Подключение бмс для li ion. Система управления батареей (BMS). Ну и теперь о главном:)

!
Сейчас мы вместе с автором YouTube канала «Radio-Lab» будем собирать аккумулятор на 4 банки из отдельных Li-ion аккумуляторов 18650 с платой защиты, она же BMS.

Для будущих проектов автора такой аккумулятор будет нужен. В интернете он купил 8 вот таких Li-ion аккумуляторов из разборки, вроде фирмы Sanyo.


Банки б.у., но прогнав на заряднике - все нормально, еще будут работать, емкость примерно 2100 мАч. Плату защиты будем использовать вот такую из не дорогих со встроенным балансиром (что важно), есть защиты от перезаряда и переразряда.


Ток разряда заявлено до 30А, для большинства задач этого с запасом. Для увеличения емкости будем паять по два аккумулятора для каждой банки в параллель. Но сразу это делать нельзя, нужно выровнять уровни заряда аккумуляторов, чтобы они друг друга и испортили. Проще всего - это полностью зарядить все аккумуляторы и потом можно их соединять в параллель. Для зарядки, например, можно использовать вот такой простенький зарядник на основе популярной платки.


Заряженные аккумуляторы уже можно паять в параллель, паять такие аккумуляторы можно, но делать это нужно быстро.


Между собой аккумуляторы будем соединять с помощью двухсторонней клейкой ленты.




После этого паяем аккумуляторы в пары и получаем 4 отдельные банки для будущего 4S аккумулятора. Соединением аккумуляторов в параллель мы получаем увеличение емкости. Для таких сборок желательно брать аккумуляторы одной партии.


Дальше соединяем аккумуляторы так, чтобы получилась цепочка чередования плюс (+) и минус (-).


После этого соединяем все банки последовательно и в итоге получился один аккумулятор.






Суммарное напряжение всей сборки пока составляет 15,69 В, но чтобы этот аккумулятор работал долго, его нужно защищать. Для этой цели будем использовать вот такую плату BMS.



Как ее правильно подключить можно увидеть на рисунке выше. В первую очередь будем подключать силовые + и - сборки. Припаяем силовые + и - к аккумулятору и потом, соблюдая полярность, эти провода припаяем к контактам В+ и В- на плате, все удобно сделано.




Теперь очень важно правильно подключить провода для балансировки. Два крайних провода балансирного разъёма (они же силовые + и -) автор вытащил, они на плате BMS уже подключены к основным дорожкам и в данном случае не нужны.


Подключаем балансирный разъём и по схеме паяем балансировочные провода к аккумулятору, ничего сложного главное не спешить.


Если это сделать неправильно, то детали балансира начнут греться и могут поотлетать или сгореть. В итоге у нас получился вот такой уже защищенный аккумулятор. Теперь в случае перезаряда и перерязряда (что для лития важно) плата просто отключит нагрузку и аккумулятор останется рабочим. Так же есть защита от коротких замыканий.




К контактам Р+ и Р- припаяем провода, по которым будет производится зарядка и разрядка нашего аккумулятора.




И вот, аккумулятор собран, получилось вроде нормально. Дальше можно будет попробовать его зарядить. Для этого нужно использовать специальный блок питания с функцией зарядки для 4S Li-ion аккумуляторов. Но автор решил использовать обычный блок питания с напряжением 19В от ноутбука.


Подключать напрямую его к аккумулятору нельзя, нужно настроить напряжение зарядки и ограничить зарядный ток, а плата BMS этого не умеет и работает примерно, как реле на включение и выключение. Чтобы аккумулятор заряжался правильно, будем использовать вот такую дополнительную платку понижающего DC-DC преобразователя.


В ней есть необходимый алгоритм для зарядки Li-ion аккумуляторов, с настройкой напряжения и ограничением тока заряда. Напряжение одного заряженного аккумулятора составляет 4.2В, умножаем на 4 и получаем напряжение всей заряженной сборки. По расчетам это 16,8В, но для нормальной работы платы BMS возьмем значение 4,25В и настраиваем на выходе преобразователя значение немного выше.






Для удобства автор подписал где регулировка напряжения, а где тока. Напряжение выставляем 17,2В. Ток зарядки пока выставим примерно 55мА, потому как напряжение банок отличается и их нужно правильно сбалансировать.
Ток балансировки для этой платы указан в описании и составляет 60мА.




Во время балансировки начинают греться вот эти 8 резисторов:


При большом токе зарядки балансир может не успеть преобразовать лишнюю энергию зарядки в тепло и нормально отбалансировать банки. Измеряем напряжение каждой банки и можно увидеть, что они отличаются.






Балансировать их нужно обязательно, то есть дозарядить те, которые ниже по уровню напряжения, чтобы все было одинаково на всех банках. Без балансировки некоторые банки буду недозаряжены, и вся сборка не будет работать на полную. Вот теперь после всех настроек можно подключить платку понижающего DC-DС преобразователя к аккумулятору и начать процесс зарядки. Для удобства автор подписал где + а где -. Все подключаем и засветился синий светодиод, то есть идет ограничение по току, всего 55мА, которые были ранее настроены, хотя блок питания ноутбука отдает более 4А.

Напряжение на входе 19,6В, а на выходе преобразователя постепенно будет расти до уровня заряженного аккумулятора и по окончанию синий светодиод погаснет, засветится красный и плата BMS отключит аккумулятор.




