От магнетронов до твердотельных передатчиков. Радиолокационные станции и комплексы пво россии Точность определения координат по дальност и

Развитие современной радиолокации является отражением развития передающих устройств

Андрей Ремезов ,

полковник, кандидат технических наук, доцент, заместитель начальника кафедры тактики и вооружения радиотехнических войск Военной академии воздушно-космической обороны им. Маршала Советского Союза Г. К. Жукова

Развитие передающих устройств существенным образом повлияло на развитие радиолокации (хотя можно заявить и обратное – развитие радиолокации потребовало разработки новых передающих устройств). Определенные ограничения имеющихся источников электромагнитной энергии при конструировании РЛС с требуемыми характеристиками вызвали к жизни радиолокаторы с фазированными антенными решетками, что привело к возникновению новых свойств РЛС.

Все разнообразие активных радиолокаторов (излучающих электромагнитную энергию для получения информации об объектах) условно можно разделить по виду используемого сигнала на импульсные (импульсные сигналы различной формы, структуры и мощности) и непрерывные (используются непрерывные синусоидальные колебания, в том числе модулированные по частоте или фазе для измерения дальности). Наибольшее применение получили импульсные радиолокаторы, о них и будет идти разговор.

Принцип работы импульсного радиолокатора упрощенно можно описать следующим образом. Сформированный по виду и форме, усиленный до требуемой мощности импульсный сигнал на определенной частоте излучается в заданную область пространства посредством передающей антенны в виде поляризованной электромагнитной волны, распространяющейся в свободном пространстве прямолинейно и равномерно со скоростью света.

Отраженная от любой неоднородности электромагнитная волна распространяется во все стороны, в том числе и в сторону радиолокатора. После пространственно-частотно-поляризационной обработки в приемной антенне (только на заданной частоте и виде поляризации формируется диаграмма направленности с максимумом усиления из заданной области пространства) осуществляется внутрипериодная обработка и согласованная фильтрация (максимизирующая отношение сигнал/шум для априори известного конкретного вида излученного импульсного сигнала), после чего осуществляется само обнаружение отраженного сигнала как факт его превышения над сформированным порогом.

Далее осуществляется межпериодная обработка, обнаружение отметки от объекта и определение его координат, после чего осуществляется преобразование к виду, требуемому для отображения на различного рода индикаторах и заданному потребителем. При последующей межобзорной обработке осуществляется определение параметров движения объекта (курс и скорость), опознавание, распознавание, формирование и сопровождение трасс, отождествление отметок от других объектов, группирование объектов, привязка к трассе другой информации от различных источников. Указанные рассуждения справедливы для радиолокаторов с регулярным круговым обзором, для других видов обзора (секторный, адаптивный и др.), суть не меняется, изменяются частности.

Одним из основных параметров радиолокатора является максимальная дальность обнаружения объекта с заданной ЭПР. А она зависит от возможностей передающего устройства по генерированию импульсной мощности.

Именно потребность в генерировании больших импульсных мощностей (десятки и сотни кВт, единицы МВт), достижении средних мощностей в единицы и десятки кВт, позволяет говорить об отражении эволюции развития передающих устройств (в том числе технологии их промышленного изготовления) на основные тактико-технические характеристики РЛС, на возможные для использования в радиолокации диапазоны волн.

Следует оговориться, что в РЛС с регулярным обзором, количество накапливаемых сигналов при когерентном межобзорном накоплении ограничено частотой запуска передатчика и скоростью обзора заданной области пространства. При достаточно больших временах когерентного накопления требования по импульсной мощности могут быть снижены, появятся дополнительные возможности доплеровской фильтрации и разделения по скоростям движения, но это частный случай, который не противоречит общей идее.

Леонид ЯКУТИН

Радиолокационный комплекс боевого режима 5Н87 с автономным наземным радиозапросчиком (НРЗ) системы Государственного опознавания «Пароль» 73Е6

В данном материале также не будут впрямую оцениваться возможности цифровой первичной и вторичной обработки информации. Эволюция этого раздела радиолокации происходила практически по революционному сценарию, при котором за время жизненного цикла изделия даже уже на этапе заводских и государственных испытаниях, не говоря уже об этапе серийного производства и модернизации, заданные требования неоднократно превышались за счет возрастающих возможностей вычислительных средств.

За 30-40 лет от создания первого микропроцессора до появления современных вычислительных комплексов возможности цифровой первичной и вторичной обработки информации на РЛС возросли на несколько порядков, что позволяет в настоящее время практически не задумываться над их производительностью для решения прикладных задач в РЛС. Однако это совсем другая сторона истории развития современной радиолокации.

Итак, развитие радиолокации напрямую зависит от развития источников высокочастотной электромагнитной энергии.

Основная посылка при рассмотрении данного утверждения в том, что дальность обнаружения в основном зависит от мощности передающего устройства.

При проектировании радиолокатора любого класса анализируются потенциальные возможности достижения заданных тактико-технических требований. Для маловысотной радиолокации имеется небольшое послабление: требуемая дальность обнаружения ограничена дальностью прямой видимости на определенной высоте. Для этого класса РЛС можно ограничить мощность передающего устройства, что позволяет снизить габариты и вес самой станции, сделать ее более мобильной, использовать базовые автомобильные шасси меньшей грузоподъемности.

Для станций, предназначенных для обнаружения целей на средних и больших высотах, дальность прямой видимости составляет сотни километров и более, а для удвоения дальности обнаружения при прочих равных условиях необходимо увеличивать мощность в шестнадцать раз. Поэтому для данного класса РЛС определяется, как правило, разумный компромисс между мощностью передающего устройства (а это габариты и масса всей станции, а значит надежность, мобильность и живучесть) и достижимой дальностью обнаружения D заданного класса целей.

Импульсная радиолокация оперирует понятиями импульсной и средней мощностью, скважностью, которые связывают между собой понятия длительности импульса и периода повторения. Для любого передающего устройства наиболее важным понятием является средняя мощность, при которой передающее устройство функционирует с требуемой надежностью.

Поэтому выбор передающего устройства с требуемыми характеристиками определяет структуру построения всей станции, реализацию режимов ее боевого применения.

До начала 1940-х годов не существовало мощных и компактных источников электромагнитной энергии в сантиметровом и дециметровом диапазоне волн. Это и определило развитие радиолокации преимущественно метрового диапазона волн. В качестве передающего устройства применялся автогенератор на электровакуумной лампе, который мог генерировать весьма ограниченный перечень импульсных сигналов, отличающийся, как правило, только длительностью. В качестве колебательных систем использовался коаксиальный резонатор, перестройка по частоте достигалась электромеханическим изменением размеров резонатора (время перестройки – до десятков секунд).

Леонид ЯКУТИН

Подвижная трехкоординатная РЛС СТ­68 для обнаружения и сопровождения маловысотных целей в активных и пассивных помехах при наличии интенсивных отражений от земли и в сложных метеоусловиях

Автогенератор не обладает возможностью формирования сложных сигналов (способных при обработке сжиматься до определенной длительности, а это разрешающая способность по дальности), начальная фаза колебаний каждого импульса случайная (возможности когерентной обработки весьма ограничены). Основные достоинства автогенератора – относительная простота и дешевизна.

Для реализации больших дальностей при заданной точности необходимо использовать сложный сигнал с внутриимпульсной модуляцией частоты или фазы, а для его реализации усилительную цепочку из нескольких (как привило 2-3) каскадов последовательно включенных усилителей мощности. При увеличении габаритов и массы передающего устройства и всей РЛС в целом, значительно увеличивается достижимый коэффициент подавления пассивных помех и местных предметов за счет возможности формирования и дальнейшей обработки последовательности сигналов с истинной внутренней когерентностью.

В метровом диапазоне волн относительно недавно появились полностью твердотельные полупроводниковые усилители мощности. До этого наиболее совершенные передающие устройства этого диапазона волн были реализованы на электровакуумных приборах – эндотронах, конструктивно объединенных общей колебательной системой и системой охлаждения, и включающих в свой состав несколько каскадов усилителей на лампах сверхвысоких частот (СВЧ) (триодах, тетродах). Относительно невысокий КПД каждого каскада усиления при реализации достаточны высоких требований к результирующим параметрам всего усилительного устройства в целом делал эндотрон довольно громоздким элементом с недостаточным ресурсом, что требовало его резервирования.

Радиолокации метрового диапазона волн присущи некоторые недостатки, основным из которых является невозможность получения высоких разрешающих способностей по угловым координатам, а значит и по высоте. Это ограничивается возможностями антенных систем. Для получения диаграммы направленности шириной 1 угловой градус по уровню половинной мощности размер апертуры антенны должен составлять от 50 до 80 длин волн λ, что при рабочей частоте 180 МГц (λ=1,7 м) составляет от 85 до 140 м.

Антенные системы такого размера для нормального функционирования в режиме регулярного обзора непригодны, так как имеют неприемлемую массу и парусность, опорные подшипники чрезвычайно нагружены и имеют повышенный износ, для регулярного вращения необходима мощность в несколько десятков кВт (повторюсь, что рассматриваются только радиолокационные станции кругового обзора).

Указанное ограничивает размеры антенн до 30 м и реализуемую ширину диаграммы направленности в пределах 3-4 угловых градусов. При таких значениях параметров антенной системы говорить о точности измерения углов места (определения высоты) не приходится. Высота определяется с большими ошибками и не может использоваться в большинстве практических приложений. (РЛС метрового диапазона волн с возможностью измерения высоты имеют специальные выделенные каналы измерения, размеры которых в вертикальной плоскости соизмеримы с размерами основной антенны в горизонтальной плоскости).

Формирование диаграммы направленности антенной системы для этого диапазона волн в угломестной плоскости происходит с учетом отраженной от земной поверхности энергии. В результате интерференции результирующая диаграмма направленности имеет ярко выраженный лепестковых характер, с провалами практически до нулевой дальности и максимумами с практически удвоенной дальностью под определенными углами места.

Для устранения лепесткового характера результирующей диаграммы направленности применяют несколько разнесенных по высоте облучателей (не менее 2-х), формирующих диаграммы направленности с взаимной компенсацией минимумов и максимумов.

Другой способ применяется при наличии большего количества разнесенных по высоте излучателей, между ними реализуется специального вида амплитудно-фазовое распределение, в результате чего добиваются требуемой формы диаграммы направленности.

Еще одним способом избавиться от негативного влияния отражений в этом диапазоне является исключение облучения в направлении земли, то есть «ноль» диаграммы направленности в угломестной плоскости не должен при сканировании опускаться ниже горизонта. Все это не позволяет определять высоту под малыми углами места с необходимой точностью, хотя дальность обнаружения маловысотных объектов в этом диапазоне волн соизмерима с дальностью их прямой видимости.

За исключением указанных выше сложностей получения информации РЛС в метровом диапазоне все остальное можно поставить в плюсы. Большая дальность обнаружения, меньшие затухания в атмосфере, большая и более сглаженная диаграмма обратного вторичного излучения (функциональная зависимость ЭПР объекта от ракурса его облучения) с меньшим уровнем случайных флуктуаций, практически отсутствие влияния технологий малой радиолокационной заметности на дальность обнаружения.

И все же невозможность получения координат объектов с высокой точностью, прежде всего угла места и высоты, с приемлемым для эксплуатации размером антенной системы, требует использовать более коротковолновые диапазоны волн. Только отсутствие мощных и компактных источников электромагнитной энергии в этих диапазонах сдерживало развитие радиолокации.

Георгий Данилов

РЛС 5Н69 (СТ­67) – мощная трехкоординатная высокопотенциальная РЛС, способная обеспечивать информацией как зенитные ракетные войска, так и авиацию в условиях массированного применения активных и пассивных помех

Начало 1940-х годов открыло новую эру радиолокации сантиметрового и дециметрового диапазонов волн появлением магнетрона. Магнетрон является электровакуумным резонансным устройством, работающим в скрещенных электрических и магнитных полях. Магнетрон является автогенератором, частота настройки зависит от объема резонаторной камеры и меняется изменением этого объема или изменением напряжения питания, количество резонаторов в камере всегда четное.

Достаточно простой и мощный источник электромагнитной энергии (импульсная мощность для типового магнетрона достигает единиц МВт при длительности единиц мкс) долгое время оставался основным типом передающего устройства для РЛС диапазона частот более 2 ГГц. Прежде всего простота и стоимость этого прибора при достижении достаточной мощности позволяли ему доминировать на протяжении более 40 лет в РЛС военного назначения. Для РЛС гражданского назначения магнетрон вполне может быть использован и в настоящее время.

Повышение требований к помехозащищенности, дальности обнаружения, электромагнитной совместимости повлияли на отказ от магнетронов в абсолютном большинстве современных РЛС военного назначения.

Практически одновременно (по некоторым источникам и ранее) был изобретен пролетный клистрон. Однако его применение в радиолокации несколько задержалось.

Клистрон является электровакуумным прибором с линейным пучком, в котором постоянное электрическое поле, ускоряющее электронный пучок, совпадает с осью магнитного поля, которое фокусирует и ограничивает электронный пучок. Для усиления высококонцентрированного линейного пучка электронов используются микроволновые резонаторы.

Принципиальным отличием является непрерывное взаимодействие СВЧ поля и электронного пучка, проходящего через замедляющую структуру. Стоимость ЛБВ выше, чем пролетного клистрона с аналогичными характеристиками. Интересным свойством усилительной ЛБВ является генерация шумов полной мощности во всей полосе частот при недостаточном уровне входной мощности, что позволяет использовать этот электровакуумный прибор в качестве простого и мощного источника шумовых колебаний в отдельных практических приложениях.

