Радиосхемы схемы электрические принципиальные. Переделка китайского приемника для прослушивания жучков

Понятие детекторный приемник прочно ассоциируется с громадными антеннами и радиовещанием на длинных и средних волнах. В публикуемой статье автор приводит экспериментально проверенные схемы детекторных УКВ приемников, предназначенных для прослушивания передач УКВ ЧМ станций.

Сама возможность детекторного приема на УКВ была обнаружена совершенно случайно Однажды, гуляя по Терлецкому парку (г Москва, Новогиреево), я Решил прослушать эфир - благо захватил с собой простейший бесконтурный детекторный приемник (он был описан в Р2001, № 1, с. 52, 53, рис. 3).

Приемник имел телескопическую антенну длиной около 1,4 м. Интересно возможен ли прием на такую короткую антенну? Удалось услышать, довольно слабо, одновременную работу двух станций. Но что удивило - громкость приема периодически возрастала и падала практически до нуля через каждые 5-7 м, причем для каждой станции по-разному!

Известно, что на ДВ, и даже на СВ, где длина волны достигает сотен метров, такое невозможно. Пришлось остановиться в точке максимальной громкости приема одной из станции и внимательно послушать. Оказалось - “Радио Ностальжи", 100,5 FM, вещающая из недалекой Балашихи.

Прямой видимости антенн радиоцентра не было. Как же передача с ЧМ могла приниматься на амплитудный детектор? Последующие расчеты и эксперименты показывают что это вполне возможно и совершенно не зависит от самого приемника.

Простейший портативный детекторный УКВ приемник делается точно так же, как индикатор поля, только вместо измерительного прибора надо включить высокоомные головные телефоны Имеет смысл предусмотреть и регулировку связи детектора с контуром, чтобы подбирать ее по максимальной громкости и качеству приема

Простейший детекторный УКВ приемник

Схема приемника, отвечающего этим требованиям, показана на рис. 1 Она очень близка к той, по которой был выполнен приемник, упоминавшийся выше и позволивший обнаружить саму возможность детекторного приема. Добавлен лишь контур УКВ диапазона.

Рис. 1. Принципиальная схема простейшего детекторного УКВ приемника.

Устройство содержит штыревую телескопическую антенну WA1, непосредственно связанную с контуром L1 С1, настраиваемым на частоту сигнала. Антенна здесь также является элементом контура, поэтому для выделения максимальной мощности сигнала надо регулировать как ее длину, так и частоту настройки контура. В ряде случаев, особенно при длине антенны, близкой к четверти длины волны, ее целесообразно подключить к отводу контурной катушки, а положение отвода подобрать по максимальной громкости.

Связь с детектором регулируется подстроечным конденсатором С2. Собственно детектор выполнен на двух высокочастотных германиевых диодах VD1 и VD2. Схема полностью тождественна схеме выпрямителя с удвоением напряжения, однако продетектированное напряжение удваивалось бы лишь при достаточно большой емкости конденсатора связи С2, но нагрузка на контур была бы чрезмерной, а его добротность низкой. В результате понизились бы напряжение сигнала в контуре и громкость звука

В нашем же случае емкость конденсатора связи С2 невелика и удвоения напряжения не происходит. Для оптимального согласования детектора с контуром емкостное сопротивление конденсатора связи должно равняться среднему геометрическому между входным сопротивлением детектора и резонансным сопротивлением контура. При этом условии в детектор отдается максимальная мощность высокочастотного сигнала, соответствующая и максимальной громкости.

Конденсатор С3 - блокировочный он замыкает высокочастотные составляющие тока на выходе детектора. Нагрузкой последнего служат телефоны сопротивлением постоянному току не менее 4 кОм. Весь приемник собирается в небольшом металлическом или пластмассовом корпусе. В верхней части корпуса закреплена телескопическая антенна длиной не менее 1 м, а снизу - разъем или гнезда для подключения телефонов. Заметим, что шнур телефонов служит второй половиной принимающего диполя, или противовесом

Катушка L1 бескаркасная, она содержит 5 витков провода ПЭЛ или ПЭВ диаметром 0,6-1 мм, намотанных на оправке диаметром 7...8 мм. Подобрать необходимую индуктивность можно, растягивая или сжимая витки при настройке.

Конденсатор переменной емкости (КПЕ) С1 лучше всего использовать с воздушным диэлектриком, например, типа 1КПВМ с двумя-тремя подвижными и одной-двумя неподвижными пластинами. Его максимальная емкость невелика и может составлять 7-15 пФ. Если пластин больше (соответственно и емкость больше), целесообразно либо удалить часть пластин, либо включить последовательно с КПЕ постоянный или подстроечный конденсатор, уменьшив, таким образом, максимальную емкость. В качестве С1 подойдут также малогабаритные конденсаторы “плавной настройки’’ от транзисторных приемников с КВ диапазоном.

Конденсатор С2 - керамический подстроечный, типа КПК-1 или КПК-М емкостью 2...7 пФ Допустимо использовать и другие подстроечные конденсаторы, а также установить КПЕ, подобный С1, выведя его ручку на панель приемника. Это позволит регулировать связь “на ходу”, оптимизируя прием

Диоды VD1 и VD2, кроме указанных на схеме, могут быть типов ГД507Б, Д18, Д20 Блокировочный конденсатор С3 керамический, емкость его некритична и может иметь значение колебаться от 100 до 4700 пФ.

Налаживание приемника несложно и сводится к настройке контура конденсатором С1 на частоту станции и регулировке связи конденсатором С2 до получения максимальной громкости. Настройка контура при этом неизбежно изменится, поэтому все операции надо провести последовательно несколько раз, одновременно выбирая и наилучшее место для приема.

