Обзор блоков питания серий Hiper и L&C. Обзор блоков питания серий Hiper и L&C Блок питания lc b300atx схема

Продолжение ознакомления с блоками питания произошло на модельных рядах Hiper (производство тайваньской High Performance Group) и L&C (производство тайваньской же L&C Technology group). Для обзора мне были предложены

  • HPU-4K480
  • HPU-4R480
  • HPU-4S480-EU
  • HPU-3S350
  • HPU-4S525
  • HPU-4S425

от первой компании и

  • LC-B300-ATX
  • LC-B350-ATX

от второй.

Забегая вперед, стоит отметить, что, несмотря на кажущееся сходство моделей, напрашивающееся, исходя из названий блоков Hiper, на самом деле блоки питания абсолютно разные - и это касается не только «внешнего» оформления, но и результатов работы. Начнем с того, что блоки HPU-4K480, HPU-4R480 и HPU-4S480-EU представляют собой «экспортный вариант», выделяющийся из остального перечисленного ряда значительным количеством предлагаемых опций.

Внешний вид, комплект поставки

Корпус модели с индексом R - красного цвета, поверхность матовая; корпус модели с индексом K выполнен из металла черного цвета, поверхность практически зеркальная; следуя предложенной логике, производитель выполнил модель с индексом S в корпусе серебристого цвета. Все эти блоки питания оснащены 120-мм вентилятором, причем, у блока HPU-4R480 вентилятор с подсветкой - красного же цвета. Поскольку внешний вид блоков идентичен (за исключением сделанных оговорок), приведем фото только наклеек с указанием мощностей каждого блока и «общий вид» одного из них.


Что касается разъемов, то в данном случае отличия минимальные, и затрагивают только основной:


В комплект поставки HPU-4R480 входят два шнура для подключения блока к сети (причем, один из них - трехштырьковый) и руководство пользователя. Небольшое богатство опций, по-видимому, компенсируется внешним видом решения. HPU-4K480 уже отличается большим разнообразием: помимо перечисленных компонентов к нему прилагается 80-мм дополнительный вентилятор (для установки в системный блок), а также переходник основного разъема питания, 20-24 pin. HPU-4S480-EU предлагается всего с одним шнуром питания (евровилка), дополнительным 80-мм вентилятором, руководством и двумя стильными «круглыми» IDE-шлейфами. Упаковывается все это в каждом случае вот в такой «ящик» (разумеется, цветовое оформление наклейки, и текст на ней соответствуют каждой конкретной модели блока):

HPU-4K480

Пульсации по шине +12 В составляют около 12,8 мВ, по +5 В - не более 16 мВ.

Стабильность выходных напряжений проверялась следующим образом: каждая из шин нагружалась от минимума, приведенного в таблице, до максимума с шагом изменения тока 1А/µс, нагрузка всех шин происходила одновременно, то есть, была сымитирована ситуация с минимальной, типичной и полной нагрузкой (в терминах PSDG). Нагрузка гонялась в цикле в течение двух часов, замеры проводились 5 раз, приведенные ниже данные - усредненный результат по пяти замерам. Результаты проверки стабильности напряжений: минимальное значение по шине +12 В, зафиксированное в ходе замеров, составило +11,78 В, а максимальное - +12,25 В, по шине +5 В минимальное значение - +4,76, максимальное - 5,21 В, по шине +3,3 В - +3,11 и 3,48 В соответственно. Напомним, что, согласно PSDG, отклонения выходного напряжения +12/+5/+3,3 В могут составлять ±5% (+11,40~+12,60 В, +4,75~+5,25 В и +3,14~3,47 В), но с двумя оговорками: во-первых, при пиковой нагрузке шины +12 В отклонения могут составлять до 10%, во-вторых, в спецификации ATX ужесточено требование по допустимым пределам отклонения напряжения по 3,3 В: ±4% вместо ±5, упомянутых в Power Supply Design Guide). По шине +3,3 В блок явно «провалился», однако учитывая не столь большую важность этого напряжения, а также погрешности измерений, серьезно к выходу за пределы на столь незначительные величины относиться не стоит.