Еще одним СВЧ прибором является усилитель со скрещенными полями, имеющий колебательную систему, подобную магнетрону, разомкнутую для обеспечения входных и выходных соединений, работает в режиме усилителя мощности, в литературе встречается под названием амплитрон. Он имеет более высокий КПД (более 50%), меньший чем у пролетного клистрона и ЛБВ подобного класса коэффициент усиления (менее 20 db), при включении без ВЧ возбуждения генерирует шум полной мощности. Для работы амплитрона требуются более низкое, чем для ЛБВ и клистронов напряжение, амплитрон меньше по габаритам и массе. Может использоваться в качестве оконечного каскада усиления в сочетании с ЛБВ или клистроном.

Одним из недостатков мощных вакуумных СВЧ автогенераторов и усилителей мощности является необходимость высоковольтного модулятора, требования к параметрам вырабатываемого импульса иногда весьма жесткие и тяжело реализуемые, особенно для коротких (менее 1 мкс) и длинных (более 100 мкс) импульов. Указанное вызвано неизбежным спадом амплитуды модулирующего импульса на его длительности, что сказывается на качестве усиления всего каскада и требует применения специальных мер стабилизации параметров модулирующего импульса, что при высоких мощностях вызывает определенные трудности в реализации и при эксплуатации.

Указанное выше ограничивает применение электровакуумных СВЧ приборов в отдельных практических приложениях, а иногда делает их применение практически невозможным. Определенные ограничения накладываются пропускной возможностью мощных высокочастотных трактов при передаче энергии от передающего устройства к передающей антенной системе.

Георгий Данилов

Подвижная трехкоординатная РЛС «Десна­-М» и два высотомера типа ПРВ­13 на полигоне Ашулук

Появление в середине ХХ века полупроводниковых устройств-транзисторов, открыло новую эру радиоэлектроники. Однако до начала XXI века не существовало передающих устройств в полностью твердотельном исполнении, даже несмотря на существенные их преимущества перед вакуумными устройствами, среди которых можно назвать следующие:

время готовности снизу не ограничивается временем нагрева катода, для которого требуется определенная мощность, нет ограничения на время эксплуатации;

работа при значительно меньших уровнях напряжения (сотни вольт, а не десятки киловольт), что позволяет уменьшать габариты и массу, не требует применения для изоляции специальных материалов и масел, нестандартных деталей;

наработка на отказ значительно превышает аналогичный показатель для вакуумных устройств с аналогичными характеристиками;

невозможность получения от одного каскада требуемой мощности приводит к необходимости их группирования, что само по себе повышает надежность всего устройства в целом, так как отказ одного каскада приводит лишь к некоторой деградации, а не к отказу всего устройства в целом, кроме того, пиковые мощности относительно низкие, так как суммирование может происходить в пространстве, что позволяет использовать маломощные переключатели передача-прием для активных фазированных антенных решеток (АФАР);

широкополосность твердотельного передающего устройства в разы превосходит аналогичные показатели вакуумного СВЧ устройства, в связке твердотельное передающее устройство — антенная система — приемное устройство наименьшей полосой пропускания обладает антенная система, тогда как при использовании вакуумного передающего устройства ограничения возникают и на уровне самого передающего устройства.

Применение твердотельных передающих устройств возможно в нескольких направлениях.

Первое – замена вакуумного передающего устройства на аналогичное твердотельное для уже разработанной, выпускаемой серийно и находящейся в эксплуатации станции. В этом случае сталкиваются с необходимостью дополнительного изменения приемной системы и системы обработки информации, так как для сохранения требуемой дальности необходима средняя мощность при разрешающей способности сигнала по дальности.

Это достигается применением больших по длительности сигналов с фазовой или частотной внутриимпульсной модуляцией при относительно невысоких пиковых мощностях. Недостатки больших по длительности сигналов – большая мертвая зона.

Выход – формирование повторно в течении периода повторения сигнала для просмотра ближней мертвой зоны (на время длительности импульсного сигнала просмотра основной дальности). Так как просматривается ближняя зона, то энергетические показатели импульса могут быть снижены, может применяться сигнал с другим видом или законом внутриимпульсной модуляции.

Фактическая реализация такого решения часто не дает преимуществ, кроме надежности, однако замена автогенератора позволяет значительно повысить многие характеристики станции, прежде всего помехозащищенность от различного типа помех и разрешающую способность по дальности.

Второе направление – разработка новой станции под твердотельное передающее устройство. В этом случае возможен выбор между основными элементами станции, в том числе применение ФАР, элементы которой сами являются передающими устройствами.

Могут применяться варианты полностью активной ФАР на передачу (каждый излучающий элемент антенны запитан от отдельного модуля передатчика), полуактивной ФАР (модуль передатчика запитывает несколько элементов или подрешеток), пассивной ФАР (один общий передатчик), комбинированные варианты (одноканальный задающий генератор – проходная активная, полуактивная ФАР с оптической запиткой).

Аналогичные решения применимы для приемной части ФАР. Возможно разнесение передающей и приемной частей ФАР, что в некоторых случаях позволяет добиваться лучших результатов из-за необходимости получения требуемой развязки между мощным импульсом передающего устройства и высокой чувствительностью приемного устройства. Кроме того, управление лучом за счет изменения фаз на каждом из элементов возможно на более низком уровне, что позволяет избежать потерь мощности в фазовращателях, повышает общий КПД и надежность свей ФАР в целом.

Однако не стоит уповать на ФАР, как на панацею от всех недостатков классической радиолокации с зеркальной антенной системой. Применение твердотельных передатчиков в АФАР накладывает достаточно жесткие требования к идентичности амплитудных и фазовых характеристик элементов АФАР, особенно при больших углах электронного сканирования.

Повышенные требования предъявляются к стабильности питающих напряжений передающих модулей. При достижении определенных мощностей начинает сказываться взаимное влияние соседних передающих элементов, что не позволяет бесконечно увеличивать их мощность. Да и КПД твердотельного передающего модуля не повышается, что приводит к необходимости жесткой температурной стабилизации. Применение приемно-передающих модулей (ППМ) при достаточно высокой выходной мощности передающей подсистемы обнажает проблему развязки приемного и передающего трактов, выполненных в микроминиатюрном исполнении. Различного рода циркуляторы позволяют достичь уровня развязки порядка 20 db или чуть более, требуются дополнительные устройства защиты приемного тракта, что также требует принудительного охлаждения и не повышает надежность ППМ в целом. Все вместе взятое приводит достаточно громоздким конструкциям, высокой стоимости и недостаточной надежности ФАР (при всех имеющихся преимуществах). Применение ФАР, и особенно АФАР, должно преследовать определенные цели, быть экономически обоснованным на весь жизненный цикл РЛС с возможными модернизациями. Из РЛС с ФАР необходимо извлекать всю возможную информацию, получение которой возможно на алгоритмическом уровне при обработке в цифровой форме.

Стоит заметить, что излучаемая импульсными РЛС высокочастотная энергия используется недостаточно эффективно. Можно вспомнить принцип обнаружения объекта, суть которого в том, что электромагнитная волна отражается от неоднородности во все стороны, в том числе и в направлении облучения (что используется в классической радиолокации).

Леонид ЯКУТИН

П­18 «Терек» – мобильная двухкоординатная радиолокационная станция кругового обзора
метрового диапазона волн

Вся остальная энергия электромагнитной волны рассеивается в пространстве. Возможно получение информации об объектах за счет приема переотраженной электромагнитной волны. При этом необходимым условием является наличие точной информации о частоте и времени зондирования, области пространства, в которое излучается априори известный сигнал, взаимном расположении активной и приемной позиций.

В этом случае возможно сформировать пространственно-временные дискретные каналы приема полностью пассивной станции, которая не подвержена радиоэлектронному подавлению преднамеренной постановкой активных помех (нет демаскирующих разведывательных признаков), имеет невысокую потребляемую мощность (передающее устройство потребляет 50% и более всей подводимой мощности).

Разнесенные в пространстве активные РЛС в совокупности с пассивными приемными позволяют при совместной обработке информации получить помехоустойчивое радиолокационное поле как область пространства, в пределах которого возможно получение радиолокационной информации об объектах.

Активная РЛС может выступать в качестве пункта совместной обработки информации, в котором своя информация (но подверженная радиоэлектронному подавлению) может дополняться информацией пассивной (одной или нескольких) не подверженных радиоэлектронному подавлению станций. Совместная обработка информации от разнесенных в пространстве активных и пассивных источников позволяет осуществлять более детальное распознавание строев (количество объектов локации) и классов объектов. И хотя это несколько другая предметная область, но именно наличие ФАР в активной и пассивной станции позволяет получить заявленный синергетический эффект.

Таким образом, можно сделать вывод о том, что развитие передающих устройств существенным образов повлияло на развитие радиолокации (хотя можно заявить и обратное – развитие радиолокации потребовало разработки новых передающих устройств). Определенные ограничения имеющихся источников электромагнитной энергии при конструировании РЛС с требуемыми характеристиками вызвали к жизни радиолокаторы с фазированными антенными решетками, что привело к возникновению новых свойств РЛС.

Автор не претендует на приоритет и полноту приведенных рассуждений, это, скорее всего, результат многолетней работы в области изучения и преподавания радиолокации и радиолокационной системотехники, а также эксплуатации радиолокационных станций радиотехнических войск более 30 лет.

Радиолокация до конца не познана и не будет познана. Развитие современной науки и технологии позволит извлекать значительно больше информации из существующих радиолокационных сигналов, чем имеется в настоящее время, не говоря уже об потенциальной информативности перспективных сигналов в различных диапазонах волн.

Леонид ЯКУТИН

Подвижный радиовысотомер ПРВ­13 предназначен для работы в качестве средства измерения высоты в составе радиолокационного комплекса 5Н87

Юрий МУХИН

РЛС П­37 ­ подвижная двухкоординатная радиолокационная станция кругового обзора

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Дипломная работа

Радиопередающее устройство РЛС сантиметрового диапазона

АННОТАЦИЯ

В данном дипломном проекте спроектировано радиопередающее устройство РЛС сантиметрового диапазона.

Цель дипломного проекта на основе анализа современных и перспективных средств воздушного нападения обосновать требования к основным параметрам перспективной РЛС обнаружения, а также спроектировать радиопередающее устройство этой РЛС.

устройство радиопередатчик радиолокация станция диапазон

Введение

1. Анализ современных и перспективных средств воздушного нападения

2. Тактико-техническое обоснование основных параметров РЛС

2.1 Основные технические характеристики импульсного передатчика

2.2 Влияние структур и параметров зондирующих радиоимпульсов на технические характеристики РЛС

2.3 Влияние структур и параметров зондирующих радиоимпульсов на помехозащищенность РЛС

3. Разработка структурной схемы РЛС

3.1 Тракт генерирования и излучения радиолокационных сигналов

3.1.1 Антенное устройство

3.1.2 Высокочастотный тракт РЛС

3.2 Тракт приема и выделения сигнала

4 Расчет требуемой импульсной мощности РПУ и коэффициента усиления антенны

4.1 Выбор типа антенны, расчет размеров и коэффициента усиления антенны

4.2 Расчет требуемой мощности передатчика

4.3 Приблизительный расчет потребляемой от сети мощности

5 Разработка структурной схемы РПУ

5.1 Функции, выполняемые радиопередающим устройством

5.2 Структурные схемы РПУ. Однокаскадная и многокаскадная схема передатчика

5.3 Разработка структурной схемы РПУ

ВВЕДЕНИЕ

Для обеспечения надежной защиты государства развиваются все виды вооруженных сил. Вместе с тем, в современных условиях, когда на первое место среди средств ведения войны выдвинулось ядерное оружие и разнообразные средства доставки его к объектам - баллистические и крылатые ракеты, неизмеримо возросла роль противовоздушной обороны.

Опыт локальных войн в Ираке, Югославии неоспоримо показал, что противовоздушная оборона в современных условиях превратилась в фактор стратегического значения. Совершенствование средств воздушного нападения и тактики их применения вызвало новые требования к противосамолетной обороне. Она должна быть помехоустойчивой, достаточно эффективной для всего практически достижимого диапазона высот и скоростей, обеспечивать борьбу с малоразмерными целями.

Одним из главных направлений на пути решения задач ПВО - обеспечения надежного обнаружения и проводки воздушных целей при полетах на любых высотах, вплоть до предельно малых, в условиях радиоэлектронного противодействия.

В данной дипломной работе будет, на основе анализа современных и перспективных средств воздушного нападения, обоснованы требования к основным параметрам перспективной РЛС обнаружения. Спроектировано радиопередающее устройство этой РЛС и разработан возбудитель многочастотного ФКМ сигнала с дискретно изменяемой девиацией частоты.

1 . АНАЛИЗ СОВРЕМЕННЫХ И ПЕРСПЕКТИВНЫХ СРЕДСТВ ВОЗДУШНОГО НАПАДЕНИЯ

В последние годы значительно расширен диапазон форм угрозы военной силой. Все большее внимание уделяется увеличению количества районов присутствия крупных группировок вооруженных сил США на постоянной или временной основе и наращиванию возможностей для их быстрого усиления в целях решения международных проблем путем угрозы или прямого использования военной мощи.

В условиях кардинальных изменений, происходящих на международной арене и связанных с активизацией договорных процессов по сокращению различных видов вооруженных сил и вооружения, улучшения отношений между США и Россией, американское военно-политическое руководство завершает пересмотр военной стратегии, основу которой составляют четыре главных положения: обеспечение стратегического сдерживания путем устрашения, сохранение передового развертывания в ключевых регионах, эффективное реагирование на кризисную обстановку, сохранение способности быстро нарастить численность и мощь вооруженных сил в случае необходимости.