Оно, кстати, совсем необязательно должно совпадать (и скорее всего, не будет) с тем местом, где максимальна напряженность поля. Об этом следует поговорить подробнее и объяснить, наконец, почему вообще этот приемник может принимать сигналы с ЧМ.

Интерференция и преобразование ЧМ в АМ

Если контур L1С1 нашего приемника настроить так, чтобы несущая ЧМ сигнала попала на скат резонансной кривой, то ЧМ будет преобразовываться в АМ Посмотрим, какова для этого должна быть добротность контура. Полагая полосу пропускания контура равной удвоенной девиации частоты, получаем Q = fo/2*f = 700 как для верхнего, так и для нижнего УКВ диапазонов.

Реальная добротность контура в детекторном приемнике будет, вероятно, меньше из-за невысокой собственной добротности (порядка 150...200) и шунтирования контура и антенной, и входным сопротивлением детектора. Тем не менее слабое преобразование ЧМ в АМ возможно, и, таким образом, приемник будет еле-еле работать, если его контур слегка расстроить вверх или вниз по частоте.

Однако есть значительно более мощный фактор, способствующий преобразованию ЧМ в АМ, - это интерференция. Очень редко приемник находится в зоне прямой видимости антенны радиостанции, чаще ее закрывают здания, холмы, деревья и другие отражающие предметы. К антенне приемника приходит несколько лучей, рассеянных этими предметами.

Даже в зоне прямой видимости кроме прямого луча к антенне приходит несколько отраженных. Суммарный сигнал зависит как от амплитуд, так и от фаз складывающихся компонент.

Два сигнала складываются, если они в фазе, т. е. разность их путей кратна целому числу длин волн, и вычитаются, если они в противофазе, когда разность их путей составляет то же число длин волн плюс еще пол волны. Но ведь длина волны, как и частота, изменяется при ЧМ! Будет изменяться и разность хода лучей, и их относительный сдвиг фаз. Если разность хода велика, то даже небольшое изменение частоты приводит к значительным сдвигам фаз. Элементарный геометрический расчет приводит к соотношению:

где, дельта t - разность хода лучей, требуемая для сдвига фазы на ± Пи/2, т. е. для получения полной АМ суммарного сигнала; tдельтаf - девиация частоты. Под полной АМ мы здесь понимаем изменение амплитуды суммарного сигнала от суммы амплитуд двух сигналов до их разности. Формулу можно еще более упростить, если учесть, что произведение частоты на длину волны fo*(лямбда) равно скорости света с; дельта t = c/4*дельта f.

Тогда за один период модулирующего звукового колебания суммарная амплитуда интерферирующего сигнала несколько раз пройдет через максимумы и минимумы, и искажения при преобразовании ЧM в АМ окажутся чрезвычайно сильными, вплоть до полной неразборчивости звукового сигнала при приеме на АМ детектор.

Всегда лучше использовать направленную антенну, поскольку она увеличивает прямой сигнал и ослабляет отраженные, приходящие с других направлений.

Лишь в нашем случае самого простого детекторного приемника интерференция сыграла полезную роль и позволила прослушать передачу, но передача может быть слышна слабо или с большими искажениями не везде, а лишь в отдельных местах. Этим и объясняются периодические изменения громкости приема в Терлецком парке.

Детекторный с частотным детектором

Радикальный способ улучшения приема состоит в использовании частотного детектора вместо амплитудного. На рис. 2 показана схема портативного детекторного УКВ приемника с простым частотным детектором, выполненным на одном высокочастотном германиевом транзисторе УТ1.

Применение германиевого транзистора обусловлено тем, что его переходы открываются при пороговом напряжении около 0,15 В, что позволяет детектировать довольно слабые сигналы. Переходы кремниевых транзисторов открываются при напряжении около 0,5 В, и чувствительность приемника с кремниевым транзистором получается значительно ниже.

Рис. 2. Детекторный УКВ приемник с частотным детектором.

Как и в предыдущей конструкции, антенна связана с входным контуром L1С1, настраиваемым на частоту сигнала с помощью КПЕ С1. Сигнал с входного контура подается на базу транзистора. С входным контуром индуктивно связан другой - L2С2, также настраиваемый на частоту сигнала.

Колебания в нем, благодаря индуктивной связи, сдвинуты по фазе на 90° относительно колебаний во входном контуре. С отвода катушки L2 сигнал подается на эмиттер транзистора. В коллекторную цепь транзистора включены блокировочный конденсатор С3 и высокоомные телефоны BF1.

Транзистор открывается, когда на его базе и эмиттере действуют положительные полуволны сигнала, причем мгновенное напряжение на эмиттере больше. При этом в его коллекторной цепи через телефоны проходит продетектированный и сглаженный ток. Но положительные полуволны перекрываются лишь частично при сдвиге фаз колебаний в контурах на 90°, поэтому продетектированный ток не достигает максимального значения, определяемого уровнем сигнала.

При ЧМ, в зависимости от отклонения частоты, сдвиг фазы также изменяется, в соответствии с фазочастотной характеристикой (Ф4Х) контура L2С2. При отклонении частоты в одну сторону сдвиг фазы уменьшается и полуволны сигналов на базе и эмиттере перекрываются больше, в результате чего продетектированный ток возрастает.

При отклонении частоты в другую сторону перекрытие полуволн уменьшается и ток падает. Так происходит частотное детектирование сигнала.

