Построение комплексного чертежа точки. Графическое отображение точки на комплексном чертеже Как строить комплексный чертеж точек

Рассмотрим пример построения точек А, В, С, D в различных октантах (табл. 2.4).


Таблица 2.4

Октант Наглядное изображение Комплексный чертеж
I
II
III
IV

Пример построения третьей проекции точки по двум заданным

Точка в пространстве определяется любыми двумя своими проекциями. При необходимости построения третьей проекции по двум заданным необходимо воспользоваться соответствием отрезков линий проекционной связи, полученных при определении расстояний от точки до плоскости проекций (см. рис. 2.27 и рис. 2.28).

Примеры решения задач в I октанте

Дано А1; А2 Построить А3
Дано А2; А3 Построить А1
Дано А1; А3 Построить А2

Рассмотрим алгоритм построения точки А (табл. 2.5)


Таблица 2.5 Алгоритм построения точки А по заданным координатам А (x = 5, y = 20, z = -9)

Вербальная форма Графическая форма
Соотнести знаки координат x, y, z с данными табл. 2.3 Согласно табл. 2.3, это знаки 4-го октанта
Построить наглядное (аксонометрическое) изображение 4-го октанта
Определить механизм совмещения плоскостей
Построить комплексный чертеж 4-го октанта
Отложить координаты точки на осях: x = 5, y = 20, z = -9
Перенести координаты точки на оси комплексного чертежа
Построить горизонтальную, фронтальную и профильную проекции точки А (табл. 2.4)
Построить проекции точки А (А1, А2, А3) на комплексном чертеже (табл. 2.4)

проекция точка октанта перпендикулярный чертеж

В следующих главах мы будем рассматривать образы: прямые и плоскости только в первой четверти. Хотя все рассматриваемые способы можно применить в любой четверти.

Выводы

Таким образом, на основании теории Г. Монжа, можно преобразовать пространственное изображение образа (точки) в плоскостное.

Эта теория основывается на следующих положениях:

1. Все пространство делится на 4 четверти с помощью двух взаимно перпендикулярных плоскостей p1 и p2, либо на 8 октантов при добавлении третьей взаимно-перпендикулярной плоскости p3.

2. Изображение пространственного образа на эти плоскости получается с помощью прямоугольного (ортогонального) проецирования.

3. Для преобразования пространственного изображения в плоскостное считают, что плоскость p2 – неподвижна, а плоскость p1 вращается вокруг оси x так, что положительная полуплоскость p1 совмещается с отрицательной полуплоскостью p2, отрицательная часть p1 – с положительной частью p2.

4. Плоскость p3 вращается вокруг оси z (линии пересечения плоскостей) до совмещения с плоскостью p2 (см. рис. 2.31).

Изображения, получающиеся на плоскостях p1, p2 и p3 при прямоугольном проецировании образов, называются проекциями.

Плоскости p1, p2 и p3 вместе с изображенными на них проекциями, образуют плоскостной комплексный чертеж или эпюр.

Линии, соединяющие проекции образа ^ осям x, y, z, называются линиями проекционной связи.

Для более точного определения образов в пространстве может быть применена система трех взаимно перпендикулярных плоскостей p1, p 2, p 3.

В зависимости от условия задачи можно выбрать для изображения либо систему p1, p2, либо p1, p2, p3.

Систему плоскостей p1, p2, p3 можно соединить с системой декартовых координат, что дает возможность задавать объекты не только графическим или (вербальным) образом, но и аналитическим (с помощью цифр).

Такой способ изображения образов, в частности точки, дает возможность решать такие позиционные задачи, как:

· расположение точки относительно плоскостей проекций (общее положение, принадлежность плоскости, оси);

· положение точки в четвертях (в какой четверти расположена точка);

· положение точек относительно друг друга, (выше, ниже, ближе, дальше относительно плоскостей проекций и зрителя);

· положение проекций точки относительно плоскостей проекций (равноудаление, ближе, дальше).

Метрические задачи:

· равноудаленность проекции от плоскостей проекций;

· отношение удаления проекции от плоскостей проекций (в 2–3 раза, больше, меньше);

· определение расстояния точки от плоскостей проекций (при введении системы координат).

Размещено на Allbest.ru


Рассмотрим проецирование точки на три и две плоскости проекций. В пространстве зададим прямоугольный параллелепипед AA 2 A z A 3 A 1 A x OA y (рис. 2.1). Свойства этой фигуры известны из курса геометрии средней школы: ребра, выходящие из одной вершины, перпендикулярны друг другу; каждая грань – прямо-

угольник; любое ребро параллельно трем ребрам и перпендикулярно восьми ребрам; параллельные ребра имеют одинаковую длину.