HPU-4R480

Пульсации по шине +12 В составляют около 25,6 мВ, по +5 В - не более 16,8 мВ.

Результаты проверки стабильности напряжений: минимальное значение по шине +12 В, зафиксированное в ходе замеров, составило +11,40, а максимальное - +12,42 В, по шине +5 В минимальное значение - +4,89, максимальное - +5,40 В, по шине +3,3 В - +3,22 и +3,40 В соответственно. Блок уложился в пределы допустимых колебаний напряжений, хотя минимальное значение по шине +12 В и равно пороговому.

HPU-4S480-EU

Пульсации по шине +12 В составляют около 12,0 мВ, по +5 В - не более 21,6 мВ.

Результаты проверки стабильности напряжений: минимальное значение по шине +12 В, зафиксированное в ходе замеров, составило +11,77 В, а максимальное - +12,29 В, по шине +5 В минимальное значение - +4,75, максимальное - +5,29 В, по шине +3,3 В - +3,14 и +3,41 В соответственно. Стоит обратить внимание, что у блока явно «прихрамывает» шина +5 В - предельное минимальное и выходящее за пределы максимальное значение.

Оставшиеся три модели - «retail»-поставка, не имеющая дорогой упаковки и предлагаемая потребителям в запаянных в полипропилен картонных коробках (стоит отметить, стильных). В отличие от трех предыдущих моделей, эти решения не могут похвастаться ни завораживающим внешним видом, ни обилием опций - выполнены они из стандартного металла. За исключением HPU-3S350, в этой тройке блоков все имеют по два 80-мм вентилятора (один - на нижней крышке, второй - на задней панели), у упомянутой модели в наличии всего один 80-мм вентилятор - на задней панели.


HPU-4S525



HPU-4S425



HPU-3S350

От трех «экспортных» блоков эта тройка отличается бо льшим «разнобоем» в количестве контактов:


1 - формула 20+4 означает, что 4 контакта у разъема «отстегиваются»

HPU-3S350

Пульсации по шине +12 В составляют около 10,4 мВ, по +5 В - не более 16,8 мВ.

Результаты проверки стабильности напряжений: минимальное значение по шине +12 В, зафиксированное в ходе замеров, составило +11,77 В, максимальное - +12,42 В, по шине +5 В минимальное значение - +4,83, максимальное - +5,29 В, по шине +3,3 В - +3,11 и +3,31 В соответственно. Блок вышел за пределы по шинам +5 и +3,3 В, впрочем, отклонения крайне незначительные.

HPU-4S525

Пульсации по шине +12 В составляют около 31,2 мВ, по +5 В - не более 35,2 мВ.

Результаты проверки стабильности напряжений: минимальное значение по шине +12 В, зафиксированное в ходе замеров, составило +11,78, а максимальное - +12,42 В, по шине +5 В минимальное значение - +4,93, максимальное - +5,24 В, по шине +3,3 В - +3,15 и +3,57 В соответственно. Единственное напряжение, которое можно покритиковать в данном случае - +3,3В - выход за верхний предел составил ровным счетом 0,1 В.

HPU-4S425

Пульсации по шине +12 В составляют около 24,0 мВ, по +5 В - не более 22,4 мВ.

Результаты проверки стабильности напряжений: минимальное значение по шине +12 В, зафиксированное в ходе замеров, составило +11,57, а максимальное - 12,63 В, по шине +5 В минимальное значение - +4,77, максимальное - 5,17 В, по шине +3,3 В - +3,15 и +3,45 В соответственно. Чуть вышедшее за верхний предел напряжение по +12 В вряд ли может считаться серьезной претензией к блоку.

Внешний вид блоков питания LC вполне зауряден и обычен для недорогих решений: стандартный серый металл. Все три блока не имеют в комплекте поставки никаких дополнительных опций, их корпуса выполнены из обычной жести. Кроме как у LC-B350ATX, отверстия вытяжных вентиляторов блоков не прикрыты прикручивающимися декоративными решетками, а просто вырублены в металле (в первом случае все как раз наоборот). Из этих трех блоков только LC-B350ATX имеет два вентилятора (80 мм), у двух других в наличии только вытяжные вентиляторы.

