Что такое фильтр калмана. Использование фильтра калмана для фильтрации значений, получаемых с датчиков. Пример построения фильтра

1

Проведено исследование использования фильтра Калмана в современных разработках комплексированных навигационных систем. Приведен и разобран пример построения математической модели, использующей расширенный фильтр Калмана для повышения точности определения координат беспилотных летательных аппаратов. Рассмотрен частичный фильтр. Сделан краткий обзор научных работ, использующих данный фильтр для повышения надежности и отказоустойчивости навигационных систем. Данная статья позволяет сделать вывод, что использование фильтра Калмана в системах определения местоположения БПЛА практикуется во многих современных разработках. Существует огромное количество вариаций и аспектов такого использования, которое дает и ощутимые результаты в повышении точности, особенно в случае отказа стандартных спутниковых навигационных систем. Это является главным фактором влияния данной технологии на различные научные области, связанные с разработкой точных и отказоустойчивых навигационных систем для различных летательных аппаратов.

фильтр Калмана

навигация

беспилотный летательный аппарат (БПЛА)

1. Макаренко Г.К., Алешечкин А.М. Исследование алгоритма фильтрации при определении координат объекта по сигналам спутниковых радионавигационных систем // Доклады ТУСУРа. – 2012. – № 2 (26). – С. 15-18.

2. Bar-Shalom Y., Li X. R., Kirubarajan T. Estimation with Applications

to Tracking and Navigation // Theory Algorithms and Software. – 2001. – Vol. 3. – P. 10-20.

3. Bassem I.S. Vision based Navigation (VBN) of Unmanned Aerial Vehicles (UAV) // UNIVERSITY OF CALGARY. – 2012. – Vol. 1. – P. 100-127.

4. Conte G., Doherty P. An Integrated UAV Navigation System Based on Aerial Image Matching // Aerospace Conference. – 2008. –Vol. 1. – P. 3142-3151.

5. Guoqiang M., Drake S., Anderson B. Design of an extended kalman filter for uav localization // In Information, Decision and Control. – 2007. – Vol. 7. – P. 224–229.

6. Ponda S.S Trajectory Optimization for Target Localization Using Small Unmanned Aerial Vehicles // Massachusetts institute of technology. – 2008. – Vol. 1. – P. 64-70.

7. Wang J., Garrat M., Lambert A. Integration of gps/ins/vision sensors to navigate unmanned aerial vehicles // IAPRS&SIS. – 2008. – Vol. 37. – P. 963-969.

Одной из актуальных задач современной навигации беспилотных летательных аппаратов (БПЛА) является задача повышения точности определения координат. Эта задача решается путём использования различных вариантов комплексирования навигационных систем. Одним из современных вариантов комплексирования является сочетание gps/глонасс-навигации с расширенным фильтром Калмана (Extended Kalmanfilter), рекурсивно оценивающего точность с помощью неполных и зашумленных измерений. В данный момент существуют и разрабатываются различные вариации расширенного фильтра Калмана, включающие разнообразное число переменных состояний . В этой работе мы покажем, насколько эффективным может быть его использование в современных разработках. Рассмотрим одно из характерных представлений подобного фильтра .

Построение математической модели

В данном примере мы будем говорить только о движении БПЛА в горизонтальной плоскости, иначе, мы рассмотрим так называемую проблему 2d локализации . В нашем случае это оправдано тем, что для многих практически встречающихся ситуаций БПЛА может оставаться примерно на одной и той же высоте. Это предположение широко используется для упрощения моделирования динамики летательных аппаратов . Динамическая модель БПЛА задается следующей системой уравнений:

где {} - координаты БПЛА в горизонтальной плоскости как функции времени, направление БПЛА, угловая скорость БПЛА, и vпутевая скорость БПЛА, функции и будем считать постоянными. Они взаимно независимы, с известными ковариациями и , равными и соответственно и используются для моделирования изменений ускорения БПЛА, вызванных ветром, маневрами пилота и т.д. Значения и являются производными от максимальной угловой скорости БПЛА и опытных значений изменений линейной скорости БЛА, - символ Кронекера.