Спустя несколько часов проверяем уровни напряжения на каждой банке.






Можно увидеть, что они выровнялись и составляют примерно 4,2В, аккумулятор практически заряжен и отбалансирован. Все работает.
Первый цикл зарядки аккумулятора желательно сделать малым током, а потом можно выставить ток выше, т.к. обычно дальше разброс на банках не большой и балансир успевает выровнять напряжения. После двух циклов автор настроил ток заряда на 2А и все банки зарядились одинаково, теперь этот аккумулятор можно использовать для питания разных устройств. Для теста подключим шуруповерт.

Хочу описать своё виденье о том какой должна быть плата защиты для литий ионных аккумуляторов различной химии и различной ёмкости. Сейчас конечно очень большой выбор различных BMS для li-ion аккумуляторов. Но простые BMS имеют жёсткие и слишком критические настройки срабатывания, от чего часто аккумуляторы выходят из строя (в основном разбухают от перезаряда). А продвинутые BMS имеющие множество компонентов и умеющие измерять даже внутреннее сопротивление ячеек, и через ПК и интернет настраиваться и обмениваться данными, стоят пока очень дорого, и из-за своей сложности они сложны в использовании для простых людей, а так-же их стоимость высока.

Думаю сейчас самая большая проблема в использовании литий-ионных аккумуляторов большой емкости это системы контроля и защиты таких аккумуляторов. Решения я повторюсь уже есть, но их можно пересчитать по пальцам, и они дорогие и не совсем универсальные, хотя в этом направлении прогресс не стоит на месте.

Само слово BMS означает Battery Monitoring System то-есть система мониторинга батареи, и этим коротким обозначением могут называться как простые аналоговые платы защиты, так и сложные микро-компьютерные системы мониторинга литий-ионных АКБ. Но как я уже написал выше - первые слишком примитивные и имеют слишком критические настройки срабатывания, а вторые слишком навороченные и дорогие. Но нет такой battery monitoring system , которая была-бы дешёвая и простая, но в тоже время имела возможность настройки под различные типы li-ion аккумуляторов, а так-же настройки отсечки заряд/разряд и настройки балансировки.

Фото плат защиты литий-ионных аккумуляторов

BMS для lifepo4

На этом фото простая и дешёвая плата защиты для lifepo4 аккумуляторов 4s 12v(4 ячейки). Такие BMS обычно устанавливаются внутри аккумуляторов, например в аккумуляторах электро-инструмента

Платы защиты BMS могут быть различных размеров и на различное количество ячеек, то-есть отдельных аккумуляторов. Принцип работы таких плат очень простой, они отслеживают напряжение на каждой ячейке аккумулятора. И если на любой ячейке напряжение превысит порог срабатывания, то в BMS сработают силовые транзисторы и отключат аккумулятор от зарядного или потребителей. Так-же при установленном напряжении включается балансировка. Основной параметр, на который стоит обращать внимание это ток, на который рассчитана плата защиты.

Ниже на фото более дорогая и полнофункциональная BMS

BMS


Есть и такие полноценные BMS, которые настраиваются и отображают все данные аккумулятора на ПК. Так-же имеют и дополнительный lcd дисплей для отображения текущего состояния АКБ

Так-же существуют и другие виды BMS, например ориентированные на работу в составе солнечной электростанции, н так-же они могут использоваться и в электро-транспорте.

BMS


Контроллер для литий-ионных аккумуляторов с полным контролем состояния ячеек и отображением состояния на ПК и lcd дисплее Ну и еще пример BMS созданной для электромобилей

BMS для электромобиля


Контроллер и мониторинг работы литий-ионных аккумуляторов для электромобилей

Достоинства и недостатки различных BMS

Дешёвые аналоговые платы защиты в основном предназначены для электротранспорта и электроинструмента, и имеют критические пороги защиты и балансировки, по-этому они не могут работать в буферном режиме и при этом балансировать ячейки. Это приводит к дисбалансу и частому срабатыванию защиты и перезаряду ячеек. А дорогие BMS умеют всё, но стоят очень дорого как я считаю, и рассчитаны на большие ёмкости, а для АКБ небольшой ёмкости эти BMS будут стоить дороже чем сам аккумулятор.

Концепция моей BMS

1. Я думаю вполне достаточно контролировать ячейки и аккумулятор в целом только по напряжению , не усложняя дополнительными измерениями тока и сопротивления. Да, конечно для точного определения ёмкости и токов проходящих в цепи хотелось бы знать всё. Но обычному пользователю совершенно не интересно какие токи там блуждают между ячейками, их внутреннее сопротивление, или просто ток заряда/разряда. И ток зарядки обычно показывают контроллеры, через которые происходит заряд АКБ. А так-же если нет, то можно поставить амперметр отдельно. Думаю кроме измерения напряжения ничего больше мерить не нужно и по нему довольно точно можно видеть состояние АКБ и по отдельности ячеек.

2. Еще думаю абсолютно лишние датчики температуры , так-как это лишние провода если плата защиты устанавливается не на АКБ. Ну и перегрев аккумулятора может происходить при огромных токах заряда/разряда что обычно никогда не происходит. Обычно аккумуляторы заряжаются и разряжаются небольшими токами относительно ёмкости, и скажем акб ёмкостью 100Ач никто не будет заряжать током 300-500А и разряжать такими токами. По этому перегрев при исправных ячейках просто невозможен.