Коэффициент передачи детектора прямо зависит от добротности контура L2С2, она должна быть как можно выше (в пределе, как мы сосчитали, до 700), поэтому-то связь с эмиттерной цепью транзистора выбрана слабой. Конечно, такой простейший детектор не подавляет АМ принимаемого сигнала, более того, его продетектированный ток пропорционален уровню сигнала на входе, что является очевидным недостатком. Оправдание - лишь в исключительной простоте детектора.

Так же, как и предыдущий, приемник собран в небольшом корпусе, из которого кверху выдвигается телескопическая антенна, а снизу расположены гнезда телефонов. На переднюю панель выведены ручки обоих КПЕ. Эти конденсаторы не следует объединять в один блок, поскольку, настраивая их раздельно, удается получить и большую громкость, и лучшее качество приема.

Катушки приемника бескаркасные, они намотаны проводом ПЭЛ 0,7 на оправке диаметром 8 мм. L1 содержит 5 витков, а L2 - 7 витков с отводом от 2-го витка, считая от заземленного вывода. Если есть возможность, катушку L2 желательно намотать посеребренным проводом для повышения ее добротности, диаметр провода при этом некритичен.

Индуктивность катушек подбирается сжиманием и растягиванием витков так, чтобы хорошо слышимые УКВ станции оказались в середине диапазона перестройки соответствующего КПЕ. Расстояние между катушками в пределах 15...20 мм (оси катушек параллельны) подбирают подгибанием их выводов, припаянных к КПЕ.

С описанным приемником можно провести массу занимательных экспериментов, исследуя возможность детекторного приема на УКВ, особенности прохождения волн в условиях городской застройки и т. д. Не исключены и эксперименты по дальнейшему усовершенствованию приемника.

Однако качество звука при приеме на высокоомные головные телефоны с жестяными мембранами оставляет желать лучшего. В связи со сказанным, был разработан более совершенный приемник, обеспечивающий лучшее качество звука и позволяющий использовать различные наружные антенны, соединенные с приемником фидерной линией.

Приемник с питанием от энергии поля

Экспериментируя с простым детекторным приемником, неоднократно пришлось убеждаться, что мощность продетектированного сигнала достаточно велика (десятки и сотни микроватт) и могла бы обеспечить довольно громкую работу телефонов.

Но прием получается неважным из-за отсутствия частотного детектора (ЧД). Второй приемник (рис. 2) в какой-то мере решает эту проблему, но мощность сигнала в нем также используется неэффективно из-за квадратурного питания транзистора высокочастотными сигналами. Поэтому решено было применить в приемнике два детектора: амплитудный - для питания транзистора; частотный - для лучшего детектирования сигнала

Схема разработанного приемника показана на рис. 3. Внешняя антенна (петлевой диполь) соединяется с приемником двухпроводной линией, выполненной из ленточного УКВ кабеля с волновым сопротивлением 240 .300 Ом. Согласование кабеля с антенной получается автоматически, а согласование со входным контуром L1С1 достигается подбором места подключения отвода к катушке.

Вообще говоря, несимметричное подключение фидера ко входному контуру уменьшает помехоустойчивость антенно-фидерной системы, но, учитывая низкую чувствительность приемника, здесь это не имеет особого значения.

Есть общеизвестные способы симметричного подключения фидера с использованием катушки связи или симметрирующего трансформатора. В условиях автора петлевой диполь был выполнен из обычного монтажного провода в изоляции и размещен на балконе, в месте с максимальной напряженностью поля. Длина фидера не превышала 5 м. При столь незначительных длинах потери в фидере пренебрежимо малы, поэтому с успехом можно применить телефонный провод.

Входной контур L1С1 настроен на частоту сигнала, и выделяющееся на нем высокочастотное напряжение выпрямляется амплитудным детектором, выполненным на высокочастотном диоде VD1. Поскольку при ЧМ амплитуда колебаний неизменна, требований к сглаживанию выпрямленного постоянного напряжения практически никаких нет.

Рис. 3. Схема УКВ приемника с питанием от энергии поля.

Квадратурный ЧД приемника собран на транзисторе VT1 и фазосдвигающем контуре L2С2. Высокочастотный сигнал на базу транзистора подается с отвода катушки входного контура через конденсатор связи С3, а на эмиттер - с отвода катушки фазосдвигающего контура. Работа детектора происходит точно так же, как и в предыдущей конструкции.

Для повышения коэффициента передачи ЧД и более полного использования усилительных свойств транзистора на его базу подано смещение через резистор R1, поэтому-то и пришлось установить разделительный конденсатор С3. Обратите внимание на его значительную емкость - она выбрана такой для замыкания низкочастотных токов на эмиттер, т. е. для “заземления" базы по звуковым частотам. Это повышает коэффициент усиления транзистора и увеличивает громкость приема.

В коллекторную цепь транзистора включена первичная обмотка выходного трансформатора Т1, служащего для согласования высокого выходного сопротивления транзистора с низким сопротивлением телефонов. С приемником можно использовать высококачественные стереотелефоны ТДС-1 или ТДС-6. Оба телефона (левого и правого каналов) соединяют параллельно.

Конденсатор С5 - блокировочный, он служит для замыкания высокочастотных токов, проникающих в коллекторную цепь. Кнопка SB1 служит для замыкания коллекторной цепи при настройке входного контура и поиске сигнала. Звук в телефонах при этом исчезает, но чувствительность индикатора значительно повышается.