В девяностые годы в американской военной стратегии появился новый подход к определению типа войн, в которых могут участвовать вооруженные силы США. Наряду с классификацией войн по масштабам и средствам их ведения военная доктрина США подразделяет все возможные в межгосударственных отношениях формы вооруженной борьбы по интенсивности. При этом выделяется три группы конфликтов: высокой, средней и низкой интенсивности. К конфликтам высокой интенсивности относятся войны глобального охвата между государствами или их коалициями, в которых противоборствующие стороны применяют для достижения решительных политических целей все имеющееся ядерное, химическое и биологическое оружие.

К конфликтам средней интенсивности относятся войны между государствами или коалициями государств с применением всех сил и средств, включая ограниченное использование оружия массового поражения.

Американское Военно-политическое руководство считает, что в настоящее время вероятность крупномасштабного столкновения между США и Россией в силу сложившегося ядерного паритета и в связи с улучшением отношений между двумя странами является низкой за последние годы. Одновременно с этим признается, что возросла возможность участия США в конфликтах низкой интенсивности, под которыми понимаются как формы применения вооруженных сил (ограниченные боевые действия, демонстрация силы), так и экономические, политические и идеологические акции, которые могут предприниматься США в различных регионах мира в целях «защиты американских интересов». При этом США присваивают себе право не только вмешиваться по собственному усмотрению в дела суверенных государств, но и определить, в какой форме это делать.

Пентагон предусматривает три аспекта такого вмешательства:

Против развивающихся стран, во главе которых стоят неугодные Вашингтону правительства;

Поддержку проамериканских режимов, стабильность которых находится под угрозой;

Против государств, в которых, по определению США имеются «террористические элементы», угрожающие американским интересам.

Несмотря на значительное снижение возможности глобального ядерного конфликта и перенос акцента в подготовке вооруженных сил США к участию в конфликтах низкой интенсивности американское руководство не исключает вероятности крупномасштабной войны против России, которая, по американским оценкам, «обладает физической возможностью уничтожить США одним сокрушительным ударом».

В качестве возможного способа развязывания войны на основных театрах считается перерастание конфликтов низкой интенсивности в военные действия более крупного масштаба, вплоть до всеобщей войны. Однако главным способом развязывания крупномасштабных войн военное руководство США считает внезапное нападение заблаговременно развернутыми в мирное время группировками войск.

В целом, осуществляемые США мероприятия по достижению военно-стратегического и военно-технического превосходства над нашей страной, а также ставка на использование военной силы для достижения внешнеполитических целей позволяют, по убеждению Вашингтона, проводить предусмотренный стратегией национальной безопасности курс, направленный не только на «глобальное сдерживание» России, но и на максимальное использование нынешней обстановки для создания новой системы международных отношений, в которой США отводилась бы роль бесспорного лидера, обладающего особыми полномочиями в следствии огромного экономического и военного имущества. Из рассмотренного выше следует, что одним из вероятных противников для России являются ВС США и блока НАТО в целом.

Опыт последних локальных войн показывает, что основную роль при проведении военных операций американское руководство отводит ВВС США и НАТО. Основной же силой способной сдерживать авиацию являются войска ПВО, необходимо учитывать как тактику применения, как и технические возможности средств воздушного нападения.

В настоящее время средства воздушного нападения состоят из средств стратегической авиации, средств тактической авиации, средств авиации ВМС, средств армейской авиации, беспилотных летательных аппаратов (БЛА) и авиационных средств поражения (рисунок 1). ТА и палубная авиация рассматриваются командованием США и НАТО как главная ударная сила на ТВД во всех видах войн с применением и без применения ЯО. Тактика действий тактической и палубной авиации при прорыве ПВО ВВС предусматривает определенное оперативное построение, включающее несколько групп самолетов различного стратегического назначения:

Группа огневого подавления средств ПВО ВВС;

Ударные группы;

Группы непосредственного прикрытия ударных групп от истребителей ПВО ВВС;

Группы радиоэлектронного подавления средств ПВО ВВС;

Группы контроля и разведки результатов удара;

Группы дальнего радиолокационного обнаружения и управления.

Рисунок 1 - Классификация средств воздушного нападения

Ударные группы самолетов ТА и СА предназначены для нанесения ударов по объектам самолетами F-111, F-117, «ТОРНАДО», «ЯГУАР», «ХАРРИЕР», а также А-7D, А-10, «АЛЬФА-ДЖЕТ» (таблица 1).

Группы огневого подавления средств ПВО ВВС предназначены для уничтожения или вывода из строя средств ПВО ВВС с целью «ослепить» систему ПВО ВВС, нарушить систему огня ЗРВ, проделать бреши в системе ПВО ВВС. Объектами огневого воздействия могут быть РЛС, командные пункты, аэродромы, пункты наведения истребительной авиации и позиции ЗРВ.

Наиболее распространенным способом огневого подавления средств ПВО ВВС считается групповая атака звеном самолетов с прикрытием и применением как обычных так и противорадиолокационных ракет типа «ШРАЙК», «СТАНДАРТ-АРМ», «ХАРМ», «АЛАРМ», «ТЕССИТ РЕЙНБОУ».

Таблица 1

Основной противорадиолокационной ракетой состоящей на вооружении в настоящее время на вооружении ВВС и ВМФ США является ПРЛР «ХАРМ» (AQM-88А). Она предназначена для уничтожения РЛС ЗРВ, ПВО ВВС, работающих в дециметровом и сантиметровом диапазоне. Основные ТТХ ПРЛР приведены в таблице 2.

Таблица 2

Наименование

Дальность стрельбы, км

Скорость полета, м/с

Точность стрельбы, м

Носители

СТАНДАРТ-АРМ

ТЕССИТ-РЕЙНБОУ

Малая (до 830 км/ч)

Группа непосредственного прикрытия ударных групп от истребителей ПВО ВВС. На вооружении ВВС США состоят истребители-перехватчики, а также многоцелевые истребители типа: «торнадо» F-2; «фантом» FGR, 2F-15

ТТХ данных самолетов приведены в таблице 3.

Таблица 3

Группа радиоэлектронного подавления средств ПВО ВВС предназначена для проведения комплекса мероприятий и действий по радиоэлектронному подавлению противника и защите своих войск (сил) и систем оружия от радиоэлектронного подавления. Представляет собой мероприятия и действия, проводимые войсками по подавляющему и дезинформирующему воздействию на РЭС и системы противника энергией электромагнитных излучений.

Радиодезинформация в системе РЭП проводится для введения противника в заблуждение путем ложной работы РЭС своих войск, изменения режимов их работы и имитации работы РЭС противоборствующей стороны. основными способами радиодезинформации считаются:

Показ ложных демаскирующих признаков РЭС, объектов и обстановки;

Преднамеренное вхождение в радиосети и радионаправления противника, передача в них ложной информации и команд;

Искажение сведений, сигналов и позывных;

Повышение интенсивности работы РЭС на второстепенных направлениях при сохранении режима работы на главном.

Перечисленные мероприятия в совокупности с другими мерами по дезинформации могут вызвать у противника впечатление о сосредоточении войск и подготовки операции там, где в действительности этого нет. Мероприятия по обеспечению РЭБ предусматривают поиск, перехват и анализ излучений, опознавание и определение местоположения РЭС противника, оценку создаваемой им угрозы для последующего радиоэлектронного подавления и выдачи целеуказание средствам поражения, а также управление своими силами и средствами РЭП.

На вооружении ВВС США приняты: самолет-разведчик RF-4C, а также самолеты радиоэлектронного подавления EF-111, EC-130H. Характеристики самолетов данного типа приведены в таблицах 4, 5.

Таблица 4

Таким образом, анализируя особенности применения ВВС США и НАТО, а также исходя из опыта локальных войн, можно увидеть, что ВВС США активно используют все технические возможности авиации. При массированном применении СВН учитывается все, начиная от рельефа, местности и погодных условий и заканчивая тактикой действий.

Для тактики действий воздушного противника в локальных войнах характерно массированное применение СВН, отсутствие шаблона в выборе варианта удар, тактических приемов и способов действий, всестороннее обеспечение действий ударных групп, стремление к достижению внезапности, сокращение времени нахождения самолетов в зоне огня зенитных средств и т. д. Комбинированные удары с воздуха становятся сложными, широко используются для решения различных задач БЛА, малозаметные летательные аппараты, ВТО в РЛ и ИК диапазоне, постановщики радиоэлектронных помех. Для обеспечения своевременного вскрытия противника на дальних границах обнаружения необходимо активно использовать РЛС обнаружения, которые обеспечат вскрытие состава противника на высотах вплоть до предельно малых на максимально дальних рубежах. Данная станция должна обладать высокой энергетикой излучаемого сигнала, помехозащищенностью.

2 ТАКТИКО-ТЕХНИЧЕСКОЕ ОБОСНОВАНИЕ ОСНОВНЫХ ПАРАМЕТРОВ РЛС

2.1 Основные технические характеристики импульсного передатчика

Основная задача эскизного проектирования радиопередающего устройства состоит в обосновании требований к его техническим характеристикам на основе анализа требований к тактическим характеристикам проектируемой РЛС, а также в выборе структуры передатчика, обеспечивающей реализуемость обоснованных требований. Поэтому в данном вопросе основное внимание уделяется анализу влияния параметров зондирующих сигналов на основные тактические характеристики проектируемой РЛС.

В радиолокационных системах находят применение различные виды зондирующих сигналов:

Непрерывные немодулированные;

Непрерывные амплитудно-модулированные;

Непрерывные частотно-модулированные;

Импульсные.

Выбор того или иного вида зондирующего сигнала зависит от характера решаемых радиолокационной системой задач и условий ее функционирования. Однако в РЛС РТВ, как впрочем и в большинстве РЛС другого назначения, применяются импульсные зондирующие сигналы. Это связано с тем, что их применение позволяет достаточно точно обеспечить измерение дальности до цели и упростить конструкцию РЛС за счет использования общей системы на передачу и прием.

Основными параметрами зондирующих радиоимпульсов являются:

Длина волны (частоты) генерируемых колебаний;

Диапазон перестройки;

Импульсная мощность Р И;

Длительность импульса ф И;

Частота F П или период Т П повторения зондирующих импульсов;

Ширина спектра П И.

По своей структуре радиоимпульсы могут быть:

Когерентными и некогерентными;

Простыми и сложными.

Радиоимпульсы называют когерентными, если начальная фаза колебаний каждого радиоимпульса одинаковая или от импульса к импульсу изменяется по определенному закону. Если же начальная фаза высокочастотных колебаний от импульса к импульсу является случайной величиной, такие радиоимпульсы являются некогерентными.

Спектр последовательности некогерентных радиоимпульсов всегда сплошной, его форма определяется формой спектра одиночного радиоимпульса. Спектр когерентной последовательности ограниченного числа радиоимпульсов является гребенчатым, его огибающая повторяет форму спектра одиночного радиоимпульса. При увеличении числа импульсов в пачке когерентных радиоимпульсов ширина гребней спектра уменьшается, и он приближается к линейчатому.

Радиоимпульсы называют простыми, если произведение ширины спектра П И и длительности импульса ф И, называемой базой сигнала, имеет величину порядка единицы:

Если же В>>1, такой сигнал называется сложным. Достоинством простых сигналов является простота их формирования и оптимальной обработки. Однако их применение ограничивает возможность по технической реализации предъявляемых требований к тактическим характеристикам проектируемой РЛС. Поэтому в современных и тем более перспективных РЛС применяются в основном сложные сигналы двух видов:

Радиоимпульсы с внутриимпульсной линейной (ЛУМ) или нелинейной (НУМ) частотной модуляцией;

Радиоимпульсы с внутриимпульсной фазовой манипуляцией (от латинского «manus» - рука), при которой фаза колебаний в пределах импульса через определенные временные интервалы скачком изменяется на 180є. Поскольку эти скачкообразные изменения происходят по определенному двоичному коду, такие импульсы называются фазокодоманипулированными (ФКМ).

Обоснование требований к техническим характеристикам передатчика осуществляется на основе предъявляемых к РЛС требований к тактическим характеристикам. Поэтому необходимо проанализировать влияние структур и параметров зондирующих радиоимпульсов на основные тактические характеристики РЛС. Поскольку длина волны является параметром, общим для передатчика, приемника и антенно-волноводной системы, требования к ней должны быть обоснованы на этапе системотехнического проектирования РЛС в целом.

2.2 Влияние структур и параметров зондирующих радиоимпульсов на тактические характеристики РЛС

Как известно, максимальная дальность действия РЛС определяется соотношением:

где Э С - энергия сигнала передатчика;

G ПЕР - коэффициент усиления передающей антенны;

А ПР - эффективная площадь приемной антенны;

у Ц - ЭПР цели;

г - коэффициент различимости (или параметр обнаружения);

N 0 - спектральная плотность мощности собственного шума приемника, пересчитанная к его входу.

Рассмотрим подробнее входящие в выражение (2.2) параметры.

Величины G ПЕР и А ПР обосновываются при эскизном проектировании антенны. Если на передачу и прием используется одна антенна, между ними существует связь

Как уже говорилось, длина волны должна быть уже выбрана на этапе системотехнического проектирования РЛС в целом. Эффективная площадь антенны связана с ее геометрической площадью соотношением

где н - коэффициент использование площади раскрыва антенны. Его значение имеет величину порядка 0,5 .. 0,6. Геометрическая площадь ограничена допустимыми габаритами антенны.

Спектральная плотность мощности шумов:

где k = 1,38·10 -23 Дж/к - постоянная Больцмана,

Т 0 - абсолютная температура эквивалентного источника шума (при расчетах принимается Т 0 =290 к),

Ш - коэффициент шума приемника.

С учетом полосы пропускания приемника N 0 определяют предельную чувствительность приемника.

Коэффициент различимости представляет собой отношение сигнал-шум по мощности необходимое для обнаружения сигнала с заданными показателями качества - вероятностью правильного обнаружения и ложной тревоги.

Непосредственно к передатчику относится энергия сигнала генерируемая передатчиком за время облучения цели:

где Р И - импульсная мощность передатчика,

ф И - длительность зондирующего импульса,

М - число импульсов, облучающих цель (число импульсов в пачке).