3. Плата защиты АКБ обязательно должна иметь возможность настраиваться под разные типы li-ion АКБ, и настройки порогов балансировки. И для этого должен быть установлен дисплей и кнопочки управления. Конечно сейчас можно легко сделать связь с ПК и работать с настройками через программное обеспечение. Но это не удобно так-как ПК не всегда под рукой, да и проще видеть происходящее и настраивать прямо на BMS, чем соединяться с ПК, тем-более что не все уверенные пользователи ПК. В общем я за хороший и большой дисплей на самой BMS, а связь с ПК и мониторинг с записью логов просто ни к чему.

4. Настройка работы должна заключаться в следующем: Установка порога напряжения при котором отключается зарядное устройство. Например для lifepo4 это 3.6-3.9 вольт на ячейку. При этом порог отключения должен вручную изменяться и указываться любой, хоть 3,40вольт, хоть 4.30вольт, то-есть под любой тип литий-ионных аккумуляторов. И для работы в буферном режиме где аккумулятор находится постоянно под напряжением и 100% постоянный заряд губительно влияет на ячейки (они вздуваются).

При этом на плате не нужны встроенные силовые ключи для размыкания контакта. Вообще заряд и разряд нужно разделить на два раздельных канала, чтобы при отключении зарядного устройства от АКБ потребители не оказались в ситуации когда акб отключен и они питаются только от зарядного устройства. А в качестве ЗУ могут быть и солнечные батареи, и ветрогенератор, и любой другой источник с нестабильным и повышенным напряжением, от которого без АКБ могут сгореть подключенные потребители. Вот чтобы этого не случилось (как уже случалось) нужно разделить каналы отключения зарядки и потребителей.

При этом не нужно ставить на плате транзисторные ключи на определенный ток, так-как кому-то скажем хватит и 10А, а кому-то и 200А мало. Вместо ключей можно просто сделать маломощные выводы скажем с током на 1А, на которые можно вешать обычные или твердотельные реле, которыми и отключать зарядку и потребителей. Например если у вас ток зарядки не превышает 20А, то ставим на заряд реле на 20А. А если разряд через инвертор бывает токами до 100А, то ставить реле отключения потребителей на 100А.

5. Пороги балансировки ячеек тоже должны настраиваться и ток балансировки должен быть довольно мощный, думаю до 5А на случай использования некачественных ячеек с разным внутренним сопротивлением и разной емкости. Вот здесь можно использовать технологию PWM для установки тока балансировки. Или к примеру сделать возможность смены балансировочных резисторов на разный ток.

Внешний вид контроллера li-ion аккумуляторов

По внешнему виду я хочу видеть примерно такое устройство. Та-же с дисплеем, только раза в три побольше в общем 4-5 дюймов.

BMS lcd


Контроллер литий-ионных аккумуляторов

BMS так-же должна иметь выходы на ячейки, только на болтиках, количество думаю любое от 2S до 16S. Выход отключения зарядного устройства под внешнее реле отключения, так-же выход отключения потребителей аналогичный. И думаю больше ничего не нужно. И так-как балансиры будут находится внутри BMS, то должен быть массивный алюминиевый радиатор способный рассеивать до 300ватт энергии.

Вообще конечно можно делать законченные BMS с внутренними ключами и различным током балансировки, и под разное количество ячеек, но их нужно будет десятки различных конфигураций выпускать. А так одна BMS подходящая под основные задачи. Ток балансировки 5А на ячейку конечно большеват так-как при 16 ячейках и работе всех балансиров мощность рассеиваемая в тепло будет до 300ватт. Но как я описал выше ток балансировки можно устанавливать. Ну и чтобы уменьшить габариты и радиатор максимальный ток балансировки можно уменьшить в 5 раз. 1А думаю тоже будет достаточно даже для АКБ большой ёмкости.

Вот на этом всё, думаю я подробно объяснил что хотелось бы видеть и почему именно так...

Просмотров: 53069

В последние годы популярность обрели так называемые "разумные" аккумуляторы, или иными словами Smart batteries. Аккумуляторы этой группы оснащаются микропроцессором, способным не только обеспечивать обмен данными с зарядным устройством, но и регулировать работу аккумуляторных батарей, информировать пользователя о степени их работоспособности. Аккумуляторы, комплектуемые специализированной системой интеллектуального регулирования, находят широкое применение в самом разном техническом электрооборудовании, включительно и электротранспортном. Примечательно, что группу интеллектуальных батарей образовывают преимущественно литийсодержащие аккумуляторы, хоть и встречаются среди них герметизированные или вентилируемые свинцово-кислотные, никель-кадмиевые.

Разумные батареи, как минимум, на 25% дороже обычных аккумуляторов. Однако интеллектуальные аккумуляторы отличаются не только ценой, как большинство предполагает, но и особенностями прилагаемого к ним регулировочного устройства. Последнее гарантирует идентификацию типа аккумуляторных батарей с зарядным устройством, отслеживает температуру, напряжение, ток, степень заряда аккумуляторов. Значительная часть литий-ионных батарейных модулей имеет встроенную систему мониторинга и управления (BMS ), которая отвечает за состояние аккумуляторов и управляет ими таким образом, чтобы максимально сохранить работоспособность аккумуляторных батарей в различных условиях.