Конструкция приемника может быть самой разной, но необходима передняя панель с установленными на ней КПЕ С1 и С2 (их снабжают отдельными ручками настройки) и кнопкой SB1. Чтобы движения рук не влияли на настройку контуров, панель желательно сделать металлической или из фольгированного материала.

Она же может служить и общим проводом приемника. Роторы КПЕ должны иметь хороший электрический контакт с панелью. Разъемы антенны и телефонов Х1 и Х2 можно установить как на той же передней панели, так и на боковых или задней стенках корпуса приемника. Его размеры целиком зависят от имеющихся в распоряжении деталей Скажем несколько слов о них.

Конденсаторы С1 и С2 - типа КПВ с максимальной емкостью 15 .25 пФ Конденсаторы СЗ-С5 использованы керамические, малогабаритные.

Катушки L1 и L2 бескаркасные, намотаны на оправках диаметром 8 мм и содержат 5 и 7 витков соответственно. Длина намотки 10... 15 мм (регулируют при настройке).

Провод ПЭЛ 0,6...0,8 мм, но лучше использовать посеребренный, особенно для катушки L2. Отводы сделаны от 1 витка к электродам транзистора и от 1,5 витков к антенне.

Катушки можно расположить как соосно, так и параллельно друг другу. Расстояние между катушками (10...20 мм) подбирают при налаживании. Приемник будет работать даже при отсутствии индуктивной связи между катушками - емкостной связи через междуэлектродную емкость транзистора вполне достаточно. Трансформатор Т1 взят готовый, от трансляционного громкоговорителя.

В качестве VT1 подойдет любой германиевый транзистор с граничной частотой не ниже 400 МГц. При использовании р-п-р транзистора, например, ГТ313А полярность включения стрелочного индикатора и диода следует изменить на обратную. Диод может быть любым германиевым, высокочастотным.

Для приемника годится любой индикатор с током полного отклонения 50-150 мкА, например, стрелочный индикатор уровня записи от магнитофона.

Налаживание приемника сводится к настройке контуров на частоты хорошо слышимых радиостанций, подбору положения отводов катушек по максимальной громкости и качеству приема, а также связи между катушками. Полезно подобрать и резистор R1, тоже по максимальной громкости.

С описанной антенной на балконе приемник обеспечивал высококачественный прием двух станций с наиболее мощным сигналом при расстоянии до радиоцентра не менее 4 км и при отсутствии прямой видимости (загораживали дома). Коллекторный ток транзистора составлял 30...50 мкА.

Разумеется, возможные конструкции детекторных УКВ приемников не ограничиваются описанными. Напротив, их следует рассматривать лишь как первые опыты в этом интересном направлении. Если применить эффективную антенну, вынесенную на крышу и направленную на интересующую радиостанцию, можно получить достаточную мощность сигнала даже на значительном удалении от радиостанции.

Это открывает весьма заманчивые перспективы высококачественного приема на головные телефоны, а в некоторых случаях, возможно, удастся получить и громкоговорящий прием. Усовершенствование самих приемников возможно при использовании более эффективных схем детектирования и высокодобротных объемных, в частности, спиральных резонаторов в качестве колебательных контуров.

В. Поляков, г. Москва. Р2001, 7.

08:22 pm - Принимаем УКВ ЧМ/FM на детектор

Собрал опытный образец детекторного УКВ ЧМ/FM приемника по схеме В.Полякова (см. рис. 3).

Как можно легко видеть из рис. 3, на схеме устройства отсутствует батарея гальванических элементов — а это значит, что устройство питается энергией радиоволн, торсионными полями, свободной энергией, околоземными эфирными вихрями, генератором Тесла, святым духом (нужное подчеркнуть, исходя из своих религиозных убеждений).

В качестве стрелочного индикатора использован индикатор уровня записи на 50 мкА от античного магнитофона. Антенна телескопическая, 70 см. В качестве противовеса используется вертикально свисающий многожильный провод такой же длины, цепляемый к «массе» крокодилом.

Трансформатор малогабаритный сетевой на 220/6 вольт. Заодно проверил, так ли уж хорош ТВЗ, как я его распиарил ранее:) Оказалось, громкость воспроизведения субъективно не зависит от габаритов трансформатора (при одинаковом коэффициенте трансформации). Единственное, при уменьшении количества витков первички появляется завал по НЧ.

С переменными кондерами малой емкости совсем худо: с воздушным диэлектриком нашел только один, второй пришлось ставить подстроечный керамический.

Настройка приемника: нажать на кнопку SB1 и перестройкой С1 добиться максимальных показаний индикатора PA1. Отжать кнопку и перестройкой C2 настроится на станцию.

Результаты испытаний порадовали.

Проверял в двух точках: на 10 этаже офисного здания (прямая видимость до телевышки, расстояние 300 м) и на пешеходном мосту (прямая видимость, около 2 км). В здании сигнал быть не очень сильный (стрелка индикатора поля отклонилась на четверть шкалы), сказываются железобетонные стены. На мосту сигнал удивительно громкий, создается ощущение, что слушаешь плеер. Стрелка индикатора уходит в зашкал. Отмечено изменение силы сигнала вплоть до прекращения приема через каждые несколько метров.

Была попытка приема сигнала на автомобильном мосту при прямой видимости до передатчика (4 км), но мощности не хватило для работы ЧМ-детектора (стрелка еле отклонялась).

Во всех случаях принимался 1-й канал Украинского радио (ТРК «Эра»). К сожалению, пока не удалось принять мое любимое «Радио Шансон»:(((, видимо из-за большой индуктивности катушек и полной моей несведущести о географическом расположении коммерческих FM-станций у нас в городе. В ближайшем будущем катушкам грозит перемотка, передатчикам -- рассекречивание, а приемнику — новые испытания. Испытаниям грозят результаты, результатам -- публикация в этой жежешечке.