Являясь по внешнему виду решениями middle-end сектора, эти блоки питания оснащены «старыми» комплектами разъемов:

LC-B300-ATX

Пульсации по шине +12 В составляют около 24,0 мВ, по +5 В - не более 17,6 мВ.

Результаты проверки стабильности напряжений: минимальное значение по шине +12 В, зафиксированное в ходе замеров, составило +11,27, а максимальное - 12,28 В, по шине +5 В минимальное значение - +4,68, максимальное - +5,16 В, по шине +3,3 В - +3,01 и +3,35 В соответственно. Увы, блок показал откровенно слабые результаты - сильно просаживается шины +12 В и +3,3 В, что заставляет сомневаться в возможности использования блока в «критичных» системах

LC-B350-ATX

Пульсации по шине +12 В составляют около 28,0 мВ, по +5 В - не более 4,8 мВ.

Результаты проверки стабильности напряжений: минимальное значение по шине +12 В, зафиксированное в ходе замеров, составило +11,42, а максимальное - 11,89 В, по шине +5 В минимальное значение - +4,64, максимальное - +5,04 В, по шине +3,3 В - +3,09 и +3,35 В соответственно. Наблюдается слабина всех трех шин - по +12 В блок не выдал номинала даже в свои лучшие времена, +5 В сильно уползают вниз, как и шина +3,3 В. Огульных выводов о том, что все блоки L&C оставляют желать лучшего делать пока рановато - все же три блока - не показатель, но настороженно относиться к этим моделям, наверное, все-таки, стоит.

Выводы

Учитывая погрешности измерений, можно предположить, что блоки серии HPU - во всех их вариантах - и retail, и экспортных - выглядят вполне прилично и вполне могут использоваться в системах различного уровня (с учетом мощности). Что касается блоков L&C, то, на мой взгляд, вопрос требует дополнительного изучения, потому как рассмотренные три блока не вселили оптимизма и заставили задуматься о целесообразности их использования без тщательного изучения и оценки условий безоговорочной эксплуатации.

Продолжение следует...

Основа современного бизнеса - получение больших прибылей при сравнительно низких вложениях. Хотя этот путь и губителен для собственных отечественных разработок и промышленности, но бизнес есть бизнес. Тут либо вводи меры по предотвращению проникновения дешевых запцацак, либо делать на этом деньги. К примеру, если необходим дешевый блок питания, то не нужно изобретать и конструировать, убивая деньги, - просто нужно посмотреть на рынок распространенного китайского барахла и попытаться на его основе построить то, что необходимо. Рынок, как никогда, завален старыми и новыми компьютерными блока питания различной мощности. В этом блоке питания есть все что нужно - различные напряжения (+12 В, +5 В, +3,3 В, -12 В, -5 В), защиты этих напряжений от перенапряжения и от превышения тока. При этом компьютерные блоки питания типа ATX или TX имеют малый вес и небольшой размер. Конечно, блоки питания импульсные, но высокочастотных помех практически нет. При этом можно идти штатным проверенным способом и ставить обычный трансформатор с несколькими отводами и кучей диодных мостов, а регулирование осуществлять переменным резистором большой мощности. С точки зрения надежности трансформаторные блоки намного надежнее импульсных, ведь в импульсном блоки питания в несколько десятков раз больше деталей, чем в трансформаторном блоке питания типа СССР и если каждый элемент по надежности несколько меньше единицы, то общая надежность является произведением всех элементов и как результат - импульсные блоки питания по надежности намного меньше трансформаторных в несколько десятков раз. Кажется, что если так, то нечего городить огород и следует отказаться от импульсных блоков питания. Но тут более важным фактором, чем надежность, в нашей действительности является гибкость производства, а импульсные блоки достаточно просто могут трансформироваться и перестраиваться под совершенно любую технику в зависимости от требований производства. Вторым фактором является торговля запцацками. При достаточном уровне конкуренции производитель стремится отдать товар по себестоимости, при этом достаточно точно рассчитать время гарантии с тем, чтобы оборудование выходило из строя на следующей неделе, после окончания гарантии и клиент покупал бы запчасти по завышенным ценам. Порой доходит до того, что легче купить новую технику, чем чинить у производителя его бэушку.