Через ребра, выходящие из вершины O, проведем оси x, y, z (рис. 2.2). Система Oxyz является декартовой системой координат (оси перпендикулярны, единица измерения одинакова по всем осям, точка O – начало координат).

Через грани, проходящие через точку O, проведем плоскости П 1 , П 2 , П 3 (рис. 2.3). Тогда оси x и y принадлежат плоскости П 1 (горизонтальная плоскость проекций), оси x и z принадлежат П 2 (фронтальная плоскость проекций), оси y и z принадлежат П 3 (профильная плоскость проекций). Пространство делится плоскостями проекций П 1 , П 2 и П 3 на восемь частей – октантов. Номера их показаны на рис. 2.3.

Пусть точка А является точкой пространства, для которой мы хотим построить комплексный чертеж. Тогда, ортогонально проецируя точку А на П 1 , получим точку А 1 . Действительно, точка А 1 принадлежит П 1 , ребро АА 1 перпендикулярно плоскости П 1 , т. е. А 1 – ортогональная проекция точки А на плоскость П 1 . Точка А 1 – горизонтальная проекция точки А. Ортогонально проецируя точку А на П 2 , получим А 2 (фронтальная проекция точки А), ортогонально проецируя точку А на П 3 , получим А 3 (профильная проекция точки А). Доказательство такое же, как и для проекции А 1 . Обратим внимание на то, что при проецировании точки на две плоскости проекций фигура AA 1 A x A 2 – прямоугольник, плоскость которого перпендикулярна оси Ox.

Безразмерное число, по абсолютной величине равное расстоянию от точки А до плоскости проекций и взятое со знаком, называется координатой точки. Так, например, координата x A (измеряется вдоль оси x) по абсолютной величине равна длине отрезка А 3 А и положительна, если точка А находится в том же полупространстве относительно плоскости П 3 , что и положительная полуось оси x. В противном случае координата отрицательна. Все ребра параллелепипеда, параллельные и равные А 3 А будем называть координатными отрезками x A . Это отрезки А 3 А, А y А 1 , ОА x , А z А 2 . Длины этих отрезков, взятые со знаком, являются координатой x А точки А. Аналогично вводятся и координатные отрезки y А и z А. Координатные отрезки y А: А 2 А; А x А 1 ; ОА y ; А z А 3 . Координатные отрезки z А: А 1 А; А y А 3 ; ОА z ; А x А 2 . Напомним, что ломаная ОА x А 1 А называется координатной ломаной. Ее звенья – координатные отрезки x А, y А, z А. Запись В(3; 2; 5) означает, что координата x В = 3, координата y В = 2, координата z В = 5.



Будем рассматривать только те точки и линии, которые расположены в плоскостях проекций и выполним повороты плоскостей П 1 и П 3 вокруг осей x и y соответственно до совмещения с плоскостью П 2 . Направления поворотов на рис. 2.3 показаны штриховыми линиями. Плоскость П 2 является плоскостью чертежа. После поворота оси координат займут положение, показанное на рис. 2.4.



Ось y, двигаясь с плоскостью П 1 попадает на ось z, а двигаясь с плоскостью П 3 , попадает на ось x. Это второе положение оси y обозначим y". Достраивая ребра параллелепипеда, расположенные в плоскостях проекций, получим рис. 2.5. Поскольку ребра параллелепипеда, проходящие через вершину А x , взаимно перпендикулярны, то получим, что А 2 А x и А x А 1 расположены на одной прямой, перпендикулярной оси x. Аналогично отрезки А 2 А z и А z А 3 расположены на одной прямой, перпендикулярной оси z. Прямые (А 1 А 2) и (А 2 А 3) называются линиями проекционной связи (иногда под линиями проекционной связи понимают соответствующие отрезки этих прямых).

На рис. 2.5 обозначены координатные отрезки x А, y А, z А. Для того чтобы обеспечить линейную связь между А 1 и А 3 , введем прямую k (постоянная прямая чертежа). Ломаную А 1 А k А 3 (или две пересекающиеся прямые А 1 А k и А k А 3) будем считать линией проекционной связи для А 1 и А 3 .

Таким образом, точке А пространства соответствует изображение на плоскости, состоящее из трех проекций А 1 , А 2 , А 3 , связанных между собой линиями проекционной связи, которое называется комплексным чертежом точки A в системе (П 1 П 2 П 3). Этот чертеж обратим, так как на нем присутствуют все три координатных отрезка, что устанавливает взаимно однозначное соответствие между точками пространства и их изображениями на плоскости.

В курсе черчения, при изображении предметов на чертеже, горизонтальная проекция называется видом сверху, фронтальная – видом спереди, профильная – видом слева.