Рассмотрим же более подробно, что такое аккумуляторная батарея с BMS. Разумные батареи - это аккумуляторы, оборудованные специальной микросхемой, в которой запрограммированы постоянные и временные данные. Постоянные данные программируются ещё на заводе-изготовителе и не подлежат изменению: данные, касаемые производственной серии BMS, её маркировки, совместимости с типом аккумуляторных батарей, вольтажа, максимальных и минимальных пределов напряжения, температурных границ. Временные же данные – это данные, подлежащие периодическому обновлению. К ним относятся преимущественно эксплуатационные требования и пользовательские данные. Как правило, предусматривается возможность подключения системы управления и балансировки к компьютеру или контроллеру с целью мониторинга состояния батарей и контроля их параметров. Некоторые модели BMS могут настраиваться под разные типы батарей (уровни их напряжения, значения тока, емкость).

Система управления батареи (BMS) – электронная система, которая управляет заряд/разрядным процессом аккумуляторной батареи, отвечает за безопасность её работы, проводит мониторинг состояния батареи, оценку вторичных данных работоспособности.

BMS (Battery Management System) – это электронная плата, которая ставится на аккумуляторную батарею с целью контроля процесса её заряда/разряда, мониторинга состояния аккумулятора и его элементов, контроля температуры, количества циклов заряда/разряда, защиты составных аккумуляторной батареи. Система управления и балансировки обеспечивает индивидуальный контроль напряжения и сопротивления каждого элемента аккумулятора, распределяет токи между составными аккумуляторной батареи во время зарядного процесса, контролирует ток разряда, определяет потерю емкости от дисбаланса, гарантирует безопасное подключение/отключение нагрузки.

На основе получаемых данных BMS выполняет балансировку заряда ячеек, защищает аккумулятор от короткого замыкания, перегрузки по току, перезаряда, переразряда (высокого и чрезмерно низкого напряжения каждой ячейки), перегрева и переохлаждения. Функциональность BMS позволяет не только улучшить режим эксплуатации аккумуляторных батарей, но и максимально увеличить срок их службы. При определении критического состояния батареи Battery Management System соответственно реагирует, выдавая запрет на использование аккумуляторной батареи в электросистеме - отключает её. В некоторых моделях BMS предусмотрена возможность ведения реестра (записи данных) о работе аккумуляторной батареи и их последующей передачи на компьютер.

Литий-железо-фосфатные аккумуляторы (известные как LiFePO4), что существенно превосходят ряд иных аккумуляторный батареи литий-ионной технологии с точки зрения безопасности, стабильности и производительности, также комплектуются схемами управления BMS. Дело в том, что литий-железо-фосфатные батареи чувствительны к перезаряду, а также разряду ниже определенного напряжения. С целью уменьшения риска повреждения отдельных аккумуляторных ячеек и выхода батареи в целом из строя все LiFePO4 аккумуляторы оснащаются специальной электронной схемой балансировки – системой управления батареями (BMS).

Напряжение на каждой из ячеек, объединенных в литий-железо-фосфатную батарею, должно находиться в определенных пределах и быть равным между собой. Ситуация же такова, что идеально равная емкость всех ячеек, входящих в состав единого аккумулятора, - довольно редкое явление. Даже малое различие на пару долей ампер-часов может спровоцировать в дальнейшем различие уровня напряжения при зарядно/разрядном процессе. Разница в уровне заряда/разряда ячеек единой LiFePO4 батареи довольно опасна, так как может погубить аккумулятор.

При параллельном соединении ячеек напряжение на каждой из них будет приблизительно равным: более заряженные элементы смогут вытягивать менее заряженные. При последовательном же соединении равномерного распредения заряда между ячейками не происходит, в результате чего одни элементы остаются недозаряженными, а другие перезаряжаются. И даже, если общее напряжении по завершении зарядного процесса будет близко к идеальному, вследствиедаже небольшогоперезаряда некоторых ячеек в батарее будут происходить необратимые разрушительные процессы. Аккумуляторная батарея в процессе эксплуатации не будет отдавать требуемой емкости, и по причине неравномерного распредения заряда быстро придет в негодность. Ячейки с наименьшим уровнем заряда станут своеобразным "cлабым местом" аккумулятора: они будут быстро поддаваться разряду, в то время, когда аккумуляторные элементы большей емкости будут проходить только частичный разрядный цикл.

Избежать негативных разрушительных процессов в аккумуляторной батарее позволяет метод балансировки. Система управления и балансировки ячеек BMS следит за тем, чтобы все ячейки в конце зарядки получали равное напряжении. При подходе зарядного процесса к концу BMS делает балансировку шунтированием зарядившихся ячеек или же переносит энергию элементов с большим напряжением к элементам с меньшим напряжением. В отличии от активной, при пассивной балансировке практически полностью восполнившие заряд ячейки получают меньший ток или исключаются из зарядного процесса до момента, пока все элементы аккумулятора не будут иметь равный уровень напряжения. Система управления батареей (BMS), производя балансировку, а также обеспечивая контроль температуры и выполнение ряда иных функций, максимально продлевает срок службы аккумулятора.