Для нас вполне нормально вместо сгоревшего блока питания вкрутить транс или подпереть красную кнопку пуска газа в духовках "Дефект" столовой ложкой, а не покупать новую часть. Наш менталитет четко просекают китайцы и стремятся делать свои товары неремонтопригодными, но мы как на войне, умудряемся ремонтировать и усовершенствовать их ненадежную технику, а если уже все - "труба", то хоть какую-нить запцацку снять и вкидануть в другое оборудование.

Мне стал нужен блок питания для проверки электронных компонентов с регулируемым напряжением до 30 В. Был трансформатор, но регулировать через резак - несерьезно, да и вольтаж будет плавать на разных токах, а вот был старенький блоки питания ATX от компа. Зародилась идея приспособить комповский блок под регулируемый источник питания. Прогуглив тему, нашел несколько переделок, но все они предлагали радикально выкинуть всю защиту и фильтры, а мы бы хотелось сохранить весь блок на случай, если придется использовать его по прямому назначению. Поэтому я начал эксперименты. Цель - не вырезая начинку создать регулируемый блок питания с пределами изменения напряжений от 0 до 30 В.

Часть 1. Так себе.

Блок для опытов попался достаточно старый, слабый, но напичканный множеством фильтров. Блок был в пыли и поэтому перед запуском я его вскрыл и почистил. Вид деталей подозрений не вызвал. Раз все устраивает - можно делать пробный пуск и измерить все напряжения.

12 В - желтый

5 В - красный

3,3 В - оранжевый

5 В - белый

12 В - синий

0 - черный

По входу блока стоит предохранитель, а рядом напечатан тип блока LC16161D.

Блок типа ATX имеет разъем для подсоединения его к материнской плате. Простое включение блока в розетку не включает сам блок. Материнская плата замыкает два контакта на разъеме. Если их замкнуть - блок включится и вентилятор - индикатор включения - начнет вращение. Цвет проводов, которые нужно замыкать для включения, указан на крышке блока, но обычно это "черный" и "зеленый". Нужно вставить перемычку и включить блок в розетку. Если убрать перемычку блок отключится.

Блок TX включается от кнопки, которая находится на кабеле, выходящем из блока питания.

Понятно, что блок рабочий и прежде чем начать переделку, нужно выпаять предохранитель, стоящий по входу, и впаять вместо него патрон с лампочкой накаливания. Чем больше по мощности лампа, тем меньше напряжения будет на ней падать при тестах. Лампа защитит блок питания от всех перегрузок и пробоев и не даст выгореть элементам. При этом импульсные блоки практически нечувствительны к падению напряжения в питающей сети, т.е. лампа хоть и будет светить и кушать киловатты, но по выходным напряжениям просадки от лампы не будет. Лампа у меня на 220 В, 300 Вт.

Блоки строятся на управляющей микросхеме TL494 или ее аналог KA7500 . Также часто используется компоратор на микрухе LM339 . Вся обвязка приходит сюда и именно здесь придется делать основные изменения.

Напряжения в норме, блок рабочий. Приступаем к усовершенствованию блока по регулированию напряжений. Блок импульсный и регулирование происходит за счет регулирования длительности открытия входных транзисторов. Кстати, всегда думал, что колебают всю нагрузку полевые транзисторы, но, на самом деле, используются также быстрые переключающиеся биполярные транзисторы типа 13007, которые устанавливаются и в энергосберегающих лампах. В схеме блока питания нужно найти резистор между 1 ножкой микросхемы TL494 и шиной питания +12 В. В данной схеме он обозначается R34 = 39,2 кОм. Рядом установлен резистор R33 = 9 кОм, который связывает шину +5 В и 1 ножку микросхемы TL494. Замена резистора R33 ни к чему не приводит. Нужно заменить резистор R34 переменным резистором 40 кОм, можно и больше, но поднять напряжение по шине +12 В получилось только до уровня +15 В, поэтому в завышении сопротивления резистора смысла нет. Здесь идея в том, что чем выше сопротивление, тем выше выходное напряжение. При этом до бесконечности напряжение не увеличится. Напряжение между шинами +12 В и -12 В изменяется от 5 до 28 В.