Если известны А 1 и А 2 , то А 3 можно построить. Достаточно провести через А 2 линию проекционной связи перпендикулярно оси z и через А 1 – ломаную линию проекционной связи. Пересечение этих линий и будет точкой А 3 . Кроме того, на чертеже, содержащем только А 1 и А 2 , присутствуют все координатные отрезки, т. е. такой чертеж тоже обратим. Изображение точки А, состоящее из проекций А 1 и А 2 , связанных между собой линией проекционной связи, называется комплексным чертежом точки А в системе (П 1 П 2) или комплексным чертежом. При получении такого чертежа плоскость П 3 не вводится. Пространство двумя плоскостями П 1 и П 2 делится на четыре части – четверти. Номера четвертей совпадают с номерами первых четырех октантов.

Для построения комплексного чертежа точки А(x А, y А, z А) необходимо построить по координатам А 1 (x А, y А) и А 2 (x А, z А). Если рассматривается комплексный чертеж в системе (П 1 П 2 П 3), то можно по координатам построить А 3 (y А, z А), при этом используется ось y". Можно А 3 построить и по линиям проекционной связи. При откладывании координатных отрезков на отрицательных полуосях необходимо обратить внимание на то, что отрицательные полуоси одних осей совпадают с положительными полуосями других осей.

На рис. 2.6 приведены комплексные чертежи в системе (П 1 П 2 П 3) точек А(3; 4; 2) и В(2; 3; –2), С(–1; 0; 3). Единица измерения помечена штрихами на координатных отрезках. Точка А находится в первом октанте, точка В – в четвертом октанте, точка С принадлежит плоскости П 2 . О точке С можно сказать, что она принадлежит пятому и шестому октантам одновременно. На рис. 2.7 приведены комплексные чертежи в системе (П 1 П 2) точек К(4; 2; 2) и L(5; –3; 4), M(6; –2; –3), N(1; 3; –5), F(–2; 3; 4). Точки К и F находятся в первой четверти, точка L – во второй, точка М – в третьей, точка N – в четвертой четверти.

Принадлежность точки определенной четверти или октанту можно выявить по знакам координат x, y, z этой точки. Для точек каждой четверти или октанта характерны определенные знаки координат. Можно представить координатные плоскости, оси координат (рис. 2.3) и мысленно построить координатную ломаную точки (ОA x А 1 А на рис. 2.3) и увидеть в какой четверти или октанте находится точка.

Знаки координат x, y, z в октантах: 1(+; +; +); 2(+; −; +); 3(+; −; −); 4(+; +; −); 5(−; +; +); 6(−; −; +); 7(−; −; −); 8(−; +; −).



Знаки координат в четвертях: 1(±; +; +); 2(±; −; +); 3(±; −; −); 4(±; +; −).

В дальнейшем рассматриваются комплексные чертежи фигур в системе (П 1 П 2). Единица измерения по всем осям одинакова – один миллиметр и специально помечаться штрихами не будет.

Построить комплексные чертежи точек: А (15,30,0), В (30,25,15), С (30,10,15), D (15,30,20)

Решение задачи разделим на четыре этапа.

1. А (15,30,0); x A = 15 мм; y A = 30мм; z A = 0.

Как Вы думаете, если у точки А координата z A =0, то какое положение она занимает в пространстве?

Так выглядит комплексный чертеж точки А построенный по заданным координатам

Если у точки одна координата равна нулю, то точка принадлежит одной из плоскостей проекции. В данном случае у точки нет высоты: z = 0, следовательно точка А лежит в плоскости П 1 .

На комплексном чертеже оригинал (т.е. сама точка А ) не изображается, есть только ее проекции.

2. В (30,25,15) и С (30,10,15).

На втором этапе объединим построение двух точек.

x B = 30мм; x C = 30мм

y B = 35мм; y C = 10мм

z B = 15мм; z C = 15мм

У точек В и С : x B = x C = 30мм, z B = z C = 15мм

а) Координаты х точек одинаковы, следовательно, в системе П 1 – П 2 проекции точек лежат на одной линии связи (рис. 1.2),

б) Координаты z точек совпадают, (обе точки одинаково удалены от П 1 на 15мм,) т.е. они расположены на одной высоте, следовательно на П 2 проекции точек совпадают: В 2 = (С 2).

в) Для определения видимости относительно П 2 смотрим на рис. 1.3. Наблюдатель видит точку В , которая закрывает собой точку С , т.е. точка В расположена ближе к наблюдателю, поэтому на П 2 она видима. (См. М1 - 13 и 16).

В системе П 2 П 3 проекции точек также лежат на одной линии связи и видимость определяется по стрелке (рис. 1.2).

Точки В и С - называются фронтально конкурирующими.

3. D (15,30,20); x D = 15мм; y D = 30мм; z D = 20мм.

а) На этом комплексном чертеже (рис. 1.4) построены три проекции точки D (D 1 , D 2 , D 3).