Оставайтесь на связи!

Внешний вид устройства:

Источник:

Журнал «Радио» №7, 2002 г., с.54-56, «Детекторные УКВ приемники».

Comments:

Знаю как минимум два места, из которых ведётся вещание местных FM радиостанций:

1. Институт геологоразведки (девятиэтажная "свечка" на Щорса 12) - очень может быть, что это как раз Шансон. :) Хотя точно не знаю (когда-то знал, но забыл:)).

2. Здание кинотеатра Дружба - раньше там начинало свою деятельность радио Унисон (как-то так называлось), они там целый этаж арендовали, я даже передатчик у них в стойке видел. :-P Но они давно загнулись и вместо них там, вроде как, другая радиостанция работает. Почему-то думаю что это MFM, но конечно же ошибаюсь. ;)

О, спасибо за наводку на геологов!
Что касается "Дружбы", то эти радисты одно время были нашими соседями по офису, но сейчас съехали. Когда же у них все работало, радио хорошо прослушивалось в динамиках компа.

Война, мне кажется ты уже готов к созданию собственной FM радиостанции. Советую заняться этим как можно скорее, ибо в моём лице ты найдёшь талантливейшего энтузиаста для ведения музыкальных, юмористических, эротических, спортивных и политических радиопередач.

Я просто с тех пор, как увидел фильм Али Джи, тайно мечтаю о создании подпольной радиостанции, где бы нашими устами говорили проблемы преступных негритянских гетто.

Я надеюсь, это будет пиратское радио?


Собственно, если мощность девайса не превышает 10 мВт (радиомикрофон), то ты оказываешься в роли Неуловимого Джо, ибо нах никому не нужен. Но и покрытие будет в лучшем случае метров 200. Если мощность значительно больше, то надо озаботится абстрагированием тебя как гражданско-правовой сущности от данного девайса, что предусматривает непротягивание проводов от него непосредственно в жилую студию.

Вообще, если заморочится этим вопросом всерьез, то можно и приобрести такой вот девайс, благо цена подъемная: http://urlab.narod.ru/

А вот еще некоторые ссылочки

Казалось бы, при сегодняшнем обилии электронных устройств, окружающих нас, когда электроника втиснута даже в брелоки и еще бог весть куда, а радиоприемники также поражают своих обилием, интересоваться на этом фоне, а тем более пробовать собрать детекторный приемник своими руками, вроде бы даже смешно. Но оказывается, немало людей интересуются схемой детекторного приемника, это можно понять по статистике запросов в поисковиках. К тому же, ведь не в практичности дело, а в самих «очумелых ручках», в стремлении познать, понять, сделать своими руками, увидеть (и главное, услышать!) результат своего творения.

А если принять во внимание, что можно доставить немало радости вашим малолетним детям и даже, возможно, они проявят интерес к электронике, то вполне есть стимул попробовать приобщиться к этому интересному делу. Ведь вся фишка в том, что всё элементарно просто, и детекторный приемник может сделать даже школьник средних классов, а также человек, вообще ничего не смыслящий в электронике! Ну и конечно, самое прикольное то, что НЕТ НИКАКИХ БАТАРЕЕК! И, кроме этого, вся, с позволения сказать, схема собирается практически из ничего. Вот это, конечно, кажется чудом! Этим можно удивить детей да и самим взрослым тоже удивиться.

Что такое детекторный приемник

Под понятием детекторный приемник подразумевается радиоприемник без питания (батарей), стало быть и без схемы усиления, поскольку усилителю требуется питание. Звук слышимый в наушниках, является непосредственно энергией радиоволн. По этой причине принять и услышать можно более близкие, более мощные радиосигналы.

Самый важные факторы для более громкого приема, слышимого в наушниках, как можно догадаться, это размеры приемной антенны, а еще — резистивное сопротивление используемых наушников: чем выше их сопротивление, тем лучше. Высокоомные наушники сегодня, разумеется, редкость (сопротивление 1600-2200 Ом) и, даже при вашем большом энтузиазме в поисках, мало шансов, что вы их отыщите. Но у меня для вас есть маленькая хитрость по этому поводу, ниже я поделюсь. Это мое ноу-хау, рожденное еще в юности, но уже гораздо позже моих посещений радиокружка, где впервые познакомился с детекторным радиоприемником.

Схема детекторного приемника

На рисунке слева приведена классическая схема детекторного приемника, которую я помню как Отче наш еще с подросткового возраста, когда посещал радиокружок в начале 70-х прошлого века.

Идем слева направо по схеме: A — антенна, G — заземление (ground). L и С1 являют собой колебательный контур, от их параметров (номиналов) зависит частота, на которую будет настроен контур, проще говоря, какую радиостанцию будет принимать ваш чудо-приемник. Далее диод D1 (собственно, детектор), С2 — фильтр низких частот и наушник Т (классическое название в электронике «телефон»).

Ориентировочные номиналы:
А — провод 0,2-0,5мм ПЭЛ, ПЭВ — от 5м и более (подальше и повыше)
G — радиатор отопления, водопровод или грунт
L — 150-300 витков 0,2-0,3мм (ПЭЛ, ПЭВ), диаметр катушки 60мм (количество витков подбирается или с отводами)
D1 — серии Д2, Д9, Д18, Д20, Д310, Д311
С1 — переменный, 10/200 пФ (воздушный или керамический)
С2 — 2200 – 6800 пФ
Т — высокоомные телефоны на 1600-2200 Ом (ТОН-2, ТОН-2М, ТА-4, ТА-56, ТАГ-1, ТГ-1 и др.)