Данная система уравнений будет приближенной из-за нелинейности в модели и из-за присутствия шума. Самый простой способ аппроксимации в данном случае - это приближение методом Эйлера. Дискретная модель динамической системы движения БПЛА показана ниже.

дискретный вектор состояний фильтра Калмана, позволяющий аппроксимировать значение непрерывного вектора состояний. ∆ - временной интервал между k и k+1 измерениями. {} и {} - последовательности значений белого гауссовского шума с нулевым средним значением. Матрица ковариации для первой последовательности:

Аналогично, для второй последовательности:

Выполнив соответствующие замены в уравнениях системы (2), получаем:

Последовательности и взаимно независимы. Они также являются последовательностями белого гауссовского шума с нулевым средним значением и с матрицами ковариации и соответственно. Преимущество этой формы в том, что она показывает изменение дискретного шума в интервале между каждыми измерениями. В итоге получаем следующую дискретную динамическую модель:

(3)

Уравнение для :

= + , (4)

где, х и y - координаты БПЛА в k-момент времени, а гауссовская последовательность случайных параметров с нулевым средним значением, которая используется для задания погрешности. Предполагается, что эта последовательность не зависит от {} и {}.

Выражения (3) и (4) служат основой для оценки местоположения БПЛА, где к-е координаты получены с помощью расширенного фильтра Калмана. Моделлирование отказа навигационных систем применительно к данному типу фильтра показывает его существенную эффективность .

Для большей наглядности приведем небольшой простой пример. Пусть некоторый БПЛА летит равноускоренно, с некоторым постоянным ускорением а.

Где, х - координата БПЛА в t-момент времени, а δ - некоторая случайная величина.

Предположим, что у нас есть gps-сенсор, который получает данные о местоположении летательного аппарата. Представим результат моделирования данного процесса в программном пакете MATLAB.

Рис. 1. Фильтрация показания сенсора с помощью фильтра Калмана

На рис. 1 видно, насколько эффективным может быть использование фильтрации по алгоритму Калмана.

Однако в реальной ситуации сигналы зачастую имеют нелинейную динамику и ненормальный шум. Именно в таких случаях и используется расширенный фильтр Калмана. В том случае, если дисперсии шумов не слишком велики (т.е. линейная аппроксимация является адекватной), применение расширенного фильтра Калмана дает решение задачи с высокой точностью. Однако в том случае, когда шумы не являются гауссовскими, расширенный фильтр Калмана применять нельзя. В этом случае обычно применяют частичный фильтр, в котором используются численные методы взятия интегралов на основе методов Монте Карло с марковскими цепями.

Частичный фильтр

Представим один из алгоритмов, развивающих идеи расширенного фильтра Калмана - частичный фильтр. Частичная фильтрация является неоптимальным способом фильтрации, который работает при выполнении объединения методом Монте-Карло на множестве частиц, которые представляют собой распределение вероятностей процесса. Здесь частица это элемент, взятый из априорного распределения оцениваемого параметра. Основная идея частичного фильтра заключается в том, что большое количество частиц может быть использовано для представления оценки распределения. Чем большее число частиц используется, тем точнее множество частиц будет представлять априорное распределение. Фильтр частиц инициализируется помещением в него N частиц из априорного распределения параметров, которые мы хотим оценить. Алгоритм фильтрации предполагает прогон этих частиц через специальную систему, а затем взвешивание с помощью информации, полученной от измерения данных частиц. Полученные частицы и связанные с ними массы представляют апостериорное распределение оценочного процесса. Цикл повторяется для каждого нового измерения, и веса частиц обновляются для представления последующего распределения. Одна из основных проблем с традиционным подходом фильтрации частиц состоит в том, что в результате такой подход обычно имеет несколько частиц, имеющих очень большой вес, в отличие от большинства остальных, вес которых очень незначителен. Это приводит к нестабильности фильтрации . Эта проблема может быть решена введением частоты дискретизации, где N новых частиц берется из распределения, составленного из старых частиц. Результат оценки получают путем получения выборки среднего значения множества частиц. Если мы имеем несколько независимых выборок, то средняя выборка будет точной оценкой среднего значения, задающей конечную дисперсию.