Все три координаты имеют числовые значения, отличные от нуля, поэтому точка не принадлежит ни одной плоскости проекций.

б) Совместим пространственное изображение А и D (рис. 1.5). В системе П 1 -П 2 проекции точек А и D лежат на одной линии связи, только точка D выше точки А , следовательно D - видима, а А - невидима (видима на П 1 та точка, которая расположена выше)

На четвертом, завершающем этапе, соединим все три фрагмента комплексных чертежей точек А,В,С, D в один общий.

Точки А и D - называются горизонтально конкурирующими.

Глава 6. ПРОЕКЦИИ ТОЧКИ. КОМПЛЕКСНЫЙ ЧЕРТЕЖ

§ 32. Комплексный чертеж точки

Чтобы построить изображение предмета, сначала изображают отдельные его элементы в виде простейших элементов пространства. Так, изображая геометрическое тело, следует построить его вершины, представленные точками; ребра, представленные прямыми и кривыми линиями; грани, представленные плоскостями и т.д

Правила построения изображений на чертежах в инженерной графике основываются на методе проекций. Одно изображение (проекция) геометрического тела не позволяет судить о его геометрической форме или форме простейших геометрических образов, составляющих это изображение. Таким образом, нельзя судить о положении точки в пространстве по одной ее проекции; положение ее в пространстве определяется двумя проекциями.

Рассмотрим пример построения проекции точки А, расположенной в пространстве двугранного угла (рис. 60). Одну из плоскостей проекции расположим горизонтально, назовем ее горизонтальной плоскостью проекций и обозначим буквой П 1 . Проекции элементов


пространства на ней будем обозначать с индексом 1: А 1 , а 1 , S 1 ... и называть горизонтальными проекциями (точки, прямой, плоскости).

Вторую плоскость расположим вертикально перед наблюдателем, перпендикулярно первой, назовем ее вертикальной плоскостью проекций и обозначим П 2 . Проекции элементов пространства на ней будем обозначать с индексом 2: А 2 , 2 и называть фронтальными проекциями (точки, прямой, плоскости). Линию пересечения плоскостей проекций назовем осью проекций.

Спроецируем точку А ортогонально на обе плоскости проекций:

АА 1 _|_ П 1 ;AА 1 ^П 1 =A 1 ;

АА 2 _|_ П 2 ;AА 2 ^П 2 =A 2 ;

Проецирующие лучи АА 1 и АА 2 взаимно перпендикулярны и создают в пространстве проецирующую плоскость АА 1 АА 2 , перпендикулярную обеим сторонам проекций. Эта плоскость пересекает плоскости проекций по линиям, проходящим через проекции точки А.

Чтобы получить плоский чертеж, совместим горизонтальную плоскость проекций П 1 с фронтальной плоскостью П 2 вращением вокруг оси П 2 /П 1 (рис. 61, а). Тогда обе проекции точки окажутся на одной линии, перпендикулярной оси П 2 /П 1 . Прямая А 1 А 2 , соединяющая горизонтальную А 1 и фронтальную А 2 проекции точки, называется вертикальной линией связи.

Полученный плоский чертеж называется комплексным чертежом. Он представляет собой изображение предмета на нескольких совмещенных плоскостях. Комплексный чертеж, состоящий из двух ортогональных проекций, связанных между собой, называется двухпроекционным. На этом чертеже горизонтальная и фронтальная проекции точки всегда лежат на одной вертикальной линии связи.

Две связанные между собой ортогональные проекции точки однозначно определяют ее положение относительно плоскостей проекций. Если определить положение точки а относительно этих плоскостей (рис. 61, б) ее высотой h (АА 1 =h) и глубиной f(AA 2 =f), то эти величины на комплексном чертеже существуют как отрезки вертикальной линии связи. Это обстоятельство позволяет легко реконструировать чертеж, т. е. определить по чертежу положение точки относительно плоскостей проекций. Для этого достаточно в точке А 2 чертежа восстановить перпендикуляр к плоскости чертежа (считая ее фронтальной) длиной, равной глубине f . Конец этого перпендикуляра определит положение точки А относительно плоскости чертежа.

60.gif

Изображение:

61.gif

Изображение:

7. Вопросы для самопроверки

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

4. Как называется расстояние, определяющее положение точки относительно плоскости проекций П 1 , П 2 ?

7. Как построить дополнительную проекцию точки на плоскости П 4 _|_ П 2 , П 4 _|_ П 1 , П 5 _|_ П 4 ?

9. Как можно построить комплексный чертеж точки по ее координатам?