Число импульсов:

где Дв 0,5 - ширина диаграммы направленности антенны в азимутальной плоскости (в радианах),

Т ОБЗ - период обзора пространства по азимуту.

Параметры Дв 0,5 и Т ОБЗ непосредственно к передатчику не относятся. К нему относятся Р И, ф И, Т П. С точки зрения обеспечения заданной дальности обнаружения необходимо увеличивать Р И, ф И и уменьшать Т П (или увеличивать F П =1/ Т П).

Увеличение F П ограничено значением однозначно измеряемой дальности:

Увеличение импульсной мощности сопровождается повышением требований к электрической прочности тракта генерирования и излучения сигнала, а также приводит к снижению скрытности РЛС и защищенности ее от самонаводящегося оружия.

Увеличение длительности импульса (если это простой импульс) приводит к снижению разрешающей способности по дальности. разрешение противоречий между требованиями по дальности обнаружения и разрешающей способности по дальности возможно на основе перехода к сложным радиоимпульсам, так как разрешающая способность по дальности определяется шириной спектра сигнала П С:

Как известно, потенциальная точность измерения дальности (т.е. предельно достижимая средняя квадратическая ошибка) определяется соотношением

Отсюда видно, что для повышения потенциальной точности необходимо одновременно увеличивать энергию принимаемого сигнала (т.е. увеличивать отношение сигнал-шум

г) и ширину спектра сигнала, что невозможно в случае применения простых радиоимпульсов.

Поэтому, как и для обеспечения заданного значения дальности обнаружения, для реализации требований к точности измерения дальности необходимо применять сложные сигналы.

2.3 Влияние структур и параметров зондирующих радиоимпульсов на помехозащищенность РЛС

Помехозащищенностью РЛС называется способность выполнения ею заданных функций с требуемыми показателями качества в условиях воздействия активных и пассивных помех, как преднамеренных, так и непреднамеренных.

Данная характеристика определяется скрытностью работы РЛС и ее помехоустойчивостью.

Скрытность измеряется вероятностью обнаружения работающей на излучение РЛС средствами радиотехнической разведки противника. Снижение этой вероятности обеспечивается уменьшением импульсной мощности излучаемого сигнала и скачкообразным изменением основных его параметров.

Количественной оценкой помехоустойчивости РЛС является отношение мощности сигнала к мощности помехи на выходе оптимального фильтра, при которой обеспечиваются требуемые значения характеристик обнаружения и точности измерения координат.

Помехоустойчивостью по отношению к активной шумовой помехе обеспечивается увеличением энергии зондирующего сигнала. При этом для обеспечения скрытности необходимо не увеличивать его импульсную мощность. Это противоречие разрешается на основе применения сложных зондирующих сигналов.

Повышение помехоустойчивости РЛС по отношению к воздействию пассивных маскирующих помех достигается повышением разрешающей способности по дальности и скорости. Повышение разрешающей способности по дальности (наряду с повышением разрешающей способности по угловым координатам) приводит к уменьшению разрешаемого объема, а, следовательно, к уменьшению среднего значения ЭПР источника пассивной помехи (облака дипольных отражателей, подстилающей поверхности и т.д.).

Разрешающая способность по скорости позволяет выделять полезный сигнал на основе использования эффекта Доплера. Обеспечение разрешения одновременно по дальности и по скорости связано с необходимостью преодоления известного из теории радиолокации принципа неопределенности. Наиболее полно этому требованию удовлетворяют пачки сложных радиоимпульсов при условии, что длительность пачки ф пач =МТ п значительно превышает временную протяженность пассивной помехи

где ДR пп - радиальный размер пассивной помехи.

Системы, реализующие разрешение целей на фоне пассивных помех на основе использования эффекта Доплера, называются системами селекции движущихся целей (СДЦ). Технически реализация систем СДЦ возможна при использовании когерентных пачек зондирующих радиоимпульсов. При этом возможны различные варианты построения когерентно-импульсных РЛС:

Истинно когерентные РЛС (передатчик формирует когерентную последовательность радиоимпульсов);

Псевдо когерентные РЛС с внутренней когерентностью (передатчик формирует некогерентные радиоимпульса, фазы которых запоминаются так называемым когерентным гетеродином на период повторения зондирующих импульсов);

Псевдо когерентные с внешней когерентностью (для обеспечения когерентности используются сигналы от неподвижных объектов, находящихся в одном элементе разрешения с движущейся целью).

Выбор того или иного варианта построения когерентно-импульсной РЛС определяется требованиями к эффективности функционирования системы СДЦ.

Из изложенного следует, что параметры и структура зондирующих импульсов оказывает существенное влияние на дальность действия РЛС, ее точностные характеристики и разрешающую способность по дальности и скорости. Для обеспечения заданных значений дальности действия и точности измерения координат необходимо увеличивать энергию принимаемого сигнала, для чего при фиксированном значении импульсной мощности зондирующего сигнала необходимо увеличивать длительность одиночного импульса и количество принимаемых импульсов в пачке. Одновременное разрешение по дальности и скорости возможно на основе применения сложных радиоимпульсов.

В данной работе при разработке передающего устройства, мною будет использован ФКМ сигнал, который обеспечит высокую энергетику сигнала, а также помехозащищенность.

3 . РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ РЛС

Импульсными РЛС называются такие, в которых дальность до цели определяется путем измерения времени задержки эхо-сигнала относительно зондирующего импульсного сигнала.

Состав структурной схемы радиолокационной станции определяется ее функциями (рисунок 3.1).

В общем случае, для получения информации о целях радиолокационным методом станция должна обеспечивать выполнение следующих функций:

Облучение целей электромагнитной энергией (зондирование зоны обзора);

Прием отраженных от цели эхо-сигналов и выделение их из помех;

Отображение получаемой радиолокационной информации и измерение координат целей;

Определение государственной принадлежности;

Ввод радиолокационной информации в устройство обработки и выдачу ее в каналы связи.

Рисунок 3.1

Выполнение первой функции обеспечивается трактом генерирования и излучения, последовательно осуществляющим ФКМ сигналов, передачу их к антенне и излучение их в пространство. В состав тракта входят: передающее устройство, фидерное устройство и антенна. Функции приема отраженных от цели сигналов и выделение их из помех осуществляются трактом приема и выделения сигналов из помех. Здесь решаются задачи фильтрации, усиления, преобразования сигналов и выделения их из шумов, пассивных и активных помех. Основными элементами тракта являются: антенно-фидерное устройство, приемное устройство, устройство защиты от помех.

Отображение воздушной обстановки в зоне обзора РЛС и определение координат целей решается с помощью оконечных устройств РЛС. Оконечными устройствами РЛС могут быть устройства автоматического измерения и съема координат, индикаторные или другие устройства отображения. Для синхронизации работы передающих, индикаторных устройств и других систем РЛС во времени необходима система запуска.

Для измерения координат с индикаторных устройств или путем автоматической обработки сигналов необходимо формирование специальных масштабных отметок или кода дальности, азимута, высоты.

Опознавание цели осуществляется в специальной системе опознавания, составной частью которой являются наземные радиолокационные запросчики, сопрягаемые с РЛС. Конкретизация элементов структурной схемы импульсной РЛС, состава, назначения и взаимодействия отдельных систем будет рассмотрена далее.

3.1 Тракт генерирования и излучения радиолокационных сигналов

Основными задачами, решаемыми трактом генерирования и излучения импульсной РЛС являются:

Создание импульсов СВЧ высоких энергий заданной структуры, длительности и периодичности;

Канализации энергии этих импульсов от передающего устройства к антенной системе с минимально возможными потерями;

Направленное излучение импульсов электромагнитных волн.

Составными частями тракта, в соответствии с решаемыми задачами, являются передающие устройства, высокочастотные тракты и антенные системы РЛС (рисунок 3.2).

В трактах генерирования и излучения кроме основных перечисленных решаются дополнительные специфические задачи:

Развязка передающего и приемного устройства при работе на излучение и прием;

Ответвление энергии СВЧ дл контроля мощности и спектра зондирующего сигнала, переключение передающего устройства к антенной системе или эквиваленту;

Изменение уровня, структуры сигналов и несущей частоты;

Защита личного состава от облучения.

Рисунок 3.2

3.1.1 Антенное устройство

Антенное устройство РЛС предназначено для:

Преобразование энергии колебаний, генерируемых передатчиком, в энергию электромагнитных волн в пространстве (излучение);

Улавливание энергии электромагнитных волн (эхо-сигналов) с определенного телесного угла пространства и концентрации ее на входе линии приема;

Концентрации энергии электромагнитных волн в определенном телесном угле при излучении;

Выбор направления излучения и приема энергии электромагнитных волн в соответствии с принятым способом обзора пространства.

В импульсной РЛС моменты времени измерения зондирующего сигнала и приема эхо-сигналов разделены, что позволяет обеспечить работу одной и той же антенны на прием и передачу.

Параметры антенных систем в значительной степени определяют боевые возможности радиолокационной станции, такие как дальность действия, форма зоны обзора, время обзора пространства, точность определения угловых координат, разрешающая способность по угловым координатам, помехозащищенность.

Основными параметрами антенного устройства РЛС являются:

Коэффициент усиления антенны;

Форма диаграммы направленности;

Уровень боковых лепестков, диапазонность;

Устойчивость к ветровым нагрузкам, обледенению, воздействию ударных волн;

Возможность быстрой разборки и сборки;

Удобство транспортировки.

Коэффициент усиления антенны G позволяет увеличить дальность действия РЛС, и обеспечивается физическими размерами антенны. Между усилением, размерами антенны и длиной волны существует известное соотношение:

где А - площадь антенны;

л - длина волны;

К А - коэффициент использования поверхности антенны;

з А - коэффициент полезного действия антенны.

Коэффициент усиления антенны связан с коэффициентом направленного действия G Н соотношением:

Форма диаграммы направленности является важной характеристикой антенны. Диаграммой направленности антенны по мощности называется зависимость коэффициента усиления от угловых координат.

Диаграмма направленности характеризуется шириной главного лепестка в горизонтальной и вертикальной плоскости по уровню половинной мощности, а также уровнем боковых лепестков. Эти параметры тесно связаны с коэффициентом усиления и геометрическими размерами антенны L r

где L r - размер сечения в соответствующей плоскости;

К r - коэффициент, зависящий от распределения поля в раскрыве антенны (обычно К r =50є..80є).

Форма диаграммы направленности антенны РЛС в вертикальной плоскости оказывает существенное влияние на такие характеристики РЛС, как точность измерения и разрешающую способность по угловым координатам, помехозащищенность и скорость обзора. Для радиолокационных станций обнаружения, осуществляющих круговой обзор пространства, наиболее рациональной является диаграмма направленности широкая в вертикально и узкая в горизонтальной плоскости.

На изодальностном участке зоны обнаружения коэффициент усиления антенны должен быть приблизительно постоянным. На изовысотном участке зоны обнаружения коэффициент усиления по углу места должен изменятся по закону «косеканс квадрат». При этом на вход приемника при постоянной высоте полета цели и разной дальности приходит сигнал постоянной интенсивности.

Уровень боковых лепестков влияет на интенсивность принимаемых активных помех от помехопостановщиков, пассивных помех от местных предметов и тем самым ухудшает помехозащищенность РЛС. Прием эхо-сигналов целей по боковым лепесткам затрудняет определение их истинного местоположения.

Кроме ухудшения помехозащищенности боковые лепестки вызывают понижение чувствительности приемных каналов за счет приема дополнительных шумов из окружающего пространства. Уровень боковых лепестков существенно зависит от закона распределения поля в раскрыве зеркальной антенны, мощности в отдельных излучателях антенной решетки.

В зеркальных антеннах допустимое значение уровня боковых лепестков составляет 17-23 дБ, в директорных антеннах около 15 дБ. Для ослабления влияния боковых лепестков на помехозащищенность РЛС применяют специальные схемы подавления.

3.1.2 Высокочастотный тракт РЛС

Высокочастотный тракт РЛС осуществляет передачу высокочастотной энергии зондирующих импульсов от передатчика к антенне и принятых эхо-сигналов от антенны на вход приемника.

К основным техническим данным высокочастотных трактов относятся следующие:

Степень согласования высокочастотного тракта с нагрузкой;

Потери энергии в высокочастотном тракте;

Максимальная передаваемая мощность.

Степень согласования высокочастотного тракта с нагрузкой характеризуется коэффициентом стоячей волны напряжения

где - коэффициент отражения;

Комплексные сопротивления нагрузки и линии передачи;

или обратной К СВ величиной - коэффициентом бегущей волны.

Обычно считают, что нагрузка хорошо согласованна с линией передачи, если К СВ < 1,2 и согласована удовлетворительно, если К СВ = 1,2- 2. при К СВ менее 2 от нагрузки отражается менее 11% падающей мощности.

Потери энергии в высокочастотном тракте обусловлены тепловыми потерями в металлических проводящих поверхностях и диэлектрическими потерями линии передачи.

Величину потерь принято характеризовать коэффициентом поглощения. Для линии передач пользуются величиной погонного ослабления, выраженной в децибелах на один метр длины.

Для волноводов рабочее значение величины погонного ослабления составляет 0,01-0,05 дБ/м, для полосковых и коаксиальных линий передач 0,05-0,5 дБ/м. потери тракта РЛС составляют 0,5-1 дБ на передачу и 2-3 дБ на прием.

Предельная мощность высокочастотного тракта ограничивается условиями пробоя и допустимым нагревом диэлектрика линии передачи.

3.2 Тракт приема и выделения сигнала

Тракт приема и выделения эхо-сигналов предназначен для передачи энергии сигналов целей и помех с антенных систем на вход приемных устройств РЛС, усиления и фильтрации сигналов целей на фоне помех. К помеховым сигналам относятся энергия собственных шумов приемных устройств и внешних естественных и преднамеренных источников шума.