Обычно магазины продают уже готовые сборные аккумуляторные батареи с BMS, однако некоторые магазины и фирмы все же предоставляют возможность приобретения аккумуляторных составных по отдельности. К их числу относится и фирма «Электра». Электра – первая фирма в Украине, решившаяся на поставку и создание рынка аккумуляторных элементов для самостоятельной сборки и конструирования литий-железо-фосфатных аккумуляторных батарей (LiFePO4) в нашей стране. Главное преимущество самостоятельной сборки батарей из отдельных ячеек состоит в возможности получения сборного аккумуляторного комплекта максимально приближенного к запросам пользователя с точки зрения рабочих параметров и емкости. При покупке комплектующих для сборки LiFePO4 батареи важно обращать внимание не только на соответствие аккумуляторных ячеек между собой, но и смотреть на параметры BMS : напряжение, ток разряда, количество ячеек, на которое она рассчитана. Эксплуатация литий-железо-фосфатной аккумуляторной батареи также предусматривает использование исключительно зарядного устройства, отвечающего ей по типу. Его напряжение должно быть равным общему напряжению аккумуляторной батареи.

24v 36v 48v 60v

Основные цели применения BMS(BatteryManagementSystem) в качестве регулятора работы аккумуляторной батареи:

Защита аккумуляторных клеток и целой батареи от повреждений;

Увеличение срока службы батареи;

Поддержание аккумулятора в состоянии, при котором станет максимально возможным выполнение всех возложенных на него задач.

ФункцииBMS (Battery Management System)

1. Контроль за состоянием элементов аккумуляторной батареи с точки зрения:

- напряжения: общее напряжение, напряжение отдельных ячеек, минимальное и максимальное напряжение ячейки;

- температуры: средняя температура, температура электролита, температура на выходе, температура отдельных аккумуляторных "клеток", платы BMS (электронная плата, как правило, оснащается как внутренними температурными датчиками, проводящими мониторинг температуры непосредственно регулировочного устройства, так и внешними, которые используются для контроля температуры конкретных элементов батареи);

- заряда и глубины разряда;

- токов заряда /разряда;

- исправности

Система управления и балансировки ячеек может хранить в памяти такие показатели, как количество циклов заряда/разряда, максимальное и минимальное напряжение ячеек, максимальное и минимальное значение тока заряда и разряда. Именно эти данные и позволяют определять состояние исправности аккумуляторной батареи.

Неправильный заряд – одна из наиболее распространенных причин выхода аккумуляторной батареи из строя, поэтому контроль заряда является одной из основных функций микроконтроллера BMS.

2. Интеллектуально-вычислительная. На основе вышеперечисленный пунктов BMS проводит оценку:

Максимального допустимого тока заряда;

Максимального допустимого тока разряда;

Количества энергии, поставляемой вследствие зарядки, или же теряемой при разряде;

Внутреннего сопротивления ячейки;

Суммарной наработки аккумуляторной батареи в процессе эксплуатации (общего количества циклов работы).

3. Связная. BMS может подавать вышеуказанные данные на внешние управляющие устройства путем проводной или же беспроводной коммуникации.

4. Защитная. BMS защищает батарею, предотвращая её выход за пределы безопасной работы. BMS гарантирует безопасность подключения/отключения нагрузки, гибкое управление нагрузкой, защищает аккумуляторную батарею от:

Перегрузки по току;

Перенапряжения (во время зарядки);

Падения напряжения ниже допустимого уровня (во время разряда);

Перегрева;

Переохлаждения;

Утечки тока.

BMS может предотвратить опасный для аккумуляторной батареи процесс путем непосредственного влияния на неё или же подачи соответствующего сигнала о невозможности последующего использования аккумулятора к управляющему устройству (контроллеру). Система интеллектуального мониторинга (BMS) отключает аккумуляторную батарею от нагрузки или зарядного устройства при выходе хотя бы одного из рабочих параметров за границы допустимого диапазона.

5. Балансировка. Балансировка – это метод равномерного распределения заряда между всеми ячейками аккумуляторной батареи, благодаря чему максимально продлевается срок службы аккумулятора.

BMS предотвращает чрезмерный перезаряд, недозаряд и неравномерный разрядный процесс в отдельных аккумуляторных ячейках:

Осуществляя "перетасовку" энергии от наиболее заряженных клеток к менее заряженным (активная балансировка);

Снижая до достаточного низкого уровня поступление тока к практически полностью заряженной ячейке, одновременно с тем, когда менее заряженные аккумуляторные клетки продолжают получать нормальный зарядный ток (принцип шунтирования),

Обеспечивая процесс модульной зарядки;

Регулируя выходные токи ячеек аккумулятора, подключенного к электроустройству.

С целью защиты платы BMS от негативного воздействия влаги и пыли её покрывают специальным эпоксидным герметиком.

Не всегда аккумуляторы имеет только одну систему управления и балансировки. Иногда вместо одной платы BMS, подсоединяемой при помощи выходящих проводов к аккумуляторной батарее и контроллеру, используется сразу несколько связанным между собой регулировочных электронных плат, каждая из которых управляет определенным количеством ячеек и подает выходящие данные к единому контроллеру.

С практической точки зрения BMS могут выполнять значительно больше функций, нежели просто управление работой батареи. Иног да эта электронная система может принимать участие в контроле параметров режима работы электрического транспортного средства, и осуществлять соответствующие действия по управлению его электрической мощностью. Если аккумуляторная батарея участвует в работе системы рекуперации энергии при торможении электрического транспортного средства, то BMS также может регулировать процесс подзарядки батареи при замедлении и спусках.