33. Элементы трехпроекционного комплексного чертежа точки

§ 33. Элементы трехпроекционного комплексного чертежа точки

Для определения положения геометрического тела в пространстве и получения дополнительных сведений на их изображениях может возникнуть необходимость в построении третьей проекции. Тогда третью плоскость проекций располагают справа от наблюдателя перпендикулярно одновременно горизонтальной плоскости проекций П 1 и фронтальной плоскости проекций П 2 (рис. 62, а). В результате пересечения фронтальной П 2 и профильной П 3 плоскостей проекций получаем новую ось П 2 /П 3 , которая располагается на комплексном чертеже параллельно вертикальной линии связи A 1 A 2 (рис. 62, б). Третья проекция точки А - профильная - оказывается связанной с фронтальной проекцией А 2 новой линией связи, которую называют горизонталь-

Рис. 62

ной. Фронтальная и профильная проекции точки всегда лежат на одной горизонтальной линии связи. Причем A 1 A 2 _|_ А 2 А 1 и А 2 А 3 , _| _ П 2 /П 3 .

Положение точки в пространстве в этом случае характеризуется ее широтой - расстоянием от нее до профильной плоскости проекций П 3 , которое обозначим буквой р.

Полученный комплексный чертеж точки называется трехпроек-ционным.

В трехпроекционном чертеже глубина точки АА 2 проецируется без искажений на плоскости П 1 и П 2 (рис. 62, а). Это обстоятельство позволяет построить третью - фронтальную проекцию точки А по ее горизонтальной А 1 и фронтальной А 2 проекциям (рис. 62, в). Для этого через фронтальную проекцию точки нужно провести горизонтальную линию связи A 2 A 3 _|_A 2 A 1 . Затем в любом месте на чертеже провести ось проекций П 2 /П 3 _|_ А 2 А 3 , измерить глубину f точки на горизонтальном поле проекции и отложить ее по горизонтальной линии связи от оси проекций П 2 /П 3 . Получим профильную проекцию А 3 точки А.

Таким образом, на комплексном чертеже, состоящем из трех ортогональных проекций точки, две проекции находятся на одной линии связи; линии связи перпендикулярны соответствующим осям проекций; две проекции точки вполне определяют положение ее третьей проекции.

Необходимо отметить, что на комплексных чертежах, как правило, не ограничивают плоскости проекций и положение их задают осями (рис. 62, в). В тех случаях, когда условиями задачи этого не требу-

ется, проекции точек могут быть даны без изображения осей (рис. 63, а, б). Такая система называется безосновой. Линии связи могут также проводиться с разрывом (рис. 63, б).

62.gif

Изображение:

63.gif

Изображение:

34. Положение точки в пространстве трехмерного угла

§ 34. Положение точки в пространстве трехмерного угла

Расположение проекций точек на комплексном чертеже зависит от положения точки в пространстве трехмерного угла. Рассмотрим некоторые случаи:

  • точка расположена в пространстве (см. рис. 62). В этом случае она имеет глубину, высоту и широту;
  • точка расположена на плоскости проекций П 1 - она не имеет высоты, П 2 - не имеет глубины, Пз - не имеет широты;
  • точка расположена на оси проекций, П 2 /П 1 не имеет глубины и высоты, П 2 /П 3 - не имеет глубины и широты и П 1 /П 3 не имеет высоты и широты.

35. Конкурирующие точки

§ 35. Конкурирующие точки

Две точки в пространстве могут быть расположены по-разному. В отдельном случае они могут быть расположены так, что проекции их на какой-нибудь плоскости проекций совпадают. Такие точки называются конкурирующими. На рис. 64, а приведен комплексный чертеж точек А и В. Они расположены так, что проекции их совпадают на плоскости П 1 [А 1 == В 1 ]. Такие точки называются горизонтально конкурирующими. Если проекции точек A и В совпадают на плоскости

П 2 (рис. 64, б), они называются фронтально конкурирующими. И если проекции точек А и В совпадают на плоскости П 3 [А 3 == B 3 ] (рис. 64, в), они называются профильно конкурирующими.

По конкурирующим точкам определяют видимость на чертеже. У горизонтально конкурирующих точек будет видима та, у которой больше высота, у фронтально конкурирующих - та, у которой больше глубина, и у профильно конкурирующих - та, у которой больше широта.

64.gif

Изображение:

36. Замена плоскостей проекций

§ 36. Замена плоскостей проекций

Свойства трехпроекционного чертежа точки позволяют по горизонтальной и фронтальной ее проекциям строить третью на другие плоскости проекций, введенные взамен заданных.

На рис. 65, а показаны точка А и ее проекции - горизонтальная А 1 и фронтальная А 2 . По условиям задачи необходимо произвести замену плоскостей П 2 . Новую плоскость проекции обозначим П 4 и расположим перпендикулярно П 1 . На пересечении плоскостей П 1 и П 4 получим новую ось П 1 /П 4 . Новая проекция точки А 4 будет расположена на линии связи, проходящей через точку А 1 и перпендикулярно оси П 1 /П 4 .