4 . ПРЕДВАРИТЕЛЬНЫЙ РАСЧЕТ РПУ. РАСЧЕТ ТРЕБУЕМОЙ ИМПУЛЬСНОЙ МОЩНОСТИ РПУ И КОЭФФИЦИЕНТА УСИЛЕНИЯ АНТЕННЫ

Расчет требуемой импульсной мощности радиопередающего устройства и коэффициента усиления антенны будет произведен для трех диапазонов волн: сантиметрового, дециметрового и метрового.

Вначале сделаем выбор типа антенны и расчет размеров антенны.

4.1 Выбор типа антенны, расчет размеров антенны и коэффициента усиления

Антенна радиолокатора должна иметь диаграмму направленности, обеспечивающую высокую разрешающую способность по угловым координатам. В качестве антенны импульсных РЛС наиболее широкое распространение получили зеркальные параболические антенны. Эти антенны позволяют сравнительно несложно получить диаграмму направленности, обеспечивающую высокие разрешающие способности по угловым координатам и малый уровень боковых лепестков диаграммы направленности. Для трехкоординатной РЛС с параллельным обзором по углу места рекомендуется выбрать в качестве формы зеркала либо симметричную вырезку из параболоида вращения, либо параболический цилиндр с фазированной антенной решеткой в качестве облучателя.

а для директорных антенн

где Ди - ширина диаграммы направленности антенны по уровню половинной мощности в соответствующей плоскости;

л - длина волны;

а - размер антенны в соответствующей плоскости;

L - продольный размер директорной антенны.

Следует учитывать, что минимальному значению коэффициента в выражении (4.1) соответствует наибольший уровень боковых лепестков, максимальному значению коэффициента соответствует минимальный уровень боковых лепестков, поэтому для обеспечения высокой помехозащищенности РЛС по боковым лепесткам следует избрать значение коэффициента в выражении (4.1) в пределах 70..90.

Таблица 4.1

После того, как определены вертикальный (а )и горизонтальный(в ) размеры зеркала, следует определить геометрическую площадь антенны

S=(0.8..0.9)ab .(4.3)

Таблица 4.2

Выбор антенны заканчивается расчетом коэффициента усиления антенны

Таблица 4.4

Для определения величины суммарного коэффициента различимости (г?) следует, воспользовавшись кривыми обнаружения (приложение А), по заданным вероятностям правильного обнаружения D и ложной тревоги F Л определить коэффициент различимости при оптимальной обработке г.

Для простого немодулированного радиоимпульса и ФКМ сигнала оптимальная фильтрация одиночного импульса (одиночной дискреты ФКМ сигнала) заменяется квазиоптимальной. При этом возникают потери в отношении сигнал/шум, равные

г С =0,8 дБ.(4.9)

Далее, вместо когерентного накопления используется некогерентное. Потери на некогерентное накопление (г Н) пачки можно определить по соответствующим графикам (приложение Б). если производится цифровая обработка, то следует учесть и потери, вызываемые цифровой обработкой, т.е. учесть шум квантования г Ц. Окончательно:

г? = г + г С + г Н + г Ц.(4.10)

Таблица 4.6

После определения г? может быть найдена энергия зондирующего сигнала по формуле (4.6). энергия зондирующего сигнала связана с импульсной мощностью соотношением

Э=б Р И ф И М,(4.11)

где б - коэффициент, учитывающий непрямоугольность пачки. Рекомендуется выбрать б

Из выражения (4.11) может быть определена импульсная мощность. Для трехкоординатной РЛС полученное значение импульсной мощности необходимо умножить на число каналов по углу места.

4.3 Приблизительный расчет потребляемой от сети мощности

по импульсной мощности можно определить мощность, потребляемую выходным каскадом радиопередающего устройства РЛС от агрегатов питания

где Q=Т/ф И - скважность сигнала,

з Г - КПД генераторного прибора,

з М - КПД модулятора (з М = 0,7..0,8),

з В - КПД выпрямителя (з В = 0,8..0,9),

з Т - КПД трансформатора (з Т = 0,6)

5 . РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ РПУ

5.1 Функции, выполняемые радиопередающим устройством

Радиопередающее устройство выполняет следующие функции:

Создает колебания высокой частоты (носитель полезной информации), которые получаются в результате преобразования энергии источников постоянного тока в энергию тока высокой частоты. Этот процесс называется генерацией, а устройство, в котором создается ток высокой частоты, - генератором.

Осуществляется управление высокочастотными колебаниями.

Необходимость в управлении высокочастотными колебаниями возникает в любой из радиолиний, все многообразие которых может быть приведено к двум основным разновидностям: связным и радиолокационным.

В связных радиолиниях полезная информация закладывается на их передающих концах путем изменения одного или нескольких параметров высокочастотных колебаний (амплитуды, частоты или фазы) по соответствующему закону. Процесс управления высокочастотными колебаниями называется модуляцией, а устройство, с помощью которого осуществляется данный процесс,- модулятором. В радиолокационных системах полезная информация не закладывается на их передающих концах, а возникает при отражении электромагнитных волн от объектов (целей). Тем не менее и в этой разновидности радиолиний также возникает необходимость в первичной модуляции или манипуляции тока высокой частоты для обеспечения возможности извлечения полезной информации в приемном тракте. Радиопередающее устройство состоит из комплекса аппаратуры, обеспечивающей создание модулированного тока высокой частоты. Применительно к радиолокационной системе передатчик предназначен для формирования зондирующего сигнала, а в общем случае - для формирования радиосигнала в соответствии с требованиями, сформулированными при разработке конкретной радиотехнической системы. Кроме отмеченных выше функций - генерации и модуляции - радиопередающее устройство с помощью антенно-фидерной системы осуществляет канализацию и излучение в нужном направлении модулированного или манипулированного тока высокой частоты в виде электромагнитных волн.

5.2 Структурные схемы радиопередающих устройств. Однокаскадная и многокаскадная схемы передатчика

Для выполнения перечисленных выше функций радиопередающее устройство должно состоять из модулятора, высокочастотного генератора, антенны и источников питания. Кроме того, в состав большинства современных передатчиков входит система УБС (управления, блокировки и сигнализации), которая имеет элементы автоматики, контроля и блокировки, обеспечивающие необходимую последовательность включения, возможность поддержания нормального режима работы и управления функционированием радиопередающего устройства.

В зависимости от требований к передатчику они могут выполняться по однокаскадной и многокаскадной схеме. Структурная схема однокаскадного передатчика приведена на рисунке 5.1, в состав которой входят модулятор, генератор с самовозбуждением, фидерный тракт, источник питания, система автоматической подстройки частоты и система управления, блокировки и сигнализации.

Рисунок 5.1 - Однокаскадная схема передатчика

Для повышения выходной мощности передатчика и стабильности частоты генерируемых колебаний передатчики выполняют по многокаскадной схеме (рисунок 5.2) или, как их называют, в виде усилительных цепочек.

Рисунок 5.2 - Многокаскадная схема передатчика

Электромагнитные колебания необходимой стабильности создаются в задающем генераторе (ЗГ), а затем путем умножения их по частоте (УЧ) и усиления по мощности в предварительном усилителе и усилителе мощности первоначальный сигнал доводится до требуемых параметров.

5.3 Разработка структурной схемы радиопередающего устройства

Данное устройство предназначено для формирования в каждом зондировании от одного до четырех ФКМ радиоимпульсов на разных частотах, следующих друг за другом без временного интервала (рисунок 5.3).

Рисунок 5.3

Для обеспечения высокой стабильности частоты зондирующих сигналов передающее устройство выполнено по схеме «маломощный высокостабильный возбудитель - усилитель мощности» (рисунок 5.4).

Возбудитель формирует ансамбль простых и сложных сигналов. На выходе формирователя при настройке полосовых фильтров на первую, (п -1) и п -ю составляющие выходного сигнала модулятора формируется ансамбль простых радиоимпульсов и ФКМ радиоимпульсов с одинаковыми законами фазовой манипуляции: на выходе 1 - с частотой щ 0 + Щ М (ФКМ), на выходе 2 - с частотой щ 0 + (п -1)Щ М (ФКМ при четном п , простой при нечетном п ), на выходе 4 - с частотой щ 0 - п Щ М (ФКМ при нечетном п , простой при четном п ), на выходе 3 - с частотой (2п -1)Щ М (ФКМ при любом п ). возможны и другие комбинации сигналов в зависимости от настройки полосовых фильтров.

Когерентность импульсов промежуточной частоты обеспечивается следующим образом. Непрерывное напряжение промежуточной частоты от синтезатора частоты поступает в систему синхронизации, где преобразуется в последовательность тактовых импульсов (ТИ), из которых в каждом периоде повторения формируются строб-импульсы. Строб-импульсы, длительностью ф И каждый, следуют друг за другом без временного интервала. Фронт каждого из них жестко связан с фазой напряжения промежуточной частоты. Ключевые схемы открываются на время соответствующее длительности строб-импульса.

Рисунок 5.4 - Радиопередающее устройство

Таким образом, использование одного и того же высокостабильного по частоте напряжения промежуточной частоты для формирования зондирующих импульсов обеспечивает получение когерентной последовательности импульсов и высокую стабильность их повторения.

Усилитель мощности служит для усиления до необходимого уровня высокочастотных импульсных сигналов, поступающих с возбудителя.

С целью ослабления эффекта «слепых» скоростей, а также для защиты РЛС от противорадиолокационных ракет, применяется вобуляция частоты посылок зондирующих импульсов. Регулировка полосовых фильтров позволяет формировать различную комбинацию сигналов, что увеличивает помехозащищенность РЛС.

Заключение

Военно-политическая обстановка в мире несмотря на все усилия нашей страны продолжает оставаться напряженной, в следствии расширения блока НАТО на Восток за счет стран бывшего социалистического содружества (Чехии, Венгрия, Польша), а также стран бывших Республик СССР. Следовательно не снижается вероятность того, что противник в любой момент способен нанести массированный удар по важным военным государственным объектам.

В тоже время вероятный противник не прекращает совершенствование боевой техники, создаются новые типы ПРЛР, истребителей, бомбардировщиков, КР, УР, авиабомб. Совершенствуется аппаратура защиты летательных аппаратов в том числе комплексы РЭБ, включающие в свой состав аппаратуру постановки активных и пассивных помех.

Для эффективного противодействия СВН вероятного противника, необходимые средства разведки, которые были бы способны обнаруживать воздушные объекты на максимальных дальностях и были бы защищены от активных и пассивных помех.

В результате выполнения данной работы был произведен анализ тактики применение СВКН и их влияния возможности обнаружения воздушных объектов. Произведен анализ способов формирования и видов зондирующих сигналов, на его основе произведен расчет характеристик и разработана предложение по совершенствованию передающего устройства. Разработанный возбудитель ФКМ сигнала, обеспечивает формирование ансамбля простых и ФКМ сигналов. Данное устройство позволяет увеличить помехозащищенность РЛС от активных и пассивных помех, а также обеспечивает обнаружение СВКН противника на дальних рубежах обнаружения.

Приложение А

Показатели качества оптимального обнаружения когерентных сигналов со случайными параметрами

Сигнал с полностью известными параметрами

Сигнал с равномерным распределением фазы

Приложение Б

График усредненных потерь, получающихся при накоплении некогерентной пачки, состоящей из М импульсов и используемый для расчета потерь при визуальном отображении сигнала на экране ИКО

График потерь цифрового некогерентного накопления

(п - число накапливаемых импульсов)

Размещено на Allbest.ru

Подобные документы

    Разработка проекта импульсного приёмника радиолокационной станции (РЛС) дециметрового диапазона. Классификация радиолокации, параметры качества приема. Расчёт параметров узлов схемы структурной приёмника. Определение полосы пропускания приёмника.

    дипломная работа , добавлен 21.05.2009

    Системы посадки самолетов метрового, сантиметрового и дециметрового диапазонов: назначение, состав и внутренняя структура, типы и сравнительное описание. Программа схемотехнического моделирования Micro-Cap, технико-экономическое обоснование проекта.

    курсовая работа , добавлен 23.09.2013

    Разработка многофункционального приемопередающего устройства для сбора информации со внешних устройств - датчиков. Обзор ресиверов диапазона 433 МГц. Расчет микрополосковой антенны на центральной частоте. Расчет затрат на изготовление опытного образца.

    дипломная работа , добавлен 20.10.2013

    Общая характеристика зеркальной антенны, ее назначение и применение. Расчет зеркальной параболической антенны сантиметрового диапазона с облучателем в виде пирамидального рупора. Определение коэффициента усиления с учетом неточности изготовления зеркала.

    курсовая работа , добавлен 18.01.2014

    Типы синтезаторов частоты. Методы и приборы генерации сигналов средневолнового диапазона и способы их излучения. Разработка структурной схемы проектируемого устройства, обеспечение его питания. Исследование синтезатора частот средневолнового диапазона.

    дипломная работа , добавлен 23.09.2016

    Разработка функциональной блок-схемы, расчет цепей настройки варикапов и входной, элементов колебательного контура УСЧ и первого каскада УПЧ с целью проектирования портативного радиовещательного приемника длинноволнового диапазона по заданным параметрам.

    курсовая работа , добавлен 27.01.2010

    Программа моделирования высокочастотных электромагнитных полей CST Microwave Studio. Проектирование основных узлов лампы бегущей волны (ЛБВ) W-диапазона. Замедляющая, электронно-оптическая, фокусирующая системы ЛБВ. Выводы энергии из замедляющей системы.

    дипломная работа , добавлен 27.09.2016

    Разработка структурной схемы радиопередающего устройства для однополосной телефонии. Расчет выходного каскада, коллекторной цепи, выходного согласующего устройства, транзисторного автогенератора. Выбор транзистора. Обзор требований к источнику питания.