Плата эта давно лежала в закромах, пока не подвернулся шанс использовать её по прямому назначению. Если Вы любите схемы и инструмент - будет интересно.

Если кто помнит, есть у меня переделанный шуруповёрт
Больше 2 лет он активно и исправно работал, разряжал и заряжал его раз 40.
До тех пор, пока сам его жестоко не перегрузил, делая вентиляционное отверстие в ОСБ коронкой 102 мм, еле удерживая инструмент обоими руками:)


Сетевой шуруповёрт также не справился с такой работой, а мощной дрели под рукой не оказалось. Результат - один из аккумуляторов не выдержал издевательств и ушёл в обрыв. Совсем:(
После частичной разборки аккумулятора выяснилось, что отгорел ленточный алюминиевый контакт к рулону. Ремонтировать аккумуляторы я пока не умею:(




Инструмент был срочно необходим, поэтому первая мысль - купить такой-же 26650 LiMn2O4 аккумулятор и быстренько восстановить батарейный блок. Но в магазинах такой-же аккумулятор не был обнаружен. Заказывать из Китая и ждать - слишком долго…
Кроме того, решил добавить в блок плату защиты BMS, чтобы подобное не повторилось. Но вот беда - свободное место в батарейном блоке совсем отсутствует:(
Короче, купил относительно недорого высокотоковые SONY US18650VTC4 (2100мАч 30А пиковый 60А). Обошлись в 750р за 3 штуки - это незначительно дороже, чем на заказ из Китая, зато здесь и сейчас! Брал
Ёмкость 2100мАч конечно существенно меньше бывших 3500мАч, но я это как нибудь переживу, всё равно устаёшь быстрее, чем он разряжается. Во время очередного перекура перекуса можно его подзарядить, тем более теперь заряжать буду новой зарядкой большим током:)
Работавшие ранее оставшиеся два аккумулятора 26650 3500мАч проверил на остаточную ёмкость - получил 3140мАч. Падение ёмкости на 10% вполне в допуске и аккумуляторы ещё можно где-нибудь использовать.








Из-за невысокой стоимости и встроенного балансира плату защиты можно встраивать прямо в батарейный блок электроинструмента. Функций зарядки плата не имеет.
Маркировка платы HX-3S-FL25A-A
Ранее уже были краткие обзоры этой платы, например тут

Размер платы совпадает с указанным 56х45мм, однако, толщина 4мм значительно больше заявленных 1,2мм, имейте это в виду.
Шунт собран из двух SMD резисторов по 5мОм в параллель (суммарно 2,5мОм).
Проволочные шунты всё-же надёжнее держат перегрузку, тут очевидно немного сэкономили, зато резисторы плоские и не торчат.
Полевики стоят в параллель по 4 штуки


Балансировка собрана на базе , номинальное напряжение балансировки 4,20В
Ток балансировки фиксированный 42мА (4,20В/100Ом=42мА), для не шибко ёмких аккумуляторов этого вполне достаточно.
Балансировка работает постоянно и независимо от схемы защиты. Пока напряжение на любом из аккумуляторов превышает 4,20В, к нему подключается нагрузочное сопротивление 100 Ом до тех пор, пока он не разрядится до 4,20В.

При желании, данную плату можно легко переделать в 2S просто замкнув перемычкой B2 и B+, при этом силовые ключи могут греться сильнее за счёт повышения сопротивления каналов полевиков.
Защиту обеспечивают контроллеры

Не нарушая своих принципов, срисовал исходную принципиальную схему.


Схема хоть и выглядит сложновато, работает просто и понятно. Ошибки естественно никуда не делись - китайцы держат марку:)
Нумерация транзисторов показана условно.
На p-n-n транзисторах Q1-Q6 собран преобразователь уровней и сумматор сигналов с HY2210
На n-p-n транзисторах Q7-Q9 собрана нехитрая транзисторная логика управления силовыми ключами
Q7 отпирается при переразряде любого аккумулятора до напряжения ниже 2,40В, восстановление происходит при напряжении свыше 3,0В (после снятия нагрузки либо подключения к зарядке).
Q8 обеспечивает защёлкивание защиты после её срабатывания до момента полного снимания нагрузки. Одновременно, на нём организована быстродействующая защита при коротком замыкании нагрузки, когда ток прыгает свыше 100А.
Q9 отпирается при перезаряде любого аккумулятора до напряжения свыше 4,28В, восстановление происходит под нагрузкой при напряжении ниже 4,08В. При этом силовые ключи не препятствуют протеканию разрядного тока.
Точные пороги всех контроллеров я не проверял, т.к. это трудоёмко, но реально они не сильно отличаются от заявленных в спецификации.

S1 и S2 - просто контрольные точки, к термозащите отношения не имеют. Более того, замыкать их между собой нельзя. Как нормально подключить термозащиту - ниже расскажу и покажу.
На S1 появляется сигнал при переразряде любого элемента.
На S2 появляется сигнал при перезаряде любого элемента, а также после срабатывания токовой защиты.
Ток потребления платой очень мал (несколько микроампер).

Новые аккумуляторы

Аккумуляторы подписаны и проверены, ёмкость соответствует номинальной



Несмотря на наличие аппарата контактной сварки, аккумуляторы паял, т.к. в данном случае это лучшее решение.
Перед пайкой, необходимо аккумуляторы хорошо залудить.