Найти нужный резистор можно проследив дорожки по плате, либо при помощи омметра.

Выставляем переменный впаянный резистор в минимальное сопротивление и обязательно подключаем вольтметр. Без вольтметра тяжело определить изменение напряжений. Включаем блок и на вольтметре на шине +12 В установилось напряжение 2,5 В, при этом вентилятор не крутится, а блок питания немного поет на высокой частоте, что указывает на работу ШИМ на сравнительно небольшой частоте. Крутим переменный резистор и видим увеличение напряжений на всех шинах. Вентилятор включается примерно на +5 В.

Замеряем все напряжения по шинам

12 В: +2,5 ... +13,5

5 В: +1,1 ... +5,7

3,3 В: +0,8 ... 3,5

12 В: -2,1 ... -13

5 В: -0,3 ... -5,7

Напряжения в норме, кроме шины -12 В, и их можно варьировать для получения необходимых напряжений. Но компьютерные блоки сделаны так, чтобы по отрицательным шинам защита срабатывала при достаточно малых токах. Можно взять автомобильную лампочку на 12 В и включить между шиной +12 В и шиной 0. При увеличении напряжения лампочка станет светить все более ярко. При этом постепенно будет светить и лампа, включенная вместо предохранителя. Если включить лампочку между шиной -12 В и шиной 0, то при малом напряжении лампочка светится, но при определенном токе потребления блок уйдет в защиту. Защита срабатывает на ток порядка 0,3 А. Защита по току выполнена на резистивно-диодном делителе, чтобы его обмануть, нужно отключить диод между шиной -5 В и средней точкой, которая соединяет шину -12 В с резистором. Можно обрубить два стабилитрона ZD1 и ZD2. Стабилитроны применены как защита от перенапряжения и конкретно здесь через стабилитрон идет и защита по току. По крайней мере с шины - 12 В удалось взять 8 А, но это чревато пробоем микрухи обратной связи. В итоге путь тупиковый обрубать стабилитроны, а вот диод - вполне.

Для проверки блока нужно использовать переменную нагрузку. Наиболее рациональным является кусок спирали от нагревателя. Витой нихром - вот все что нужно. Для проверки включается нихром через амперметр между выводом -12 В и +12 В, регулируем напряжение и измеряем ток.

Выходные диоды для отрицательных напряжений значительно меньше тех, которые используются для положительных напряжений. Нагрузка соответственно также ниже. Более того, если в положительных каналах стоят сборки из диодов Шоттки, то в отрицательных каналах впаян обычный диод. Порой его припаивают к пластинке - типа радиатор, но это бред и для того чтобы поднять ток в канале -12 В нужно заменить диод, на что-то более сильное, но при этом сборки из диодов Шоттки у меня сгорели, а вот обычные диоды вполне неплохо тянули. Следует отметить, что защита не срабатывает, если нагрузка включена между разными шинами без шины 0.

Последним тестом является защита от короткого замыкания. Коротим накоротко блок. Защита работает только на шине +12 В, ведь стабилитроны отключили практически всю защиту. Все остальные шины по короткому не отключают блок. В итоге получен регулируемый блок питания из компьютерного блока с заменой одного элемента. Быстро, а значит экономически целесообразно. При тестах выяснилось, что если быстро крутить ручку регулировки, то ШИМ не успевает перестроиться и выбивает микруху обратной связи KA5H0165R , а лампа загорается очень ярко, затем входные силовые биполюсные транзисторы KSE13007 могут вылететь, если вместо лампы предохранитель.

Короче, все работает, но достаточно ненадежно. В таком виде нужно использовать только регулируемую шину +12 В и неинтересно медленно крутить ШИМ.

Часть 2. Более-менее.

Вторым экспериментом стал древнющий блок питания TX. Такой блок имеет кнопочку для включения - достаточно удобно. Переделку начинаем с перепайки резистора между +12 В и первой ножкой микрухи TL494. Резистор от +12 В и 1 ножкой ставится переменный на 40 кОм. Это дает возможность получить регулируемые напряжения. Все защиты остаются.