Даже если фильтр частиц является неоптимальным, то при стремлении количества частиц к бесконечности эффективность алгоритма приближается в байесову правилу оценивания. Поэтому желательно иметь столько частиц, сколько возможно, чтобы получить наилучший результат. К сожалению, это приводит к сильному увеличению сложности вычислений, а, следовательно, вынуждает к поиску компромисса между точностью и скоростью расчета. Итак, число частиц должно быть выбрано исходя из требований к задаче оценки точности. Еще одним важным фактором для работы фильтра частиц является ограничение на частоту дискретизации. Как упоминалось ранее, частота дискретизации является важным параметром фильтрации частиц и без него в конечном итоге алгоритм становится вырождающимся. Идея заключается в том, что если веса распределяются слишком неравномерно и порог дискретизации скоро будет достигнут, то частицы с низким весом отбрасываются, и оставшееся множество образует новую вероятностную плотность, для которой могут браться новые выборки. Выбор порога частоты дискретизации представляет собой довольно сложную задачу, ведь слишком высокая частота служит причиной чрезмерной чувствительности фильтра к шуму, а слишком низкая дает большую погрешность. Также важным фактором является плотность вероятности .

В целом, алгоритм фильтрации частиц показывает хорошую производительность расчета местоположения для стационарных целей и в случае относительно медленно движущихся целей с неизвестной динамикой ускорения. В общем случае, алгоритм фильтрации частиц является более стабильным, чем расширенный фильтр Калмана, и менее склонным к вырождению и серьезным сбоям. В случаях нелинейного, негауссового распределения данный алгоритм фильтрации показывает весьма хорошую точность определения местоположения цели, в то время как алгоритм расширенной фильтрации Калмана нельзя использовать при таких условиях. К минусам данного подхода можно отнести его более высокую сложность относительно расширенного фильтра Калмана, а также то, что не всегда очевидно, как правильно подобрать параметры для этого алгоритма.

Перспективные исследования в данной области

Использование модели фильтра Калмана, подобной той, что привели мы, можно видеть в , где он используется для улучшения характеристик комплексированной системы (GPS + модель компьютерного зрения для сопоставления с географической базой), и также моделируется ситуация отказа спутникового навигационного оборудования. С помощью фильтра Калмана результаты работы системы в случае отказа были существенно улучшены (например, погрешность в определении высоты была снижена примерно в два раза, а погрешности в определении координат по разным осям снижены практически в 9 раз). Аналогичное использование фильтра Калмана приведено также в .

Интересная с точки зрения совокупности методов задача решается в . Там также используется фильтр Калмана с 5 состояниями, с некоторыми отличиями в построении модели. Полученный результат превосходит результат приведенной нами модели за счет использования дополнительных средств комплексирования (используются фото и тепловизионные изображения). Применение фильтра Калмана в данном случае позволяет уменьшить погрешность определения пространственных координат заданной точки до значения 5,5 м.

Заключение

В заключение отметим, что использование фильтра Калмана в системах определения местоположения БПЛА практикуется во многих современных разработках. Существует огромное количество вариаций и аспектов такого использования, вплоть до одновременного применения нескольких подобных фильтров с разными факторами состояний . Одним из наиболее перспективных направлений развития Калмановских фильтров видится работа над созданием модифицированного фильтра, погрешности которого будут представлены цветным шумом, что сделает его еще более ценным для решения реальных задач. Также большой интерес в данной области представляет собой частичный фильтр, с помощью которого можно фильтровать негауссовские шумы. Названное разнообразие и ощутимые результаты в повышении точности, особенно в случае отказа стандартных спутниковых навигационных систем, являются главными факторами влияния данной технологии на различные научные области, связанные с разработкой точных и отказоустойчивых навигационных систем для различных летательных аппаратов.

Рецензенты:

Лабунец В.Г., д.т.н., профессор, профессор кафедры теоретических основ радиотехники Уральского федерального университета имени первого Президента России Б.Н. Ельцина, г. Екатеринбург;

Иванов В.Э., д.т.н., профессор, зав. кафедрой технологии и средств связи Уральского федерального университета имени первого Президента России Б.Н. Ельцина, г. Екатеринбург.