Поскольку новая плоскость П 4 заменяет фронтальную плоскость проекции П 2 , высота точки А изображается одинаково в натуральную величину и на плоскости П 2 , и на плоскости П 4 .

Это обстоятельство позволяет определить положение проекции A 4 , в системе плоскостей П 1 _|_ П 4 (рис. 65, б) на комплексном чертеже. Для этого достаточно измерить высоту точки на заменяемой плоско-

сти проекции П 2 , отложить ее на новой линии связи от новой оси проекций - и новая проекция точки А 4 будет построена.

Если новую плоскость проекций ввести взамен горизонтальной плоскости проекций, т. е. П 4 _|_ П 2 (рис. 66, а), тогда в новой системе плоскостей новая проекция точки будет находиться на одной линии связи с фронтальной проекцией, причем А 2 А 4 _|_. В этом случае глубина точки одинакова и на плоскости П 1 , и на плоскости П 4 . На этом основании строят А 4 (рис. 66, б) на линии связи А 2 А 4 на таком расстоянии от новой оси П 1 /П 4 на каком А 1 находится от оси П 2 /П 1 .

Как уже отмечалось, построение новых дополнительных проекций всегда связано с конкретными задачами. В дальнейшем будет рассмотрен ряд метрических и позиционных задач, решаемых с применением метода замены плоскостей проекций. В задачах, где введение одной дополнительной плоскости не даст желаемого результата, вводят еще одну дополнительную плоскость, которую обозначают П 5 . Ее располагают перпендикулярно уже введенной плоскости П 4 (рис. 67, а), т. е. П 5 П 4 и производят построение, аналогичное ранее рассмотренным. Теперь расстояния измеряют на заменяемой второй из основных плоскостей проекций (на рис. 67, б на плоскости П 1) и откладывают их на новой линии связи А 4 А 5 , от новой оси проекций П 5 /П 4 . В новой системе плоскостей П 4 П 5 получают новый двухпроекционный чертеж, состоящий из ортогональных проекций А 4 и А 5 , связанных линией связи

Проекция (лат. projectio - выбрасывание вперёд) - изображение трёхмерной фигуры на так называемой картинной (проекционной) плоскости.

Термин проекция также означает метод построения такого изображения и технические приёмы, в основе которых лежит этот метод.

Принцип

Проекционный метод изображения предметов основан на их зрительном представлении. Если соединить все точки предмета прямыми линиями (проекционными лучами) с постоянной точкой S(центр проекции), в которой предполагается глаз наблюдателя, то на пересечении этих лучей с какой-либо плоскостью получается проекция всех точек предмета. Соединив эти точки прямыми линиями в том же порядке, как они соединены в предмете, получим на плоскостиперспективное изображение предмета или центральную проекцию.

Если центр проекции бесконечно удалён от картинной плоскости, то говорят о параллельной проекции , а если при этом проекционные лучи падают перпендикулярно к плоскости - то обортогональной проекции .

Проекция широко применяется в инженерной графике, архитектуре, живописи и картографии.

Изучением проекций и методов проектирования занимается начертательная геометрия.

Проекционный чертеж – чертеж, построенный методом проецирования пространственных объектов на плоскость. Является основным средством для анализа свойств пространственных фигур.

Аппарат проецирования:

    Центр проецирования (S)

    Проекционные лучи

    Объект проецирования

    Проекция

Комплексный чертеж – эпюр Монжа. Декартова система координат, ось (x,y,z)

Плоскости:

Фронтальная – вид спереди;

Горизонтальная – вид сверху;

Профильная – вид сбоку.

Состав комплексного чертежа:

1) Плоскости проекций

2) Оси проекций (пересечение плоскостей проекций)

3) Проекции

Линии связи.

    Основные свойства ортогонального проецирования.

2 связанные между собой ортогональные проекции однозначно определяют положение точки относительно плоскостей проекции. 3-яя проекция не может быть задана произвольно.

Ортогональные проекции.

Ортогональное (прямоугольное) проецирование есть частный случай проецирования параллельного, когда все проецирующие лучи перпендикулярны плоскости проекций. Ортогональным проекциям присущи все свойства параллельных проекций, но при прямоугольном проецировании проекция отрезка, если он не параллелен плоскости проекций, всегда меньше самого отрезка (рис. 58). Это объясняется тем, что сам отрезок в пространстве является гипотенузой прямоугольного треугольника, а его проекция - катетом: А"В" = ABcosa.

При прямоугольном проецировании прямой угол проецируется в натуральную величину, когда обе стороны его параллельны плоскости проекций, и тогда, когда лишь одна из его сторон параллельна плоскости проекций, а вторая сторона не перпендикулярна этой плоскости проекций.