Далее нужно изменить пределы тока для отрицательных шин. Я впаял резистор, который выпаял из шины +12 В, и впаял в разрыв шины 0 и 11 ножкой микрухи TL339. Там уже стоял один резистор. Предел токов изменился, но при подключении нагрузки напряжение на шине -12 В сильно падало при увеличении тока. Скорее всего просаживает всю линию отрицательного напряжения. Потом я заменил перепаянный резак на переменный резистор - для подбора срабатываний по току. Но получилось неважно - нечетко срабатывает. Надо будет попробовать убрать этот дополнительный резистор.

Измерение параметров дало следующие результаты:

Шина напряжения, В

Напряжение на холостом ходу, В

Напряжение на нагрузке 30 Вт, В

Ток через нагрузку 30 Вт, А

Перепайку я начал с выпрямительных диодов. Диодов два и они достаточно слабые.

Диоды я взял от старого блока. Диодные сборки S20C40C - Шоттки, рассчитанные на ток 20 А и напряжение 40 В, но ничего путного не получилось. Либо сборки такие были, но один сгорел и я просто впаял два более сильных диодов.

Влепил разрезанные радиаторы и на них диоды. Диоды стали сильно греться и накрылись:) , но даже с более сильными диодами напряжение на шине -12 В так и не пожелало опуститься до -15 В.

После перепайки двух резисторов и двух диодов можно было скрутить блок питания и включить нагрузку. Вначале использовал нагрузку в виде лампочки, а измерял напряжение и ток по отдельности.

Затем перестал париться, нашел переменный резистор из нихрома, мультиметр Ц4353 - измерял напряжение, а цифровым - ток. Получился неплохой тандем. По мере увеличения нагрузки напряжение незначительно падало, ток рос, но грузил я только до 6 А, а лампа по входу светилась в четверть накала. При достижении максимального напряжения лампа по входу засветилась на половинную мощность, а напряжение на нагрузке несколько просело.

По большому счету переделка удалась. Правда, если включаться между шинами +12 В и -12 В, то защита не работает, но в остальном все четко. Всем удачных переделок.

Однако и такая переделка долго не прожила.

Часть 3. Удачная.

Еще одной переделкой стал блок питания с микрухой 339. Я не приверженец выпаивать все, а затем стараться запустить блок, поэтому по шагам поступил так:

Проверил блок на включение и срабатывание защиты от кз на шине +12 В;

Вынул предохранитель по входу и заменил на патрон с лампой накаливания - так безопасно включать чтобы не сжечь ключи. Проверил блок на включение и кз;

Удалил резистор на 39к между 1 ногой 494 и шиной +12 В, заменил на переменный резистор 45к. Включил блок - напряжение по шине +12 В регулируется в пределе +2,7...+12,4 В, проверил на кз;

Удалил диод с шины -12 В, находится за резистором, если идти от провода. По шине -5 В слежения не было. Иногда стоит стабилитрон, суть его одна - ограничение выходного напряжения. Выпаивание микруху 7905 уводит блок в защиту. Проверил блок на включение и кз;

Резистор 2,7к от 1 ножки 494 на массу заменил на 2к, там их несколько, но именно изменение 2,7к дает возможность изменить предел выходное напряжения. Например, при помощи резистора на 2к на шине +12 В стало возможным регулировать напряжение до 20 В, соответственно увеличив 2,7к до 4к максимальное напряжение стало +8 В. Проверил блок на включение и кз;

Заменил выходные конденсаторы на шинах 12 В на максимальное 35 В, шинах 5 В на 16 В;

Заменил спаренный диод шины +12 В, был tdl020-05f c напряжение до 20 В но током 5 А, поставил sbl3040pt на 40 А, выпаивать из шины +5 В не надо - нарушится обратная связь на 494. Проверил блок;

Измерил ток через лампу накаливания по входу - при достижении потребления тока в нагрузке 3 А лампа по входу светилась ярко, но ток на нагрузке больше не рос, просаживало напряжение, ток через лампу был 0,5 А, что укладывалось в ток родного предохранителя. Убрал лампу и поставил обратно родной предохранитель на 2 А;

Перевернул вентилятор обдува чтобы воздух вдувало внутрь блока и охлаждение радиатора было эффективнее.