Библиографическая ссылка

Гаврилов А.В. ИСПОЛЬЗОВАНИЕ ФИЛЬТРА КАЛМАНА ДЛЯ РЕШЕНИЯ ЗАДАЧ УТОЧНЕНИЯ КООРДИНАТ БПЛА // Современные проблемы науки и образования. – 2015. – № 1-1.;
URL: http://science-education.ru/ru/article/view?id=19453 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Random Forest - один из моих любимых алгоритмов data mining. Во-первых он невероятно универсален, с его помощью можно решать как задачи регрессии так и классификации. Проводить поиск аномалий и отбор предикторов. Во-вторых это тот алгоритм, который действительно сложно применить неправильно. Просто потому, что в отличии от других алгоритмов у него мало настраиваемых параметров. И еще он удивительно прост по своей сути. И в то же время он отличается удивительной точностью.

В чем же идея такого замечательного алгоритма? Идея проста: допустим у нас есть какой-то очень слабый алгоритм, скажем, . Если мы сделаем очень много разных моделей с использованием этого слабого алгоритма и усредним результат их предсказаний, то итоговый результат будет существенно лучше. Это, так называемое, обучение ансамбля в действии. Алгоритм Random Forest потому и называется "Случайный Лес", для полученных данных он создает множество деревьев приятия решений и потом усредняет результат их предсказаний. Важным моментом тут является элемент случайности в создании каждого дерева. Ведь понятно, что если мы создадим много одинаковых деревьев, то результат их усреднения будет обладать точностью одного дерева.

Как он работает? Предположим, у нас есть некие данные на входе. Каждая колонка соответствует некоторому параметру, каждая строка соответствует некоторому элементу данных.

Мы можем выбрать, случайным образом, из всего набора данных некоторое количество столбцов и строк и построить по ним дерево принятия решений.


Thursday, May 10, 2012

Thursday, January 12, 2012


Вот собственно и всё. 17-ти часовой перелет позади, Россия осталась за океаном. А в окно уютной 2-ух спальной квартиры на нас смотрит Сан-Франциско, знаменитая Кремниевая долина, Калифорния, США. Да, это и есть та самая причина, по которой я практически не писал последнее время. Мы переехали.

Всё это началось еще в апреле 2011 года, когда я проходил телефонное интервью в компании Zynga. Тогда это все казалось какой-то игрой не имеющей отношения к реальности и я и представить себе не мог, во что это выльется. В июне 2011 года Zynga приехали в Москву и провели серию собеседований, рассматривалось около 60 кандидатов прошедших телефонное интервью и из них было отобрано около 15 человек (точное число не знаю, кто-то потом передумал, кто-то сразу отказался). Интервью оказалось неожиданно простым. Ни тебе задачек на программирование, ни заковыристых вопросов про форму люков, в основном проверялись способности болтать. А знания, на мой взгляд, оценивались лишь поверхностно.

А дальше началась канитель. Сначала мы ждали результатов, потом офера, потом одобрение LCA, потом одобрения петиции на визу, потом документы из США, потом очередь в посольстве, потом дополнительную проверку, потом визу. Временами мне казалось, что я готов все бросить и забить. Временами я сомневался, а нужна ли нам эта Америка ведь и в России не плохо. Весь процесс занял где-то около полугода, в итоге, в середине декабря мы получили визы и начали готовиться к отъезду.

В понедельник был мой первый рабочий день на новом месте. В офисе созданы все условия для того чтобы не только работать, но и жить. Завтраки, обеды и ужины от собственных поваров, куча разнообразнейшей еды распиханной по всем уголкам, спортзал, массаж и даже парикмахер. Все это совершенно бесплатно для сотрудников. Многие добираются на работу на велосипеде и для хранения транспорта оборудовано несколько комнат. В общем, ничего подобного в России мне встречать не доводилось. Всему, однако, есть своя цена, нас сразу предупредили, что работать придется много. Что такое "много", по их меркам, мне не очень понятно.

Надеюсь, однако, что несмотря на количество работы, в обозримом будущем смогу возобновить ведение блога и, может быть, расскажу что-нибудь о американской жизни и работе программистом в Америке. Поживем - увидим. А пока, поздравляю всех с наступившим новым годом и рождеством и до новых встреч!