    курсовая работа , добавлен 02.04.2013

    Обоснование, выбор и расчет тактико-технических характеристик самолетной радиолокационной станции. Определение параметров излучения и максимальной дальности действия. Оценка параметров цели. Описание обобщённой структурной схемы радиолокационной станции.

    курсовая работа , добавлен 23.11.2010

    Разработка радиопередающего устройства, работающего в режиме однополосной модуляции, получившего широкое распространение в качестве связного, так как речевой сигнал достаточно узкополосен. Расчёт входной цепи транзистора, расчет кварцевого автогенератора.

3. СТРУКТУРНАЯ СХЕМА РЛС

Импульсные РЛС, осуществляющие когерентный прием и содержащие устройство ЧПК, называют РЛС с селекцией движущихся целей (РЛС с СДЦ).

Основная цель использования РЛС с СДЦ является режекция сигналов пассивныхпомех от неподвижных целей (зданий, холмов, деревьев), и выделение сигналов отраженных от движущихся целей для их дальнейшего использования в обнаружителях и отображения радиолокационной обстановки на индикаторе.

РЛС с СДЦ подразделяются на истинно-когерентные и псевдо-когерентные.

В истинно-когерентных РЛС зондирующий сигнал представляет собой когерентную последовательность радиоимпульсов с одинаковой начальной фазой всех радиоимпульсов или с известной разностью начальных фаз радиоимпульсов отстоящих на .

В псевдо-когерентных РЛС зондирующий сигнал представляет собой некогерентную последовательность радиоимпульсов, но при обработке принятых сигналов случайность начальных фаз используется таким образом, что прием становится когерентным.

Другими словами, как в истинно-когерентных РЛС, так и в псевдо- когерентных РЛС сигнал на выходе линейного тракта приемника, полученный при отражении зондирующего сигнала от неподвижной точечной цели, представляет собой импульсную когерентную пачку с одинаковыми начальными фазами радиоимпульсов, а при отражении от подвижной точечной цели, движущейся с радиальной скоростью начальные фазы радиоимпульсов в соседних периодах повторения отличается на .

При анализе работы когерентно-импульсных РЛС обычно делается допущение, что в пределах главного "луча" диаграмма направленности постоянна, а вне главного "луча" излучение и прием не проводятся. Это допущение позволяет считать, что даже с учетом сканирования антенны амплитуды всех импульсов когерентной пачки, полученной при отражении зондирующего сигнала от точечной подвижной или неподвижной цели, одинаковы.

Истинно-когерентные РЛС строятся на базе многокаскадного передатчика с усилителями мощности на выходе, а псевдо-когерентные РЛС - на базе высокочастотного генератора.

Для проектируемой РЛС необходимо использовать сложный сигналы с , для этого, как правило, используются истинно-когерентные РЛС.

На рис.3.1 приведена упрощенная структурная схема одного из вариантов истинно-когерентных РЛС.


Рис. 3.1 Обобщенная структурная схема РЛС

Развернутая структурная схема истинно-когерентной РЛС приведена в приложении 3.

В данной РЛС с СДЦ в качестве передатчика используется усилитель мощности (УМ) с импульсной модуляцией, а опорный сигнал формируется с помощью стабильного генератора (СГ) гармонических колебаний на частоте f пр. Преимущество данной схемы состоит в том, что она позволяет применить активный способ формирования ФМС не только на несущей частоте, но и на более низких радиочастотах.

Сигнал от стабильного генератора (СГ) в качестве опорного подается на когерентный детектор (КД). Он же поступает на формирователь ФМ сигнала (ФФМС) и далее, на смеситель (СМ1), куда одновременно подается сигнал от местного гетеродина (МГ), генерирующего гармоническое колебание на частоте f мг =f 0 -f пр. Колебания с выхода СМ1 на частоте f 0 поступают на усилитель мощности (УМ), в котором происходит усиление и импульсная модуляция гармонического ФМ колебания частотой f 0 . На выходе усилителя мощности получаются ФМ импульсы требуемой мощности и длительности, следующие с частотой f п. Эти импульсы через антенный переключатель (АП) поступают на антенну.

В режиме приема сигналы с выхода АП поступают на смеситель (СМ2),куда одновременно подается колебание от МГ. Сигналы промежуточной частоты с выхода СМ2 поступают на усилитель радиочастоты (У), настроенный на промежуточную частоту, и далее на согласованный фильтр, затем на КД, куда подается опорный сигнал с выхода СГ. Сигналы с выхода КД поступают на устройство черезпериодной компенсации (ЧПК) заданной кратности. После преобразования в однополярные сигналы с выхода ЧПК подаются на накопитель пачки импульсов (БН) и затем на видеоусилитель (ВУ), а из него на устройства обнаружения и измерения координат цели.

Для компенсации нестабильности линии задержки, используемой в ЧПК, необходима корректировка периода повторения излучаемых импульсов. Для этих целей служит блок синхронизации (БС), который, учитывая эту нестабильность, управляет формированием пачки зондирующих импульсов и блоком начальной установки (БНУ) через логическую схему (ЛС).

Проведем выбор элементной базы к данной структурной схеме:

В РЛС обнаружения с круговым обзором наибольшее распространение получили зеркальные антенны, состоящие из слабонаправленного излучастеля и зеркального отражателя. Отражатель выполняется в виде усеченного парабалоида, что позволяет получить диаграмму направленности вида косеканс квадрат.

В качестве усилителя мощности используется лампа бегущей волны (ЛБВ)

Приемник в РЛС строится по супергетеродинной схеме, которая позволяет получить более высокую чувствительность приемного тракта. Входным устройством приемника является полупроводниковый смеситель.

Местный гетеродин вследствии высоких требований к стабильности частоты выполняется на базе стабильного задающего генератора.

Согласованный фильтр для ФМ сигнала может быть реализован на основе ультразвуковых линий задержки (УЛЗ).

Формирователь ФМС описан при расчете параметров ФМ сигнала.

СПИСОК ЛИТЕРАТУРЫ

1. Методические указания к изучению темы «Принципы и физические основы построения радиолокационных и радионавигационных систем» по дисциплине «Основы теории радиотехнических систем» для студентов специальности 23.01 / Сост. М.Б.Свердлик. – Одесса: ОПИ, 1991. – 112 с.

2. Тексты лекций по дисциплине «Основы теории радиотехнических систем». Раздел «Обнаружение сигналов» для студентов специальности 23.01 / Сост. М.Б.Свердлик. – Одесса: ОПИ. 1992. – 87 с.

3. Методические указания по изучению темы «Статистическая оценка параметров и синтез измеретилей координат целей» для студентов специальности 23.01 / Сост. М.Б.Свердлик. – Одесса: ОПИ, 1990. – 53 с.

4. Тексты лекций по дисциплине «Основы теории радиотехнических систем». Раздел «Сложные сигналы» для студентов специальности 23.01 / Сост. М.Б.Свердлик. – Одесса: ОПУ. 1996. – 51 с.

5. Методические указания к курсовому проектированию по дисциплине «Основы теории радиотехнических систем» для студентов специальности 23.01 / Сост. М.Б.Свердлик, А.А.Кононов, В.Г.Макаренко. – Одесса: ОПИ, 1991. – 52 с.

6. Лезин Ю. С. «Введение в теорию и технику радиотехнических систем»: Учеб. пособие для вузов. –М.: Радио и связь, 1986. – 280 с., ил.

7. «Радиотехнические системы» / Под. ред. Ю.М.Казаринова. – М.: Высш. шк., 1990.



Приложение 2

Структурная схема согласованного фильтра для когерентной 12-импульсной пачки 15-позиционных ФМ сигналов.

А – согласованный фильтр для одного импульса

В – накопитель пачки импульсов

Приложение 3


Развернутая структурная схема РЛС

Развернутая схема согласованного фильтра (СФ) и блока накопления (БН) приведена в приложении 2. Развернутую же схему ЧПК, благодаря любезности преподавателя, магистрантам можно не приводить.


Снизить вероятность возникновения пожаров на данном объекте. ЗАКЛЮЧЕНИЕ С целью обеспечения безопасности движения речного транспорта в камере шлюза Усть-Каменогорской гидроэлектростанции в данном дипломном проекте была разработана радиолокационная станция обнаружения надводных целей, она гораздо эффективнее, чем, например система видео наблюдения. Были рассчитаны основные тактико- ...

Техническому совершенству, боевым и эксплуатационным качествам не уступали лучшим зарубежным образцам, а нередко и превосходили их. Большинство из созданных в эти годы образцов в большей или меньшей степени представляли собой высокоточное оружие. В них использовались высокоточные инерциальные системы, системы коррекции и телеуправления движением на траектории и системы самонаведения на конечном...




КНИ явления слепой скорости и неоднозначности по дальности, для устранения которых понадобилось изменить общепринятую схему построения приемника сопровождения по дальности, а также задействовать ЦВС для решения ряда задач. Важное техническое решение было найдено, при проектировании приемной системы, в использовании одних и тех же узлов и элементов системы синхронизации для работы РЛС в режиме ЛЧМ...

Параметры обнаружения. Поскольку принимаемая пачка из N импульсов является когерентной, то. 2. Расчет параметров помехопостановщика 2.1 Расчет мощности передатчика заградительной и прицельной помех помеха помехозащита радиолокационная станция Можно выделить несколько основных типов передатчиков заградительных помех: прямошумовые передатчики; передатчики помех, использующие мощный...

Прибор И – индикатор. Назначение:

Воспроизведение на экране первичной информации об окружающей обстановке, поступающей от аппаратуры РЛС.

Определение координат надводных объектов и решение навигационных задач графическим путём.

Синхронизация и управление режимами работы станции.

Формирование импульсов запуска передающего устройства.

Формирование импульсов запуска вспомогательных устройств.

Формирование импульсов сигнала курса для вспомогательных устройств.

Обеспечение автономного питания собственных блоков и устройств.

Устройство и принцип работы:

Прибор И состоит из следующих трактов и узлов:

Тракт временной синхронизации.

Тракт временной развёртки.

Тракт визира и меток дальности.

Тракт визира направления.

Тракт ввода информации.

Тракт режима истинного движения.

Цифровое табло дальности и направления.

Электронно-лучевая трубка и отклоняющие системы.

Принцип работы прибора И рассмотрим на его структурной схеме (рис. 1).

Тракт временной синхронизации имеет задающий генератор (3Г), который формирует задающие импульсы с частотой повторения 3000 имп/сек – для шкал дальности 1 и 2 мили; 1500 имп/сек – для шкал 4 и 8 миль; 750 имп/сек – для шкал 16 и 32 мили; 500 имп/сек для шкалы 64 мили. Задающие импульсы от 3Г поступают на выход прибора для запуска функционально связанных устройств (в приборе П -3); для запуска генератора пилообразного напряжения (в тракте временной синхронизации);

В свою очередь, из Прибора П –3 в тракт синхронизации прибора поступают импульсы вторичной синхронизации, благодаря которым осуществляется синхронизация начала развёртки по дальности и направлению с началом излучения зондирующих импульсов прибором А (антенной РЛС) и запускается тракт визира и меток дальности.

Тракт временной развёртки с помощью генератора развёртки формирует и вырабатывает пилообразное напряжение, которое, подаётся после ряда преобразований на отклоняющую систему относительного движения в электронно- лучевой трубке и в тракт визира направления.

Тракт визира и меток дальности предназначен для формирования подвижного визира дальности (ПВД), посредствам которого обеспечивается визирование объектов по дальности, а измерение дальности производится электронным цифровым счётчиком. Информация о дальности выводится на цифровое табло ЦТ–3.

Ротор вращающегося трансформатора генератора развёртки вращается синхронно и синфазно с антенной, что обеспечивает синхронность вращения развёртки и антенны, а также получение отметки начала развёртки в момент пересечения максимумом диаграммы направленности антенны диаметральной плоскости судна.

Тракт визира направления состоит из датчика угла, формирователей сигнала считывания и дешифровки, вращающегося трансформатора развёртки визира направления. Вырабатываемым в тракте визира направления угол поворота вращающегося трансформатора, сформированный в виде кодированного сигнала, после дешифровки поступает на цифровой индикатор–табло ЦТ-4.

Тракт ввода информации предназначен для ввода на ЭЛТ информации о дальности и о направлении на объект, а также отображения на ЭЛТ видеосигнала, поступающего из прибора П – 3.

Тракт режима истинного движения предназначен для ввода данных о скорости V с – от лага, курса К с от гирокомпаса, по которым производится выработка составляющих вектора скорости в масштабе по направлениям N - S и Е – W; для обеспечения перемещения отметки своего судна на экране ЭЛТ в соответствии с выбранным масштабом, а также трактом предусмотрен автоматический и ручной возврат отметки своего судна в исходную точку.

Прибор П-3 – приемопередатчик. Назначение:

Прибор П –3 (приёмопередатчик) предназначен для:

Формирования и генерирования зондирующих импульсов СВЧ;

Приема, усиления и преобразования в видеосигнал отражённых радиолокационных сигналов.

Обеспечения синхронной и синфазной работы по времени всех блоков и узлов приборов: И; П – 3; А.

Состав прибора:

· блок СВЧ – 3 (блок сверхвысокой частоты).

· блок МП (модулятор передатчика).

· блок ФМ (фильтр модулятора).

· блок АПЧ (блок автоматической подстройки частоты)

· блок УР (усилитель регулируемый)

· блок УГ (усилитель главный)

· блок НК – 3 (блок настройки и контроля)

· блок АСУ (блок автоматической стабилизации и управления)

· субблок ФС (формирователь синхроимпульсов)

· 4 выпрямительных устройства обеспечивающих питанием блоков и цепей прибора П – 3.