Аккумуляторы спаяны и установлены на место



Плата припаяна (на фото плата уже переделана)
Соблюдать осторожность и не замыкать концы с аккумуляторов





Силовые провода - в силиконовой изоляции 1,5кв.мм
Контрольные провода - МГТФ-0,2



Типовая схема подключения платы не является оптимальной, т.к. к плате идут аж 4 силовых провода. Я подключил по более простой схеме, когда к плате идёт всего 2 силовых провода. Такое подключение допускается при малой длине соединительных проводов до аккумуляторов

Под нагрузкой при резком нажатии курка тут-же срабатывает защита платы:(
Сначала, я логично предположил, что она отрубается из-за токовой перегрузки, но замыкание шунта платы ничего не изменило. Стало понятно, что не токовая перегрузка платы вызывает срабатывание защиты.
Далее, подключил осциллограф в режиме записи к аккумуляторам и проверил напряжение на них под нагрузкой. Напряжение успело провалиться ниже 7В и защита тут-же сработала:(
Вот и причина срабатывания защиты. Почему напряжение так сильно провалилось, ведь аккумуляторы высокотоковые? Давайте займёмся измерениями и расчётами:
- напряжение аккумуляторов 11,4В (HP890CN)
- внутреннее сопротивление аккумуляторов из даташита на постоянном токе DC-IR 66мОм (3х22мОм)
- измеренное сопротивление двигателя 63мОм
- сопротивление соединительных проводов и переключателя шуруповёрта - 23мОм
- сопротивление платы защиты - шунт + MOSFET + провода подключения - 10мОм
Общее сопротивление цепи 66+63+23+10=162мОм
Ток в цепи 11,4/0,162=70А
Немало, однако…

Но проблема не в токе, а в падении напряжения на аккумуляторах.
При токе 70А напряжение каждого аккумулятора снижается на 70*0,022=1,54В и становится 3,8-1,54=2,26В. Вот она, реальная причина срабатывания защиты!
Корректировать или убирать защиту нежелательно - снижается безопасность использования, поэтому её надо просто замедлить на время пуска двигателя. Добавляем конденсатор 0,47мкФ в нужное место и задержка готова:)
Если кому-то паять мелочь на плату затруднительно, можно запаять конденсатор навесным монтажом между S1 и B-
Мне проще было поставить SMD конденсатор:)
Теперь есть достаточно времени, чтобы двигатель успел раскрутиться под нагрузкой. При жёсткой блокировке двигателя на полном газу, защита срабатывает через 0,3 сек, а не мгновенно, как раньше.
Переделанная плата


На резистор 470кОм не обращайте внимания - родной резиcтор 510кОм пострадал в результате экспериментов и был заменён что под руку попало:)
Плата содержит высокоомные цепи, поэтому после пайки необходимо тщательно отмывать плату.

Схема после переделки

Описание всех доработок
1. Выпаян ненужный конденсатор 0,1мкФ со 2 вывода HY2210 к шунту. Зачем его вообще поставили - непонятно, в даташите на HY2210 он отсутствует. На работу не влияет, но выпаял его от греха подальше.
2. Добавлен резистор база-эмиттер для нормального восстановления после срабатывания защиты.
Без него, автовосстановление защиты после снятия нагрузки работает крайне нестабильно, т.к. малейшие наводки на P- мешают сбрасывать защиту. Подходящий номинал резистора 1-3МОм. Паял этот резистор аккуратно непосредственно к выводам транзистора. Осторожно, не перегревайте его!
3. Добавлен конденсатор 0,47мкф для замедления срабатывания защиты от переразряда с 25мс (типовое для HY2210) до 300мс. Пробовал подключать конденсатор 0,1мкФ - защита срабатывает слишком быстро для здоровенного двигателя RS-775. Если двигатель совсем зверский, может понадобиться установка более ёмкого конденсатора, например 1мкФ

Теперь резкое нажатие на курок под нагрузкой не приводит к срабатыванию защиты:)

Подключение защитного термовыключателя.
К данной плате можно подключить как NO так и NC термовыключатель.
Схемы привожу ниже.


Я использовал NO термовыключатель KSD 9700 5A 70ºC



Приклеил его к аккумуляторам

Заодно решил отказаться от зарядки с БП через токоограничивающие резисторы и заряжать аккумуляторы переделанной зарядкой 3S 12,6V 3A

Итоговая схема получилась такова

Зарядка Colaier 12,6В 3А

на неё уже делал ув. kirich , но мне как всегда есть что добавить



В исходном виде зарядка не держит заявленный ток 3А и перегревается. К тому-же, она излучает заметные помехи на близко расположенный радиоприёмник.
Зарядка была разобрана ещё до тестов:)









От простых БП зарядка отличается установленными дополнительно элементами схемы токоограничения

С доработками буду краток:)
- Поставил отсутствующий входной фильтр. Теперь радиоприёмник не реагирует на работающую зарядку.
- Переставил в нужные места термистор NTC1 (5D-9) и предохранитель LF1 (T2A)
- На плате есть место для установки разрядных резисторов R1 + R2. Они нужны для разряда CX1 после отключения зарядки из сети. Поставил разрядный резистор ОМЛТ-0,5 620 кОм параллельно CX1:)



Поставил выходной дроссель L1 вместо перемычек. На работу никак не повлияло, ибо выходные пульсации для зарядки не имеют большого значения.