Для примера использования, распечатаем дивидендную доходность российских компаний. В качестве базовой цены, берем цену закрытия акции в день закрытия реестра. Почему-то на сайте тройки этой информации нет, а она ведь гораздо интересней чем абсолютные величины дивидендов.
Внимание! Код выполняется довольно долго, т.к. для каждой акции требуется сделать запрос на сервера finam и получить её стоимость.

Result <- NULL for(i in (1:length(divs[,1]))){ d <- divs if (d$Divs>0){ try({ quotes <- getSymbols(d$Symbol, src="Finam", from="2010-01-01", auto.assign=FALSE) if (!is.nan(quotes)){ price <- Cl(quotes) if (length(price)>0){ dd <- d$Divs result <- rbind(result, data.frame(d$Symbol, d$Name, d$RegistryDate, as.numeric(dd)/as.numeric(price), stringsAsFactors=FALSE)) } } }, silent=TRUE) } } colnames(result) <- c("Symbol", "Name", "RegistryDate", "Divs") result


Аналогично можно построить статистику для прошлых лет.

Как то так повелось, что очень нравятся мне всякие алгоритмы, имеющие четкое и логичное математическое обоснование) Но зачастую их описание в интернете настолько перегружено формулами и расчетами, что общий смысл алгоритма понять просто невозможно. А ведь понимание сути и принципа работы устройства/механизма/алгоритма намного важнее, чем заучивание огромных формул. Как это ни банально, но запоминание даже сотни формул ничем не поможет, если не знать, как и где их применить 😉 Собственно, к чему все это.. Решил я замутить описание некоторых алгоритмов, с которыми мне приходилось сталкиваться на практике. Постараюсь не перегружать математическими выкладками, чтобы материал был понятным, а чтение легким.

И сегодня мы поговорим о фильтре Калмана , разберемся, что это такое, для чего и как он применяется.

Начнем с небольшого примера. Пусть перед нами стоит задача определять координату летящего самолета. Причем, естественно, координата (обозначим ее ) должна определяться максимально точно.

На самолете мы заранее установили датчик, который и дает нам искомые данные о местоположении, но, как и все в этом мире, наш датчик неидеален. Поэтому вместо значения мы получаем:

где – ошибка датчика, то есть случайная величина. Таким образом, из неточных показаний измерительного оборудования мы должны получить значение координаты (), максимально близкое к реальному положению самолета.

Задача поставлена, перейдем к ее решению.

Пусть мы знаем управляющее воздействие (), благодаря которому летит самолет (пилот сообщил нам, какие рычаги он дергает 😉). Тогда, зная координату на k-ом шаге, мы можем получить значение на (k+1) шаге:

Казалось бы, вот оно, то что надо! И никакой фильтр Калмана тут не нужен. Но не все так просто.. В реальности мы не можем учесть все внешние факторы, влияющие на полет, поэтому формула принимает следующий вид:

где – ошибка, вызванная внешним воздействием, неидеальностью двигателя итп.

Итак, что же получается? На шаге (k+1) мы имеем, во-первых, неточное показание датчика , а во-вторых, неточно рассчитанное значение , полученное из значения на предыдущем шаге.

Идея фильтра Калмана заключается в том, чтобы из двух неточных значений (взяв их с разными весовыми коэффициентами) получить точную оценку искомой координаты (для нашего случая). В общем случае, измеряемая величина можем быть абсолютно любой (температура, скорость..). Вот, что получается:

Путем математических вычислений мы можем получить формулу для расчета коэффициента Калмана на каждом шаге, но, как условились в начале статьи, не будем углубляться в вычисления, тем более, что на практике установлено, что коэффициент Калмана с ростом k всегда стремится к определенному значению. Получаем первое упрощение нашей формулы:

А теперь предположим, что связи с пилотом нет, и мы не знаем управляющее воздействие . Казалось бы, в этом случае фильтр Калмана мы использовать не можем, но это не так 😉 Просто “выкидываем” из формулы то, что мы не знаем, тогда

Получаем максимально упрощенную формулу Калмана, которая тем не менее, несмотря на такие “жесткие” упрощения, прекрасно справляется со своей задачей. Если представить результаты графически, то получится примерно следующее:

Если наш датчик очень точный, то естественно весовой коэффициент K должен быть близок к единице. Если же ситуация обратная, то есть датчик у нас не очень хороший, то K должен быть ближе к нулю.