Работу прибора рассмотрим на его структурной схеме.


Тракт формирования сигналов стабилизации предназначен для формирования импульсов вторичной синхронизации, поступающих в прибор И а также для запуска через блок автоматической стабилизации управления, модулятора передатчика. С помощью этих синхроимпульсов обеспечивается синхронизация зондирующих импульсов с началом развёртки на ЭЛТ прибора И.

Тракт формирования зондирующих импульсов предназначен для выработки импульсов СВЧ и передачи их по волноводу в прибор А. Это происходит после формирования модулятором напряжения импульсной модуляции генератора СВЧ а также импульсов контроля и синхронизации сопрягаемых блоков и узлов.

Тракт формирования видеосигнала предназначен для преобразования с помощью гетеродина и смесителей отражённых импульсов СВЧ в импульсы промежуточной частоты, формирования и усиления видеосигнала который затем поступает в прибор И. Для передачи зондирующих импульсов в прибор А и отражённых импульсов в тракт формирования видеосигнала, используется общий волновод.

Тракт настройки контроля и питания предназначен для выработки питающих напряжений всех блоков и цепей прибора, а также для контроля работоспособности источников питания, функциональных блоков и узлов станции, магнетрона, гетеродина, разрядника и др.

Прибор А – антенное устройство. Назначение:

Прибор А предназначен для излучения и приёма импульсов СВЧ – энергии и выдачи данных курсового угла антенны и отметки курса на прибор И. Он представляет собой щелевую антенну рупорного типа.

Основные данные прибора А.

Ширина диаграммы направленности:

В горизонтальной плоскости – 0,7° ± 0,1

В вертикальной плоскости - 20° ± 0,1

Частота вращения антенны 19 ± 4 обор / мин.

Диапазоны рабочих температур от - 40° С до + 65°С

Габаритные размеры:

Длина – 833 мм

Ширина – 3427 мм

Высота – 554 мм

Вес – 104 кг.

Конструктивно, прибор выполнен в виде 2-х разъемных блоков;

блок ПА – поворотная часть антенны

блок АР – осуществляется: формирование СВЧ энергии в виде радиолуча требуемой формы; направленное излучения энергии в пространство и ее направленный приём после отражения от облучаемых объектов.

Работа прибора А.

В блоке ПА прибора установлен электродвигатель с редуктором. Электродвигатель питается от судовой сети и обеспечивает круговое вращение блока АР прибора А. Электродвигатель, через редуктор, вращает также, ротор вращающегося трансформатора с которого в прибор И поступает, через следящую систему, сигнал об угловом положении антенны относительно ДП судна (курсовой угол), а также сигнал отметки курса судна. В блоке ПА расположен, также, вращающийся СВЧ переход, предназначенный для соединения вращающегося излучателя (блок АР) с неподвижным волноводным трактом.

Блок АР, являющийся щелевой антенной, формирует направленный радиолуч требуемой формы. Радиолуч излучает в пространство СВЧ энергию и обеспечивает направленный приём отражённой от облучаемых объектов части этой СВЧ – энергии. Отражённый сигнал, через общий волновод, поступает в прибор П – 3, где после ряда преобразований превращается в видеосигнал.

В блоке ПА установлены, также, тепловой электронагреватель (ТЕН), предназначенный для предотвращения опасности обледенения подвижных частей прибора А и фильтр для устранения индустриальных радиопомех.

Прибор КУ – контакторное устройство. Назначение:

Прибор КУ (контакторное устройство) предназначен для подключения РЛС к бортовой сети, коммутации выходного напряжения машинного агрегата, защиты привода антенны от перегрузок и защиты РЛС при нарушении порядка её выключения, а также защиты станции при аварийном отключении бортовой сети.

Прибор осуществляет подачу напряжения переменного тока 220В частотой 400 Гц на приборы РЛС через 3 ÷ 6 секунд после включения машинного агрегата.

При аварийном отключении бортовой сети прибор отключает потребителей в течении 0,4 ÷ 0,5 с.

Прибор отключает привод антенны через 5 ÷ 20 с. при неправильном чередовании фаз, при обрыве одной из фаз и при повышении тока нагрузки привода антенны.

Преобразователь АЛЛ – 1,5м. Назначение:

Преобразователь предназначен для преобразования трёхфазного тока частотой 50 Гц в однофазный переменный ток напряжением 220 В частотой 427 Гц. Он представляет собой машинный агрегат, на валу которого расположен трёхфазный синхронный двигатель и однофазный синхронный генератор.

С помощью преобразователя обеспечивается местный и дистанционный пуск и остановка агрегата питания.

УПРАВЛЕНИЕ РАБОТОЙ РЛС.

Управление работой РЛС осуществляется с панели и пульта управления прибора И.

Органы управления разделяются на оперативные и вспомогательные .

С помощью оперативных органов управления:

Включается и выключается станция. (27)

Переключаются шкалы дальности. (14)

Измеряются расстояния до целей с помощью визира дальности. (15)

Определяются курсовые углы и пеленги целей с помощью электронного и механического визиров направления. (28), (29)

Отключается отметка курса. (7)

Управляют различимостью (усилением) радиолокационных сигналов и помехозащитой. (8, 9, 10, 11, 12, 13)

Регулируется яркость подсвета панели и шкал. (2)

С помощью вспомогательных органов управления:

Включается и выключается вращение антенны. (26)

Включается связь индикатора с лагом и гирокомпасом.

Согласовываются показания подвижной шкалы визира направлений. (29)

Регулируется яркость развёртки и отметки курса. (22, 23)

Отключается АПЧ и включается ручной режим подстройки частоты гетеродина. (27)

Совмещается центр вращения развёртки с геометрическим центром визира направления. (20)

Настраивается гетеродин прибора П –3.

Включается режим контроля общей работоспособности РЛС. (16, 17, 18, 19)

Отключается питание модулятора прибора П –3.

Устанавливается яркость свечения экрана ЭЛТ и фокусируется луч.

Осуществляется включение поворотного устройства антенны. (26)

Включение обогрева антенны осуществляется на приборе КУ

Расположение органов управления, на пульте и панели индикатора указано на рисунке.

Рис №3. Панель управления индикатором РЛС «Наяда - 5»:

1-«Подсвет шкал»; 2-«Подсвет панели»; 3-«Градусы»; 4-«Шкала - интервал»; 5-«Мили»; 6-«ПЗ»; 7-«Отметка курса»; 8-«Дождь»; 9-«Яркость ВН»; 10-«Яркость ВД»; 11-«Яркость МД»; 12-«Волны»; 13-«Усиление»; 14-«Переключатель шкал дальности»; 15-«Дальность»; 16-«Блоки»; 17-«Выпрямители»; 18-«Контроль»; 19-«Стрелочный индикатор»; 20-«Установка центра»; 21-«РПЧ-Откл.»; 22-«Яркость ОК»; 23-«Яркость развёртки»; 24-«Ложные сигналы»; 25-«Контроль РЛС»; 26-«Антенна – Откл.»; 27-«РЛС-Откл.»; 28-«Механический визир»; 29-«Направление»; 30-«Курс-Север-Север-ИД»; 31-«Сброс в центр»; 32-«Сброс»; 33-«Смещение центра»; 34-«Учет сноса»; 35-«Скорость вручную»

ОБСЛУЖИВАНИЕ РЛС.

Перед включением РЛС необходимо:

Произвести внешний осмотр и убедится в отсутствии внешних повреждений приборов и агрегата.

Установить органы управления в положение, указанные в таблице.

Наименование органа управления Положение органов управления перед включением индикатора
Тумблер «РЛС – Откл.» Регулятор «Дождь» Регулятор «Яркость ВН» Регулятор «Яркость ВД» Регулятор «Яркость МД» Регулятор «Волны» Регулятор «Усиление» Регулятор «Подсвет шкал» Регулятор «Яркость развёртки, ОК» Переключатель «Курс – Север – Север ИД» Кнопка «Сброс в центр» Регуляторы «Смещение центра» Регуляторы «Учет сноса: скорость, направление» Регулятор «Скорость вручную» Кнопка «Ложные сигналы» Тумблер «Гирокомпас – Откл.» Тумблер «Антенна – Откл.» «Откл.» Крайнее левое Среднее Среднее Среднее Крайнее левое Среднее Среднее В фиксированном на заводе «Курс» Включена Среднее 0 по оцифрованной шкале 0 по оцифрованной шкале Включена «Откл.» «Откл.»

Остальные ораны управления, могут оставаться в произвольном положении.

Включение станции.

Выключатель напряжения бортовой сети устанавливают в положение «Вкл» (запускается агрегат питания)

На индикаторе:

Выключатель «РЛС – откл.» устанавливают в положение РЛС

Тумблер «Антенна – откл.» устанавливают в положение Антенна.

Включают оперативную кнопку П – 3 (при этом должны осветится шкальный механизм и поясняющие надписи).

Через 1,5 ÷ 2,5 мин. на экране ЭЛТ должна появится вращающая развёртка, отметка курса, метки дальности и линия визира направления.

Через 4 минуты должна появится отметка зондирующего импульса и отметки объектов в зоне обзора РЛС.

С помощью соответствующих регуляторов, выбирают оптимальную яркость ВН; ВД; МД; и положение «Волны».

Приёмопередатчик включается с помощью кнопочного переключателя. (6)

Ориентация изображения относительно истинного меридиана (север) или относительно диаметральной плоскости судна (курс) в режиме относительного движения осуществляется переключателем 30, установкой его в положение «север» или «курс». Этим же переключателем, установкой его в положение «север - ИД» обеспечивается режим истинного движения в масштабе шкал 1; 2; 4; 8 миль.

Центр развёртки смещается в выбранную точку потенциометрами (33)

Начало (центр) развёртки возвращается в центр ЭЛТ кнопкой 31 и 32.

Данные скорости своего судна могут вводится вручную (35)

Поправка на снос за течение вводится потенциометром (35)

Для устранения ложных отметок из-за сверхрефакции предусмотрено изменение частоты зондирующих импульсов (24)

Ручкой резистора «подсвет панели» (1) регулируется яркость индикации: «сброс в центр»; «ложные сигналы»; «миль»; «градусы».

Ручкой резистора «подсвет шкал» регулируется яркость индикации «шкала - интервал».

Цифровая индикация измеряемого до цели расстояния и индикация направления осуществляется на цифровых табло ЦТ – 3 и ЦТ – 4 (3; 5)

Контроль работоспособности РЛС осуществляется встроенной системой, обеспечивающей контроль общей работоспособности и поиск неисправностей (16; 17; 18; 19;)

Убеждаются в возможности: управления визирами дальности ВД и направления ВН, а также выключения отметки курса и изменения масштаба, путём переключения шкал дальности.

Проверяют: совмещение начала развёртки с центром экрана (по двум взаимно перпендикулярным положениям визира направления на шкале 4 мили). Работоспособность схемы ориентации изображения (отключают гирокомпас, переключатель «курс – север – север ИД» устанавливают поочерёдно в положении «курс» и «север» убеждаясь, что отметка курса, при этом, изменяет своё положение). После чего, устанавливают тумблер в положение «гирокомпас» и убеждается в соответствии положения линии курса показаниям репитера ГК.

Проверяют смещение центра вращения развёртки в режиме ОД (рукоятку «сброс в центр» устанавливают в выключенное положение, рукояткой «смещение цента» плавно перемещают центр развёртки в лево и вправо на 2 / 3 радиуса ЭЛТ, всё это проделывают на 1; 2; 4; 8 мильных шкалах дальности при ориентации поочерёдно по «курсу» и «северу»).

Кнопкой «сброс в центр» снова совмещаю центр развёртки с центром «экрана ЭЛТ».

Проверяют индикатор на работу в режиме ИД для чего: устанавливают переключатель в режим «север - ИД» шкалу дальности на 1 милю, отключают лаг и гирокомпас, ручку «учёт сноса» в нулевые положение, вручную устанавливают произвольное значение скорости, с помощью кнопки «сброс в центр» убеждаются в том что начало развёртки на экране перемещается по курсу с установленной скоростью. Когда перемещение достигнет величины 2 / 3 радиуса ЭЛТ, центр развёртки должен автоматически возвратится в центр экрана. Возврат начала развёртки в исходную точку должен обеспечивается, также, вручную нажатием кнопки «сброс».

Ручками «учёт сноса» вводят произвольное значение поправок по курсу и скорости, и убеждаются, что при этом изменяются параметры перемещения начала развёртки на экране ЭЛТ.

Переключатель «курс – север – север ИД» устанавливают в положение «курс» или «север». При этом начало развёртки должно переместится в центр экрана и должен включится режим ОД. Тоже самое должно произойти при установке шкал дальности на значения 16; 32; 64 мили.

Проверяют ручное смещение начала развёртки в режиме ИД: выключают кнопку «сброс в центр», регуляторы «смещение центра» устанавливают в положение, обеспечивающее смещение начала развёртки на величину меньше 2 / 3 радиуса ЭЛТ, кнопку «сброс» нажимают, и убеждаются, что центр развёртки переместился в выбранную точку, и начал перемещаться в заданном направлении. Сместившись на 2 / 3 радиуса экрана, центр развёртки автоматически возвращаются в выбранную точку.

Контроль работоспособности станции осуществляется встроенной системой, обеспечивающей контроль и поиск неисправностей. Система состоит из элементов, входящих отдельными узлами в приборы и блока станции.

Работоспособность прибора П – 3 контролируется с помощью расположенного в нём блока НК – 3 который проверяет исправность источников питания и функциональных блоков и узлов.

Контроль работоспособности прибора И, поиск неисправного источника питания или функционального блока производится с помощью встроенного блока контроля, расположенного на панели управления прибора И.

ВЫКЛЮЧЕНИЕ СТАНЦИИ ПРОИЗВОДИТСЯ:

· Снятием питания тумблером «РЛС – откл.»