Теорема о проецировании прямого угла. Если одна сторона прямого угла параллельна плоскости проекций, а вторая ей не перпендикулярна, то при ортогональном проецировании прямой угол проецируется на эту плоскость в прямой же угол.

Пусть дан прямой угол ABC, у которого сторона АВ параллельна плоскости п" (рис. 59). Проецирующая плоскость перпендикулярна плоскости п". Значит, АВ _|_S, так как АВ _|_ ВС и АВ _|_ ВВ, отсюда АВ _|_ В"С". Но так какАВ || А"В" _|_ В"С", т. е. на плоскости п" угол между А"В" и В"С равен 90°.

Обратимость чертежа. Проецирование на одну плоскость проекций дает изображение, которое не позволяет однозначно определить форму и размеры изображенного предмета. Проекция А (см. рис. 53) не определяет положение самой точки в пространстве, так как не известно, на какое расстояние она удалена от плоскости проекций п". Любая точка проецирующего луча, проходящего через точку А, будет иметь своей проекцией точку А". Наличие одной проекции создает неопределенность изображения. В таких случаях говорят о необратимости чертежа, так как по такому чертежу невозможно воспроизвести оригинал. Для исключения неопределенности изображение дополняют необходимыми данными. В практике применяют различные способы дополнения однопроекционного чертежа. В данном курсе будут рассмотрены чертежи, получаемые ортогональным проецированием на две или более взаимно перпендикулярные плоскости проекций (комплексные чертежи) и путем перепроецирования вспомогательной проекции предмета на основную аксонометрическую плоскость проекций (аксонометрические чертежи).

    Комплексный чертеж.

Прямая на комплексном чертеже:

    Проекциями 2 точек

    Непосредственно проекциями самой прямой

Прямая общего положения – не параллельна и не перпендикулярна к плоскостям проекции.

Линии уровня – линии, параллельные плоскостям проекции:

    Горизонталь

    Фронталь

    Профильная

Общее свойство : у линий уровня одна проекция равна натуральной величине, другие проекции параллельны осям проекций.

Проецирующие прямые – дважды линии уровня (если перпендикулярны одной из плоскостей, то параллельны 2 другим):

    Горизонтально-проецирующая

    Фронтально-проецирующая

    Профильно-проецирующая

Конкурирующие точки – точки, лежащие на одной линии связи.

Взаимное расположение 2 прямых:

    Пересекающееся – имеют 1 общую точку и общие проекции этой точки

    Параллельные – проекции всегда параллельны у 2 параллельных прямых

    Скрещивающиеся – не имеют общих точек, пересекаются только проекции, а не сами прямые

    Конкурирующие – прямые лежат в плоскости перпендикулярной к одной из плоскостей проекций (н-р, горизонтально-конкурирующие)

4. Точка на комплексном чертеже.

Элементы трехпроекционного комплексного чертежа точки.

Для определения положения геометрического тела в пространстве и получения дополнительных сведений на их изображениях может возникнуть необходимость в построении третьей проекции. Тогда третью плоскость проекций располагают справа от наблюдателя перпендикулярно одновременно горизонтальной плоскости проекций П1 и фронтальной плоскости проекций П2 (рис. 62, а). В результате пересечения фронтальной П2 и профильной П3 плоскостей проекций получаем новую ось П2/П3, которая располагается на комплексном чертеже параллельно вертикальной линии связи A1A2 (рис. 62, б). Третья проекция точки А - профильная - оказывается связанной с фронтальной проекцией А2 новой линией связи, которую называют горизонталь-

ной. Фронтальная и профильная проекции точки всегда лежат на одной горизонтальной линии связи. Причем A1A2 _|_ А2А1 и А2А3, _|_ П2/П3.

Положение точки в пространстве в этом случае характеризуется ее широтой - расстоянием от нее до профильной плоскости проекций П3, которое обозначим буквой р.

Полученный комплексный чертеж точки называется трехпроек-ционным.

В трехпроекционном чертеже глубина точки АА2 проецируется без искажений на плоскости П1и П2 (рис. 62, а). Это обстоятельство позволяет построить третью - фронтальную проекцию точки А по ее горизонтальной А1 и фронтальной А2 проекциям (рис. 62, в). Для этого через фронтальную проекцию точки нужно провести горизонтальную линию связи A2A3 _|_A2A1. Затем в любом месте на чертеже провести ось проекций П2/П3 _|_ А2А3, измерить глубинуfточки на горизонтальном поле проекции и отложить ее по горизонтальной линии связи от оси проекций П2/П3. Получим профильную проекцию А3 точки А.

Таким образом, на комплексном чертеже, состоящем из трех ортогональных проекций точки, две проекции находятся на одной линии связи; линии связи перпендикулярны соответствующим осям проекций; две проекции точки вполне определяют положение ее третьей проекции.