На этом, пожалуй, все, вот так вот просто мы разобрались с алгоритмом фильтрации Калмана! Надеюсь, что статья оказалась полезной и понятной =)


Этот фильтр применяют в разных областях – от радиотехники до экономики. Здесь мы обсудим основную идею, смысл, суть данного фильтра. Излагаться она будет максимально простым языком.
Предположим, что у нас есть необходимость в измерениях некоторых величин некоего объекта. В радиотехнике чаще всего имеют дело с измерениями напряжений на выходе некоего устройства (датчика, антенны и т.д.). В примере с электрокардиографом (см. ) мы имеем дело с измерениями биопотенциалов на теле человека. В экономике, например, измеряемой величиной могут быть курсы валют. Каждыё день курс валют разный, т.е. каждый день “его измерения” дают нам разную величину. А если обобщать, то можно сказать, что большая часть деятельности человека (если не вся) сводится именно к постоянным измерениям-сравнениям тех или иных величин (см. книгу).
Итак, предположим, что мы что-то постоянно измеряем. Так же предположим, что наши измерения всегда идут с некоторой ошибкой – оно и понятно, ведь нет идеальных измерительных приборов, и каждый выдаёт результат с ошибкой. В простейшем случае описанное можно свести к следующему выражению: z=x+y, где x – истинное значение, которое мы хотим измерить и которое измерили бы если бы у нас был идеальный измерительный прибор, y – ошибка измерения, вносимая измерительным прибором, а z – измеренная нами величина. Так вот задача фильтра Калмана состоит в том, чтобы по измеренной нами z всё-таки догадаться (определить), а какое же истинное значение x было, когда мы получали нашу z (в которой "сидит" истинное значение и ошибка измерения). Необходимо отфильтровать (отсеять) из z истинное значение x – убрать из z искажающий шум y. То есть, имея на руках только лишь сумму нам необходимо догадаться о том, какие слагаемые дали эту сумму.
В свете вышеописанного сформулируем теперь всё следующим образом. Пусть есть всего лишь два случайных числа. Нам даётся только их сумма и от нас требуется по этой сумме определить, какими являются слагаемые. Например, нам дали число 12 и говорят: 12 – это сумма чисел x и y, вопрос – чему равны x и y. Чтобы ответить на этот вопрос, составляем уравнение: x+y=12. Мы получили одно уравнение с двумя неизвестными, поэтому, строго говоря, найти два числа которые и дали эту сумму не возможно. Но кое-что об этих числах мы всё-таки можем сказать. Мы можем сказать, что это были либо числа 1 и 11, либо 2 и 10, либо 3 и 9, либо 4 и 8 и т.д., также это либо 13 и -1, либо 14 и -2, либо 15 и -3 и т.д. То есть мы можем по сумме (в нашем примере 12) определить множество возможных вариантов, которые дают в сумме именно 12. Один из этих вариантов – это искомая нами пара, которая на самом деле прямо сейчас и дала 12. Нелишне так же отметить, что все варианты пар чисел дающих в сумме 12 образуют прямую, изображённую на рис.1, которая и задаётся уравнением x+y=12 (y=-x+12).