Снизил выходное напряжение с 12,8В до 12,65В подключением параллельно резистору R29 8.2кОм резистора 390кОм
- Снизил выходной ток с 3,2А до 2А заменой резистора R26 1,6кОм на резистор 1кОм


Ток снизил потому, что во-первых, данная зарядка не может без перегрева выдать ток 3А, а во-вторых потому, что аккумуляторы US18650VTC4 имеют максимальный зарядный ток 2А.
Разводка печатной платы выполнена некорректно, из-за этого нет хорошей стабильности выходного напряжения и тока. Менять не стал ибо не сильно критично.

Выводы:
- Аккумуляторы SONY US18650VTC4 имеют только один недостаток - небольшую ёмкость
- Плата BMS 3S 25A способна работать нормально после небольшой доработки
- Зарядка 3S 12,6В 3A в исходном виде работает неудовлетворительно и требует значительной доработки, рекомендовать её не могу, извините

После переделки, шуруповёрт нормально работает уже 4 месяца. Снижение мощности не ощущается, заряжается быстро, чуть более часа.

Сегодня в России наблюдается рост производителей автономных электротранспортных средств малой и средней мощности. К таковым относятся не только электромобили и городской транспорт. Электротяга успешно используется для реализации погрузчиков, складской и сельскохозяйственной техники, в рыболовной и охотничьей сферах для бесшумной охоты и рыбалки (багги, лодки, квадроциклы), а также в спортивной и развлекательной сферах.

Производители большинства данных транспортных средств используют электропривод средней мощности и литиевые аккумуляторы в качестве источников питания. Для обеспечения корректной и безопасной работы такой системы требуется контроль заряда каждой ячейки аккумуляторной батареи. Большинство производителей использует для этого готовые системы контроля (BMS ) зарубежного производства (КНР, США, Германия).

Наиболее эффективные литиевые источники питания, широко используемые в электротранспорте, по природе своей выдают рабочее напряжение порядка 3,2…4 В. Для обеспечения работы электропривода на большем напряжении их соединяют последовательно. При такой конфигурации в батарее, в случае изменения параметров одной или нескольких ячеек, может возникать дисбаланс – перезаряд, переразряд ячеек, достигающий в худшем случае 30%. Такой режим существенно (в разы) снижает ресурс аккумуляторной батареи.

Система BMS позволяет осуществлять контроль и балансировку заряда последовательно и параллельно-последовательно соединенных аккумуляторных ячеек батареи автономного электротранспортного средства.

Можно выделить 2 основных типа балансировок аккумуляторных ячеек: активная и пассивная.

При достижении порового напряжения система пассивной балансировки начинает рассеивать энергию на резисторе в виде тепла, при этом процесс заряда прекращается, далее достигнув напряжения нижнего порога система вновь начинает заряд всей батареи. Процесс заряда прекращается, когда напряжение всех ячеек находится в требуемом диапазоне.

Пассивная балансировка – система однонаправленная, она может только поглощать заряд ячейки. Активная система балансировки использует двунаправленные преобразователи постоянного тока, тем самым позволяя из более заряженной ячейки направлять энергию в более разряженную ячейку под управлением микроконтроллера BMS . Матричный коммутатор обеспечивает маршрутизацию зарядов в ячейку или из нее. Коммутатор подключен к DC-DC преобразователю, который регулирует ток, он может быть и положительный, когда ячейку нужно зарядить, отрицательный, когда необходимо разрядить. Вместо использования резистора и рассеивания тепла, величина тока перетекающего при зарядке-разрядке контролируется алгоритмом балансировки нагрузки.

Наиболее широкое распространение получили аналоговые системы пассивной балансировки. На рисунке приведена типовая система и её характеристики.

Нами была разработана математическая модель аккумуляторной батареи, состоящей из 16 LiFePO 4 ячеек, контроль заряда которой осуществлялся посредством пассивной BMS . Математическая модель аккумуляторной LiFePO 4 ячейки в системе Matlab Simulink учитывает нелинейные зарядочные и разрядочные характеристики батареи, соответствующие данному типу ячеек, внутреннее сопротивление, а также текущий уровень максимальной емкости, изменяющийся во время жизненного цикла ячейки.

К каждой из ячеек параллельно был подключен пассивный балансир. Для управления процессом заряда и балансировки был последовательно включен ключ, открытие и закрытие которого осуществлялось по команде, поступающей от BMS . Исследование проводилось для заключительного этапа заряда аккумуляторной батареи от идеального источника напряжения.

Осциллограммы процесса заряда АКБ, состоящей из 16 LiFePO4 ячеек, одна из которых была «повреждена» и имела меньшую емкость

На рисунке приведен случай, когда у одной из ячеек были изменены параметры, в частности, моделировался случай потери емкости и увеличения внутреннего сопротивления, что может случиться в реальной жизни, например, в результате удара или вследствие перегрева.

Поврежденная ячейка заряжается быстрее и первой достигает требуемого напряжения. Однако, дальнейший заряд ее не происходит. По выше описанному принципу начинает работать балансир. Остальные ячейки, обозначенные зеленым цветом в момент остановки процесса заряда сохраняют текущий уровень емкости, а в момент его возобновления продолжают заряжаться.

Когда уровень напряжения всех ячеек достигает требуемого диапазона, процесс заряда останавливается