованием моноклональных антител; ПЦР. Серодиагностику проводят с помощью РСК, РИФ, ИФА и PH по нарастанию титра антител (IgM, IgG).

Специфическая профилактика рецидивирующего герпеса осуществляется в период ремиссии многократным введением инактивированной культуральной герпетической вакцины.