Рис.1

Таким образом, искомая нами пара лежит где-то на этой прямой. Повторюсь, выбрать из всех этих вариантов ту пару, которая была на самом деле – которая дала число 12, не владея какими-либо дополнительными подсказками, невозможно. Однако, в ситуации, для которой изобретён фильтр Калмана, такие подсказки есть . Там заранее о случайных числах кое-что известно. В частности там известна так называемая гистограмма распределения для каждой пары чисел. Она обычно бывает получена после достаточно длительных наблюдений за выпадениями этих самых случайных чисел. То есть, например, из опыта известно, что в 5% случаев обычно выпадает пара x=1, y=8 (обозначим эту пару так: (1,8)), в 2% случаев пара x=2, y=3 (2,3), в 1% случаев пара (3,1), в 0.024% случаев пара (11,1) и т.д. Повторюсь, эта гистограмма задана для всех пар чисел, в том числе и для тех, что образуют в сумме 12. Таким образом, для каждой пары, что даёт в сумме 12, мы можем сказать, что, например, пара (1, 11) выпадает в 0.8% случаев, пара (2, 10) – в 1% случаев, пара (3, 9) – в 1.5% случаев и т.д. Таким образом, мы можем по гистограмме определить, в скольких процентах случаев сумма слагаемых пары равна 12. Пусть, например, в 30% случаев сумма даёт 12. А в остальных 70% выпадают остальные пары – это (1,8), (2,3), (3,1) и т.д. – те, что в сумме дают числа отличные от 12. Причём пусть, например, пара (7,5) выпадает в 27% случаев в то время, как все остальные пары, что дают в сумме 12, выпадают в 0.024%+0.8%+1%+1.5%+…=3% случаев. Итак, по гистограмме мы выяснили, что числа дающие в сумме 12 выпадают в 30% случаев. При этом мы знаем, что если выпало 12, то чаще всего (в 27% из 30%) причиной этого является пара (7,5). То есть если уже выпало 12, то мы можем сказать, что в 90% (27% из 30% – или, что то же самое 27 раз из каждых 30-ти) причиной выпадения 12 является пара (7,5). Зная, что чаще всего причиной получения суммы равной 12 является пара (7,5) логично предположить, что, скорее всего, она выпала и сейчас. Конечно, всё-таки не факт, что на самом деле сейчас число 12 образовано именно этой парой, однако, в следующие разы, если нам попадётся 12, и мы опять предположим пару (7,5), то где-то в 90% случаев из 100% окажемся правы. А вот если мы будем предполагать пару (2, 10), то окажемся правы лишь в 1% из 30% случаев, что равно 3.33% правильных догадок по сравнению с 90% при предположении пары (7,5). Вот и всё – в этом и состоит смысл алгоритма фильтра Калмана. То есть фильтр Калмана не гарантирует, что не ошибётся в определении слагаемого по сумме, однако он гарантирует, что ошибётся минимальное количество раз (вероятность ошибки будет минимальна), так как использует статистику – гистограмму выпадения пар чисел. Так же необходимо подчеркнуть, что часто в алгоритме фильтрации Калмана используется так называемая плотность распределения вероятности (ПРВ). Однако необходимо понимать, что смысл там тот же, что и у гистограммы. Более того, гистограмма – это функция, построенная на основе ПРВ и являющаяся её приближением (см., например, ).
В принципе мы эту гистограмму можем изобразить в виде функции двух переменных – то есть в виде некоей поверхности над плоскостью xy. Там, где поверхность выше, там выше и вероятность выпадения соответствующей пары. На рис.2 изображена такая поверхность.


рис.2

Как видно над прямой x+y=12 (которая есть варианты пар дающих в сумме 12) расположены точки поверхности на разной высоте и наибольшая высота у варианта с координатами (7,5). И когда нам встречается сумма равная 12, в 90% случаев причиной появления этой суммы является именно пара (7,5). Т.е. именно эта пара, дающая в сумме 12, имеет наибольшую вероятность появления при условии, что сумма равна 12.
Таким образом, здесь описана идея лежащая в основе фильтра Калмана. Именно на ней и построены всевозможные его модификации – одношаговые, многошаговые рекуррентные и т.д. Для более глубокого изучения фильтра Калмана рекомендую книгу: Ван Трис Г. Теория обнаружения, оценок и модуляции.

p.s. Для того, кто интересуется объяснениями понятий математики что называется "на пальцах" можно посоветовать вот эту книгу и в частности главы из её раздела "Математика" (саму книгу или отдельные главы из неё вы можете приобрести ).

В процессе автоматизации технологических процессов для управления механизмами и агрегатами приходится сталкиваться с измерениями различных физических величин. Это может быть давление и расход жидкости или газа, частота вращения, температура и многое другое. Измерение физических величин осуществляется с помощью аналоговых датчиков. Аналоговый сигнал - сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений . Из непрерывности пространства значений следует, что любая помеха, внесенная в сигнал, неотличима от полезного сигнала. Поэтому на аналоговый вход управляющего устройства будет поступать неверное значение требуемой физической величины. Следовательно, необходимо производить фильтрацию сигнала, поступающего с датчика.