Думаю, для детектора стоит взять диод Д311, у него Uпр = 0,4В. У Д310 уже выше — 0,55В. Нужен с меньшим прямым напряжением . Этот параметр (Uпр) говорит о том, сколько Вольт падает на диоде. Т.е. сколько он теряет, проще говоря. Вот если из кучки Д311 выбрать по миллиамперметру (схема выше) с меньшим падением 4 штуки, тогда, возможно, мост на них и даст больший сигнал после выпрямления.

Про антенну, думаю, поняли: подальше, повыше. У меня это был обмоточный провод 0,2-0,4мм длиной 5-10 метров с прицепленным на конце грузиком, который закидывал на деревья прямо со своего балкона на 4-м этаже.

Катушку индуктивности наматывать обычно советуют на плотном бумажном каркасе, но думаю, это не принципиально, подойдет и другой изолятор. Важно количество витков. Если переменный конденсатор не найдете, можно заменить на постоянный, а подгонку под несколько желаемых станций можно сделать экспериментальным подбором витков. На каждую станцию при этом, сделать отвод и поставить переключатель. Тем более, вряд ли больше 2-3 станций будут приниматься с удовлетворительной громкостью.

Кому не терпится быстрей попробовать

Можно увидеть (именно увидеть, не услышать) как дают энергию радиоволны сами по себе без усиления, без питания, даже безо всякого контура. Для этого нужна всего одна деталь — светодиод. Не знаю, как различные современные — по чувствительности, а тем более по частоте, но я лично проверял на советских красных светодиодах АЛ307.

Забрасываете провод (ПЭВ, ПЭЛ) от пяти метров на дерево — лучше, конечно, длинней и выше. Потом мастырите заземление (водопровод, отопление). Далее догадались? Один вывод светодиода — к антенне (не забудьте зачистить конец от лакированной изоляции!), другой — к заземлению (полярность не имеет значения). Всё, светодиод должен светиться. Разумеется не ярко.

Детекторный приемник без колебательного контура

Но если вы отыскали высокоомные наушники, то на самом деле детекторный приемник будет работать и без контура, и без фильтра. Я долгое время пользовался именно такой, примитивной схемой, как здесь слева.

По сути да, такой приемник принимает абсолютно все станции одновременно. Но в моем месте, где я тогда жил, сильно преобладала одна радиостанция, а остальные практически не было слышно. Конечно же, я экспериментировал и с контурами, и с фильтрами, но не обнаружил никакого улучшения, только снижение громкости. Поэтому именно такой примитивнейшей, с позволения сказать, схемой я и пользовался. А вот после того, как мне родители купили магнитофон, и я подключил схему к микрофонному входу, тогда уже услышал еще одну станцию. Вот тогда я добавил уже контур и еще несколько лет записывал рок музыку слушая очень популярную у нас в те годы передачу. В те доцифровые времена сложно было раздобыть качественные магнитофонные записи зарубежных групп, пластинки у спекулянтов стоили бешеные деньги. По радио же практически звучали лишь наши ВИА. Эта радиопередача шла по воскресеньям один час и по ней иногда передавали очень классные и главное новые (!) вещи. Например, именно по ней я одним из первых услышал и записал композицию группы The Eagles «Hotel California», это было начало 1976-го года.

Еще важно сказать про качество. В те годы не было еще диапазона FM (только-только зарождалось), который давал качественный прием, да еще и в стерео формате. Я слушал и записывал через свой детектор по СВ конечно. Но если сравнить качество по обычному приемнику и через мой детектор, это небо и земля. Ведь в обычных приемниках сигнал проходит через гетеродин, а я принимал через детектор «чистый» сигнал. Поэтому звук был как напрямую с пластинки на качественном проигрывателе. Когда давал слушать друзьям, они поражались качеству.

Так что можете сначала тоже без контура попробовать, возможно и у вас будет одна сильно преобладающая станция, и вас это устроит.

Высокоомные наушники

Но есть труднодобываемая часть приемника, это конечно же высокоомные телефоны (наушники). Они даже и в наши 70-е годы были редкостью, а теперь-то уж и подавно.

Современные наушники, для чего бы они ни были, можете даже не пытаться задействовать. Они имеют сопротивление около нескольких десятков Ом, в то время как колебательный контур приемника — порядка сотен килоОм. Ваши наушники будут практически просто проводником в этом случае, т.е. проходимый через них звук будет так тихим, что его невозможно будет услышать.

Как выглядят те наушники, глядим на картинке и вспоминаем военные фильмы. Что хорошо, на таких наушниках написано их сопротивление. Так что если вдруг попадутся, то вы будете знать сопротивление, даже не имея под рукой омметра.

Но если вам не повезло раздобыть высокоомные телефоны даже перелопатив весь местный блошиный рынок (что более вероятно), то далее я вам опишу своё личное ноу-хау, как обещал выше.

Что делать, если нет высокоомных телефонов (наушников)

Ноу-хау просто, как 2х2. Я подумал как-то: а почему бы не попробовать трансформировать, полученный от детектора сигнал, используя для этого самый обычный сетевой трансформатор? Тем более, что именно такого рода трансформаторы (из стальных Ш-образных пластин) часто использовались в усилителях УНЧ в качестве согласующих. Они так и назывались — согласующие, причем, часто именно на выходе, для непосредственного подключения динамика или наушников от плеера.