Необходимо отметить, что на комплексных чертежах, как правило, не ограничивают плоскости проекций и положение их задают осями (рис. 62, в). В тех случаях, когда условиями задачи этого не требу-

ется, проекции точек могут быть даны без изображения осей (рис. 63, а, б). Такая система называется безосновой. Линии связи могут также проводиться с разрывом (рис. 63, б).

5. Прямая на комплексном чертеже. Основные положения.

Комплексный чертеж прямой линии.

Учитывая то, что прямую линию в пространстве можно определить положением двух ее точек, для построения ее на чертеже достаточно выполнить комплексный чертеж этих двух точек, а затем соединить одноименные проекции точек прямыми линиями. При этом получаем соответственно горизонтальную и фронтальную проекции прямой.

На рис. 69, а показаны прямая l и принадлежащие ей точки А и В. Для построения фронтальной проекции прямой l2 достаточно построить фронтальные проекции точек А2 и В2 и соединить их прямой. Аналогично строится горизонтальная проекция, проходящая через горизонтальные проекции точек А1 и В1. После совмещения плоскости П1 с плоскостью П2 получим двухпроекционный комплексный чертеж прямой l (рис. 69, б).

Профильную проекцию прямой можно построить с помощью профильных проекций точек А и В. Кроме того, профильную проекцию прямой можно построить, используя разность расстояний двух ее точек до фронтальной плоскости проекций, т. е. разность глубин точек (рис. 69, в). В этом случае отпадает необходимость наносить оси проекций на чертеж. Этот способ, как более точный, и используется в практике выполнения технических чертежей.

6. Определение натуральной величины отрезка прямой общего положения .

Определение натуральной величины отрезка прямой линии.

При решении задач инженерной графики в ряде случаев появляется необходимость в определении натуральной величины отрезка прямой линии. Решить эту задачу можно несколькими способами: способом прямоугольного треугольника, способом вращения, плоскопараллельного перемещения, заменой плоскостей проекций.

Рассмотрим пример построения изображения отрезка в истинную величину на комплексном чертеже способом прямоугольного треугольника. Если отрезок расположен параллельно какой-либо из плоскостей проекций, то на эту плоскость он проецируется в натуральную величину. Если же отрезок представлен прямой общего положения, то на одной из плоскостей проекций нельзя определить его истинную величину (см. рис. 69).

Возьмем отрезок общего положения АВ (A ^ П1) и построим его ортогональную проекцию на горизонтальной плоскости проекций (рис. 78, а). В пространстве при этом образуется прямоугольник А1ВВ1, в котором гипотенузой является сам отрезок, одним катетом - горизонтальная проекция этого отрезка, а вторым катетом - разность высот точек А и В отрезка. Так как по чертежу прямой определить разность высот точек ее отрезка не составляет труда, то можно построить по горизонтальной проекции отрезка (рис. 78, б) прямоугольный треугольник, взяв вторым катетом превышение одной точки над второй. Гипотенуза этого треугольника и будет натуральной величиной отрезка АВ.

Аналогичное построение можно сделать на фронтальной проекции отрезка, только в качестве второго катета надо взять разность глубин его концов (рис. 78, в), замеренную на плоскости П1.

Для определения натуральной величины отрезка прямой можно воспользоваться поворотом ее относительно плоскостей проекций, чтобы она расположилась параллельно одной из них (см. § 36) или вводом новой плоскости проекций (заменой одной из плоскостей проекций) так, чтобы она была параллельна одной из проекций отрезка (см. §§58, 59).

треугольника.

Для определения натуральной величины отрезка прямой линии общего положения по ее проекциям применяют метод прямоугольного треугольника.

Вербальная форма

Графическая форма

1. Определить на комплексном чертеже Аz, Bz, Ay, By:

D z – разность расстояний от точек А и В до плоскости p1;

D y – разность расстояний от точек А и В до плоскости p2

2. Взять любую точку проекции прямой АВ, провести через нее перпендикуляр к отрезку:

а) либо перпендикуляр к А2В2 через точку В2 или А2;

б) либо перпендикуляр к А1В1 через точку В1 или А1

3. На этом перпендикуляре от точки В2 отложить D y

или от точки B1 отложить D z

4. Соединить A2 и В"2; A1 и В"1

5. Обозначить натуральную величину отрезка АВ (гипотенузу треугольника):

|АВ| = А1В"1 = А2В"2

6. Отметить углы наклона к плоскости проекции p1 и p2:

a – угол наклона отрезка АВ к плоскости p1;

б – угол наклона отрезка АВ к плоскости p2

При решении подобной задачи находить натуральную величину отрезка можно только один раз (либо на p 1, либо на p 2). Если требуется определить углы наклона прямой к плоскостям проекций, то данное построение выполняется дважды – на фронтальной и горизонтальной проекциях отрезка.