Одним из эффективных алгоритмов фильтрации является фильтр Калмана. Фильтр Калмана - рекурсивный фильтр, оценивающий вектор состояния динамической системы, используя ряд неполных и зашумленных измерений . Фильтр Калмана использует динамическую модель системы (к примеру, физический закон движения), управляющие воздействия и множество последовательных измерений для формирования оптимальной оценки состояния. Алгоритм состоит из двух повторяющихся фаз: предсказание и корректировка. На первом этапе рассчитывается предсказание состояния в последующий момент времени (с учетом неточности их измерения). На втором, новая информация с датчика корректирует предсказанное значение (также с учетом неточности и зашумленности этой информации).

На этапе предсказания происходит:

  1. Предсказание состояния системы:

где – предсказание состояния системы в текущий момент времени; – матрица перехода между состояниями (динамическая модель системы); – предсказание состояния системы в предыдущий момент времени; – матрица применения управляющего воздействия; – управляющее воздействие в предыдущий момент времени.

  1. Предсказание ошибки ковариации:

где – предсказание ошибки; – ошибка в предыдущий момент времени; – ковариация шума процесса.

На этапе корректировки происходит:

  1. Вычисление усиления Калмана:

где – усиление Калмана; – матрица измерений, отображающая отношение измерений и состояний; – ковариация шума измерения.

где – измерение в текущий момент времени.

  1. Обновление ошибки ковариации:

где – матрица идентичности.

Если состояние системы описывается одной переменной, то = 1, а матрицы вырождаются в обычные уравнения.

Чтобы наглядно продемонстрировать эффективность фильтра Калмана, был проведён эксперимент с датчиком громкости AVR PIC KY-037, который подключен к микроконтроллеру Arduino Uno. На рисунке 1 представлен график показаний датчика без применения фильтра (линия 1). Хаотичные колебания значения на выходе датчика свидетельствуют о наличии шумов.

Рисунок 1. График показаний датчика без применения фильтра

Чтобы применить фильтр, необходимо определить значения переменных , и , которые определяют динамику системы и измерений. Примем и равными 1, а равным 0, поскольку управляющих воздействий в системе нет. Для определения сглаживающих свойств фильтра необходимо рассчитать значение переменной , а также подобрать значение параметра .

Расчёт переменной произведём в программе Microsoft Excel 2010. Для этого необходимо рассчитать среднеквадратичное отклонение для выборки значений показаний датчика. = 0,62. подбирается в зависимости от требуемого уровня фильтрации, принимаем = 0,001. На рисунке 2 второй линией представлен график показаний датчика с применением фильтра.

Рисунок 2. График показаний датчика с применением фильтра Калмана

Из графика можно сделать вывод, что фильтр справился с задачей фильтрации помех, поскольку в установившемся режиме колебания показаний датчика, прошедших фильтрацию, незначительны.

Однако у фильтра Калмана есть существенный недостаток. Если измеряемая датчиком величина может резко изменяться, отфильтрованные показания датчика не будут изменяться так же быстро, как измеряемая величина. На рисунке 3 показана реакция фильтра Калмана на скачок измеряемой величины.

Рисунок 3. Реакция фильтра Калмана на скачок измеряемой величины

Реакция фильтра на скачок измеряемой величины оказалась незначительной. Если измеряемая величина значительно изменятся, и не вернётся затем к предыдущему значению, то отфильтрованные показания датчика будут соответствовать реальному значению измеряемой величины только через значительный промежуток времени, что недопустимо для систем автоматического управления, от которых требуется высокое быстродействие.

Из проведённого эксперимента можно сделать вывод о том, что фильтр Калмана целесообразно применять для фильтрации показаний датчиков в системах с низким быстродействием.

Список литературы:

  1. ГОСТ 17657-79. Передача данных. Термины и определения. – Москва: Изд-во стандартов, 2005. – 2 с.
  2. Фильтр Калмана // Википедия. . Дата обновления: 26.04.2017. URL: http://ru.wikipedia.org/?oldid=85061599 (дата обращения: 21.05.2017).