Думаю, вы уже сами поняли по схеме всё, даже не читая. Для этих целей стоит подбирать среди сетевых трансформаторов питания, понижающих напряжение. С детектора сигнал подключается к сетевой обмотке, она имеет больше всего витков. А обмотка, предназначенная для питания — на наушники или динамик. Можно экспериментировать со вторичной обмоткой (больше/меньше) — звуковые излучатели разных моделей имеют ведь разные сопротивления: наушники обычно десятки Ом, а динамики чаще менее 10 Ом.

Ctrl + Enter
Спасибо за помощь!

Для нормальной работы тюнера перестройкой одного блока УКВ не обойтись, нужен новый стереодекодер, а учитывая что спектр КСС полярной модуляции составляет 165 кгц против 190 кгц у буржуинов, то стоит задуматься, что делать с упч-частотным детектором.

Краткие выводы по результатам испытаний


  • Замена фильтра на фирменный муратовский E10.7S даёт выигрыш по чувствительности около двух раз. Применение двух фильтров последовательно целесообразна но не обязательна.

  • Шунтирование фазосдвигающих контуров для снижения искажений безсмысленно, они и так малы. Добротность контуров оптимальна.

Первым делом стоит повысить чувствительность тюнера увеличив коэффициент усиления по ПЧ вращением резистора R2 ДЧМ по часовой стрелке, но без фанатизма, чувствительность может оказаться слишком высока, что отразится на избирательности.

При настройке стереодекодера, при большом уровне НЧ в сигнале было заметно отключение стерео на пиках сигнала. Это вызвало подозрения, что при большой девиации фильтр обрезает края. Хотя причина могла крыться и в неточночной настройке СД.

Теперь, благодаря СДР приёмнику, я вижу гораздо дальше, и могу посмотреть полосу пропускания керамики.


Для этого на генератор работающий в ФМ диапазоне нужно подать модулирующий сигнал. С небольшой девиацией выглядит так

Но чтобы увидеть АЧХ фильтра девиация должна быть заведомо больше его полосы пропускания.
В описании приводятся данные на -3 и -20 дб, по этим точкам и будем ориентироваться, хотя для -3 показания получаются довольно размыты.

Для сравнения применялся муратовский фильтр на 180 КГц E10.7S АЧХ которого практически в точности соответствовали этим

Нижний скат АЧХ, уровень -20 ДБ

Уровень -3 ДБ

А куда делась бумажка на которой были записаны характеристики ФП1П8-3? Ладно, я и так помню что его полоса уже на пару десятков килогерц, как и должно быть.

E10.7S по -3 имеет полосу 10.650-10.840, по -20 10,517-10,966. Уровень ПЧ на выходе по сравнению с ФП1П8-3 вырос где-то на 5 ДБ.

При подключении двух фильтров последовательно полоса по -3 расширилась до 240 КГЦ, а по -20 сузилась до 336 КГЦ, уровень ПЧ при этом уменьшился всего на пару дб, так что было решено оставить два последовательных фильтра, хотя субъективно особого улучшения качества приёма я как то не заметил.

С фильтром решено, остаётся ЧМ детектор.
Он выполнен на микросхеме К174ХА6 (TDA1047).

ЧМ детектирование производится перемножением ячейкой Гилберта исходного сигнала и поданного на фазосдвигающий контур, настроенный на ПЧ. Промежуточная частота подавляется вследствие перемножения, а на выходе будет однополярное напряжение изменяющееся пропорционально разнице фаз. Чем ниже добротность контура или девиация (в определённых пределах), тем меньше выходное напряжение и искажения. Снизить добротность можно шунтированием контура резистором.

Для оценки Кг несущая частота модулируется тональными сигналами.
Искажения на выходе тюнера невелики, особенно при точной настройке, и практически одинаковы во всём диапазоне

Это искажения всего тракта телефон(источник зч)-простейший самодельный генератор-тюнер со стереодекодером TA7343AP-звуковая карта. Честно говоря удивлён их малой величине, даже не знаю как такое получилось. При расстройке в пределах работы АПЧ искажения несколько возрастают

Кг никак не зависит от шунтирования контуров резисторами 3.9к (подобраны экспериментально, при меньших сопротивлениях нарушается работа шумоподавителя).

Выше определённого порога наступает ограничение и резкий рост искажений


Шунтирование обоих контуров резисторами 3.9к незначительно эти снижает искажения, с пропорциональным зч уровня снижением.

Но реальный сигнал на десятки децибел ниже и никогда не достигает этого уровня, потому шунтирование ни к чему. Параметры контуров выбраны оптимально и обеспечивают минимально возможные искажения. К тому же при шунтировании происходит нарушение работы бесшумной настройки, из-за снижения управляющего напряжения даже мощные станции плохо открывают шумоподавитель.

В заключение аналогичная спектрограмма второго по популярности приёмника Tecsun PL-600. Минимально возможные искажения которые удалось получить. В любых режимах они в несколько раз превосходят искажения Радиотехники, так что тюнер пожалуй достоин потраченного на него времени.
Ясно что тексан для высокой верности воспроизведения не предназначен, но что нужно было нахуевертить, чтобы на стандартных и неплохих комплектующих получить такое я не представляю. Хотя для китайчины ситуация типовая.

Осталось собраться с силами, волю в кулак и т.п. и доделать наконец.

Приветствую! В этом обзоре хочу рассказать про миниатюрный модуль приемника, работающий в диапазоне УКВ (FM) на частоте от 64 до 108 МГц. На одном из профильных ресурсов интернета попалась картинка этого модуля, мне стало любопытно изучить его и протестировать.