· Отключением напряжения бортовой сети (кнопка «стоп» пускателя)

· Отключением напряжения от элементов связи с лагом и гирокомпасом.

Принцип работы импульсной РЛС можно уяснить, рассмотрев «Упрощенную структурную схему импульсной РЛС (рис. 3.1, слайд 20, 25 ) и графики, поясняющие работу импульсного радиолокатора (рис. 3.2, слайд 21, 26 ).

Работу импульсной РЛС лучше всего начать рассматривать с блока синхронизации (блока запуска) станции. Этот блок задает «ритм» работы станции: он задает частоту повторения зондирующих сигналов, синхронизирует работу индикаторного устройства с работой передатчика станции. Синхронизатор вырабатывает кратковременные остроконечные импульсы И зап с определенной частотой повторения Т п . Конструктивно синхронизатор может быть выполнен в виде отдельного блока или представлять единое целое с модулятором станции.

Модулятор управляет работой генератора СВЧ, включает и выключает его. Модулятор запускается импульсами синхронизатора и формирует мощные прямоугольные импульсы необходимой амплитуды U м и длительности τ и . Генератор СВЧ включается в работу только при наличии импульсов модулятора. Частота включения генератора СВЧ, а, следовательно, и частота повторения зондирующих импульсов определяется частотой импульсов синхронизатора Т п . Продолжительность работы генератора СВЧ при каждом его включении (то есть длительность зондирующего импульса) зависит от длительности формирующего в модуляторе импульса τ и . Длительность импульса модулятора τ и обычно составляет единицы микросекунд, а паузы между ними – сотни и тысячи микросекунды.

Под действием напряжения модулятора генератор СВЧ формирует мощные радиоимпульсы U ген , длительность и форма которых определяется длительностью и формой импульсов модулятора. Колебания высокой частоты, то есть зондирующие импульсы от генератора СВЧ, поступают через антенный переключатель в антенну. Частота колебаний радиоимпульсов определяется параметрами генератора СВЧ.

Антенный переключатель (АП) обеспечивает возможность работы передатчика и приемника на одну общую антенну. На время генерации зондирующего импульса (мкс) он подключает антенну к выходу передатчика и блокирует вход приемника, а на нее остальное время (время паузы – сотни, тысячи мкс) подключает антенну к входу приемника и отключает ее от передатчика. В импульсный РЛС в качестве антенных переключателей применяются автоматические быстродействующие переключатели.

Антенна преобразует колебания СВЧ в электромагнитную энергию (радиоволны) и фокусирует ее в узкий пучок. Отраженные от цели сигналы принимаются антенной, проходят через антенный переключатель и поступают на вход приемника U с , где они селектируются, усиливаются, детектируются и через аппаратуру защиты от помех подаются на индикаторные устройства.

Аппаратура защиты от помех включается только при наличии в зоне действия РЛС пассивных и активных помех. Подробно эта аппаратура будет изучаться в теме 7.

Индикаторное устройство является оконечным устройством РЛС и служит для отображения и съема радиолокационной информации. Электрическая схема и конструкция индикаторных устройств определяется практическим назначением станции и могут быть весьма различными. Например , для РЛС обнаружения с помощью индикаторных устройств должна воспроизводиться воздушная обстановка и определяться координаты целей Д и β. Эти индикаторы называются индикаторами кругового обзора (ИКО). В РЛС измерения высоты полета цели (высотомерах) используются индикаторы высоты. Индикаторы дальности измеряют только дальность до цели и используются для контроля.

Для точного определения дальности необходимо измерять интервал времени t з (десятки и сотни мкс) с высокой точностью, то есть требуются приборы с весьма малой инерционностью. Поэтому в индикаторах дальности в качестве измерительных приборов используются электронно-лучевые трубки (ЭЛТ).

Примечание. Принцип измерения дальности был изучен в занятии 1, поэтому при изучении этого вопроса основное внимание уделить формированию развертки на ИКО.

Сущность измерения дальности (время запаздывания t з ) с помощью ЭЛТ можно пояснить на примере использования линейной развертки в трубке с электростатическим управлением электронным лучом.

При линейной развертке в ЭЛТ электронный луч под действием напряжения развертки U р периодически перемещается с постоянной скоростью по прямой слева направо (рис. 1.7,слайд 9, 12 ). Напряжение развертки вырабатывается специальным генератором развертки, который запускается тем же импульсом синхронизатора, что и модулятор передатчика. Поэтому движение луча по экрану начинается каждый раз в момент посылки зондирующего импульса.

При использовании амплитудной отметки цели отраженный сигнал, поступающий с выхода приемника, вызывает отклонение луча в перпендикулярном направлении. Таким образом, отраженный сигнал можно видеть на экране трубки. Чем дальше находится цель, тем больше времени проходит до момента появления отраженного импульса и дальше вправо успевает переместиться луч вдоль линии развертки. Очевидно, каждой точке линии развертки соответствует определенный момент прихода отраженного сигнала и, следовательно, определенное значение дальности.

В РЛС, работающих в режиме кругового обзора, используются индикаторы кругового обзора (ИКО) и ЭЛТ с электромагнитным отклонением луча и яркостной отметкой. Антенна РЛС с узконаправленным лучом (ДН) перемещается механизмом вращения антенны в горизонтальной плоскости и «просматривает» окружающее пространство (рис. 3.3, слайд,

На ИКО линия развертки дальности вращается по азимуту синхронно с антенной, а начало движения электронного луча от центра трубки в радиальном направлении совпадает с моментом излучения зондирующего импульса. Синхронное вращение развертки на ИКО с антенной РЛС осуществляется при помощи силового синхронного привода (ССП). Ответные сигналы высвечиваются на экране индикатора в виде яркостной отметки.

ИКО позволяет одновременно определять дальность Д и азимут β цели. Для удобства отсчета на экране ИКО электронным способом наносятся масштабные отметки дальности, имеющие вид окружностей и масштабные отметки азимута в виде ярких радиальных линий (рис. 3.3, слайд, 8, 27 ).

Примечание. Используя телевизионную установку и карточку ТВ предложить студентам определить координаты целей. Указать масштаб индикатора: отметки дальности следуют через 10 км, отметки азимута – через 10 градусов.

В Ы В О Д

(слайд 28)

    Определение дальности до объекта при импульсном методе сводится к измерению времени запаздывания t з отраженного сигнала относительно зондирующего импульса. Момент излучения зондирующего импульса берется за начало отсчета времени распространения радиоволн.

    Достоинства импульсных РЛС:

    удобство визуального наблюдения одновременно всех целей, облучаемых антенной в виде отметок на экране индикаторов;

    поочередная работа передатчика и приемника позволяет использовать одну общую антенну для передачи и приема.

Второй учебный вопрос.

Основные показатели импульсного метода

Основными показателями импульсного метода являются (слайд 29) :

Однозначно определяемая максимальная дальность, Д ;

    разрешающая способность по дальности, δД ;

    минимальная определяемая дальность, Д min .

Рассмотрим эти показатели.

      Однозначно определяемая максимальная дальность

Максимальная дальность действия РЛС определяется основной формулой радиолокации и зависит от параметров РЛС.

Однозначность определения дальности до объекта зависит от периода следования зондирующих импульсов Т п . Далее этот вопрос изложить следующим образом.

Максимальная дальность действия РЛС равна 300 км. Определить время задержки до цели, находящейся на этой дальности

Период повторения зондирующих импульсов выбран равным 1000 мкс. Определить дальность до цели, время задержки до которой равно Т п

В воздушном пространстве находятся две цели: цель № 1 на дальности 100 км и цель № 2 на дальности 200 км. Как будут выглядеть отметки от этих целей на индикаторе РЛС (рис. 3.4, слайд 22, 30 ).

При зондировании пространства импульсами с периодом повторения 1000 мкс отметка от цели № 1 будет высвечиваться на дальности 50 км, так как после дальности 150 км начнется новый период развертки и дальняя цель даст отметку в начале шкалы (на дистанции 50 км). Отсчитанная дальность не соответствует реальной.

Как исключить неоднозначность в определении дальности?

После обобщения ответов студентов сделать вывод:

Для однозначного определения дальности необходимо период повторения зондирующих импульсов выбирать в соответствии с заданной максимальной дальностью действия РЛС, то есть

Для заданной дальности 300 км период повторения зондирующих импульсов должен быть больше 2000 мкс или частота повторения должна быть меньше 500 Гц.

Кроме того, максимально определяемая дальность зависит от ширины ДНА, скорости вращения антенны и необходимого числа импульсов, отраженных от цели за один оборот антенны.

Разрешающей способностью по дальности (δД) называется то минимальное расстояние между двумя целями, находящимися на одном азимуте и угле места, при котором отраженные от них сигналы наблюдаются на экране индикатора еще раздельно (рис. 3.5, слайд 23, 31, 32 ).

При заданной длительности зондирующего импульса τ и и расстоянии между целями ∆Д 1 цели № 1 и № 2 облучаются раздельно. При той же длительности импульса, но при расстоянии между целями ∆Д 2 цели № 3 и № 4 облучаются одновременно. Следовательно, в первом случае на экране ИКО будут видны раздельно, а во втором – слитно. Отсюда вытекает, что для раздельного приема импульсных сигналов необходимо, чтобы интервал времени между моментами их приема был больше длительности импульса τ и (∆ t > τ и )

Минимальная разность (Д 2 – Д 1 ), при которой цели видны на экране раздельно, по определению есть разрешающая способность по дальности δД, следовательно

Помимо длительности импульса τ и на разрешающую способность станции по дальности оказывает влияние разрешающая способность индикатора, определяемая масштабом развертки и минимальным диаметром светящегося пятна на экране ЭЛТ (d п 1 мм). Чем крупнее масштаб развертки дальности и лучше фокусировка луча ЭЛТ, тем лучше разрешающая способность индикатора.

В общем случае разрешающая способность РЛС по дальности равна

где δД и – разрешающая способность индикатора.

Чем меньше δД , тем лучше разрешающая способность. Обычно разрешающая способность РЛС по дальности имеет величину δД = (0,5...5) км.

В отличие от разрешающей способности по дальности разрешающая способность по угловым координатам (по азимуту δβ и углу места δε ) не зависит от метода радиолокации и определяется шириной диаграммы направленности антенны в соответствующей плоскости, которую принято отсчитывать по уровню половинной мощности.

Разрешающая способность РЛС по азимуту δβ о равна:

δβ о = φ 0,5р о + δβ и о ,

где φ 0,5р о – ширина диаграммы направленности по половинной мощности в горизонтальной плоскости;

δβ и о - разрешающая способность по азимуту индикаторной аппаратуры.

Высокие разрешающие способности РЛС позволяют раздельно наблюдать и определять координаты близко расположенных целей.

Минимальная определяемая дальность – это наименьшее расстояние, на котором станция еще может обнаруживать цель. Иногда пространства вокруг станции, в котором цели не обнаруживаются, называют «мертвой» зоной (слайд 33 ).

Использование в импульсной РЛС одной антенны для передачи зондирующих импульсов и приема отраженных сигналов требует отключения приемника на время излучения зондирующего импульса τ u . Поэтому отраженные сигналы, приходящие к станции в момент, когда ее приемник не подключен к антенне, не будут приняты и зарегистрированы на индикаторах. Продолжительность времени, в течение которого приемник не может принимать отраженные сигналы, определяется длительностью зондирующего импульса τ u и временем, необходимым для переключения антенны с передачи на прием после воздействия на него зондирующего импульса передатчика t в .

Зная это время, значение минимальной дальности Д min импульсной РЛС можно определить по формуле

где τ u - длительность зондирующего импульса РЛС;

t в - время включения приемника после окончания зондирующего импульса передатчика (единицы – мкс).

Например . При τ u = 10мкс Д min = 1500 м

при τ u = 1 мкс Д min = 150 м.

Следует иметь ввиду, что к увеличению радиуса «мертвой» зоны Д min приводит наличие на экране индикатора отраженный от местных предметов и ограниченность пределов поворота антенны по углу места.

В Ы В О Д

Импульсный метод радиолокации эффективен при измерении дальностей объектов, находящихся на больших расстояниях.

Третий учебный вопрос

Метод непрерывного излучения

Наряду с использованием импульсного метода радиолокации можно осуществить с помощью установок с непрерывным излучением энергии. При непрерывном методе излучения представляется возможность посылать большую энергию в направлении на цель.

Наряду с преимуществом энергетического порядка метод непрерывного излучения по ряду показателей уступает импульсному методу. В зависимости от того, какой параметр отраженного сигнала служат основой для измерения дальности до цели, при непрерывном методе радиолокации различают:

    фазовый (фазометрический) метод радиолокации;

    частотный метод радиолокации.

Возможны также комбинированные методы радиолокации, в частности, импульсно-фазовый и импульсно-частотный.

При фазовом методе радиолокации о расстоянии до цели до цели судят по разности фаз излучаемых и принимаемых отраженных колебаний. Первые фазометрические методы измерения расстояния были предложены и разработаны академиками Л.И.Мандельштамом и Н.Д.Папалекси. Эти методы нашли применение в длинноволновых авиационных радионавигационных системах большого радиуса действия.

При частотном методе радиолокации о расстоянии до цели судят по частоте биений между прямым и отраженным сигналами.

Примечание. Изучение этих методов студенты проводят самостоятельно. Литература: Слуцкий В.З. Импульсная техника и основы радиолокации. С. 227-236.

В Ы В О Д

    Определение дальности до объекта при импульсном методе сводится к изменению времени запаздывания t зап отраженного сигнала относительно зондирующего импульса.

    Для однозначности определения дальности до объекта необходимо, чтобы t зап.мах ≤ Т п.

    Разрешающая способность по дальности δД тем лучше, чем меньше длительность зондирующего импульса τ u .