К радиоприемникам испытываю особый трепет, люблю собирать их еще со школы. Были схемы из журнала «Радио», были и просто конструкторы. Всякий раз хотелось собрать приемник лучше и меньше размерами. Последнее, что собирал, - конструкция на микросхеме К174ХА34. Тогда это казалось очень «крутым», когда в середине 90-х впервые увидел работающую схему в радиомагазине, был под впечатлением)) Однако прогресс идет вперед, и сегодня можно купить героя нашего обзора за «три копейки». Давайте его рассмотрим поближе.

Вид сверху.

Вид снизу.

Для масштаба рядом с монетой.

Сам модуль построен на микросхеме AR1310. Точного даташита на неё найти не смог, по всей видимости произведена в Китае и её точное функциональное устройство не известно. В интернете попадаются лишь схемы включения. Поиск через гугл выдает информацию: " Это высокоинтегрированный, однокристальный, стерео FM радиоприемник. AR1310 поддерживает частотный диапазон FM 64-108 МГц, чип включает в себя все функции FM радио: малошумящий усилитель, смеситель, генератор и стабилизатор с низким падением. Требует минимум внешних компонентов. Имеет хорошее качество аудиосигнала и отличное качество приема. AR1310 не требует управляющих микроконтроллеров и никакого дополнительного программного обеспечения, кроме 5 кнопок. Рабочее напряжение 2.2 В до 3.6 В. потребление 15 мА, в спящем режиме 16 uA ".

Описание и технические характеристики AR1310
- Прием частот FM диапазон 64 -108 МГц
- Низкое энергопотребление 15 мА, в спящем режиме 16 uA
- Поддержка четырех диапазонов настройки
- Использование недорогого кварцевого резонатора 32.768KHz.
- Встроенная двусторонняя функция автоматического поиска
- Поддержка электронного регулятора громкости
- Поддержка стерео или моно режима (при замыкании 4 и 5 контакта отключается стерео режим)
- Встроенный усилитель для наушников 32 Ом класса AB
- Не требует управляющих микроконтроллеров
- Рабочее напряжение 2.2 В до 3.6 В
- В корпусе SOP16

Распиновка и габаритные размеры модуля.

Распиновка микросхемы AR1310.

Схема включения, взятая из интернета.

Так я составил схему подключения модуля.

Как видно, принцип проще некуда. Вам понадобится: 5 тактовых кнопок, разъем для наушников и два резистора по 100К. Конденсатор С1 можно поставить 100 нФ, можно 10 мкФ, а можно вообще не ставить. Емкости C2 и С3 от 10 до 470 мкФ. В качестве антенны - кусок провода (я взял МГТФ длиной 10 см, т.к. передающая вышка у меня в соседнем дворе). В идеальном случае можно рассчитать длину провода, например на 100 МГц, взяв четверть волны или одну восьмую. Для одной восьмой это будет 37 см.
По схеме хочу сделать замечание. AR1310 может работать в разных диапазонах (видимо, для более быстрого поиска станций). Выбирается это комбинацией 14 и 15 ножки микросхемы, подключая их к земле или питанию. В нашем случае обе ножки сидят на VCC.

Приступим к сборке. Первое, с чем столкнулся, - нестандартный межвыводной шаг модуля. Он составляет 2 мм, и засунуть его в стандартную макетку не получится. Но не беда, взяв кусочки провода, просто напаял их в виде ножек.


Выглядит неплохо)) Вместо макетной платы решил использовать кусок текстолита, собрав обычную «летучку». В итоге получилась вот такая плата. Габариты можно существенно уменьшить, применив тот же ЛУТ и компоненты меньшего размера. Но других деталей у меня не нашлось, тем более что это тестовый стенд, для обкатки.





Подав питание, нажимаем кнопку включения. Радиоприемник сразу заработал, без какой-либо отладки. Понравилось то, что поиск станций работает почти мгновенно (особенно если их много в диапазоне). Переход с одной станции на другую около 1 с. Уровень громкости очень высокий, на максимуме слушать неприятно. После выключения кнопкой (спящий режим), запоминает последнюю станцию (если полностью не отключать питание).
Тестирование качества звука (на слух) проводил наушниками Creative (32 Ом) типа «капли» и наушниками «вакуумного» типа Philips (17,5 Ом). И в тех, и в других качество звука мне понравилось. Нет писклявости, достаточное количество низких частот. Меломан из меня никудышный, но звук усилителя этой микросхемы приятно порадовал. В Филипсах максимальную громкость так и не смог выкрутить, уровень звукового давления до боли.
Так же измерил ток потребления в спящем режиме 16 мкА и в рабочем 16,9 мА (без подключения наушников).

При подключении нагрузки в 32 Ома, ток составил 65,2 мА, при нагрузке в 17,5 Ома - 97,3 мА.

В заключение скажу, что данный модуль радиоприемника вполне годен для бытового применения. Собрать готовое радио сможет даже школьник. Из «минусов» (скорей даже не минусы, а особенности) отмечу нестандартный межвыводной шаг платы и отсутствие дисплея для отображения информации.

Измерил ток потребления (при напряжении 3,3 В), как видим, результат очевиден. При нагрузке 32 Ом - 17,6 мА, при 17,5 Ом - 18,6 мА. Вот это совсем другое дело!!! Ток немного менялся в зависимости от уровня громкости (в пределах 2 - 3 мА). Схему в обзоре подправил.


Планирую купить +109 Добавить в избранное Обзор понравился +93 +177