В результате замены двух резисторов, трех конденсаторов и диода получилось переделать компьютерный блок питания в регулируемый лабораторный с выходном током больше 10 А и напряжением 20 В. Минус в отсутствии регулирования тока, но зато осталась защита от кз. Лично мне регулировать так не надо - блок итак выдает больше 10 А.

Переходим к практической реализации. Есть блок, правда TX. Но у него есть кнопка включения, тоже удобно для лабораторного. Блок способен выдать 200 Вт с заявленным током по 12 В - 8А и 5 В - 20 А.

На блоке написано, что вскрывать нельзя и внутри нет ничего такого для любителей. Так что мы вроде как профессионалы. На блоке есть переключатель на 110/220 В. Переключатель конечно удалим за ненадобностью, а вот кнопку оставим - пусть работает.

Внутренности более чем скромные - нет входного дроселя и заряд входных кондеров идет через резистор, а не через термистор, в результате идет потеря энергия, которая нагревает резистор.

Выбрасываем провода на переключатель 110 В и все что мешает отделить плату от корпуса.

Заменяем резистор на термистор и впаиваем дроссель. Убираем входной предохранитель и впаиваем вместо него лампочку накаливания.

Проверяем работу схему - входная лампа светится на токе примерно 0,2 А. Нагрузкой является лампа 24 В 60 Вт. Светится лампа на 12 В. Все хорошо и проверка на короткое замыкание работает.

Находим резистор от 1 ноги 494 к +12 В и поднимаем ногу. Подпаиваем переменный резистор вместо него. Теперь будет регулирование напряжения на нагрузке.

Ищем резисторы от 1 ноги 494 к общему минусу. Здесь их три. Все достаточно высокоомные, я выпаял самый низкоомный резистор на 10к и запаял вместо него на 2к. Это увеличило предел регулирования до 20 В. Правда при тесте этого еще не видно, срабатывает защита от перенапряжения.

Находим диод на шине -12 В, стоит после резистора и поднимаем его ногу. Это отключит защиту от перенапряжений. Теперь все должно быть.

Теперь меняем выходной конденсатор на шине +12 В на предел 25 В. И плюс 8 А это с натяжкой для маленького выпрямительного диода, так что и этот элемент меняем на что-то более силовое. И конечно включаем и проверяем. Ток и напряжение при наличии лампы по входу может сильно не расти если нагрузка подключена. Вот если нагрузку отключить, то напряжение регулируется до +20 В.

Если все устраивает - меняем лампу на предохранитель. И даем блоку нагрузку.

Для визуальной оценки напряжения и тока я использовал цифровой индикатор с алиэкспрес. Тут еще был такой момент - напряжение на шине +12В начинало с 2,5В и это было не очень приятно. А вот на шине +5В от 0,4В. Поэтому я объединил шины при помощи переключателя. Сам индикатор имеет 5 провод на подключение: 3 на измерение напряжения и 2 на ток. Индикатор питается напряжением от 4,5В. Дежурное питание как раз составляет 5В и им питается микруха tl494.

Очень рад что удалось переделать компьютерный блок питания. Всем удачной переделки.


Утилиты и справочники.

- Справочник в формате.chm. Автор данного файла - Кучерявенко Павел Андреевич. Большинство исходных документов были взяты с сайта pinouts.ru - краткие описания и распиновки более 1000 коннекторов, кабелей, адаптеров. Описания шин, слотов, интерфейсов. Не только компьютерная техника, но и сотовые телефоны, GPS-приемники, аудио, фото и видео аппаратура, игровые приставки и др. техника.

Программа предназначена для определения ёмкости конденсатора по цветовой маркировке (12 типов конденсаторов).

База данных по транзисторам в формате Access.

Блоки питания.

Разводка для разъемов блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов:

Таблица контактов 24-контактного разъема блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов

Конт Обозн Цвет Описание
1 3.3V Оранжевый +3.3 VDC
2 3.3V Оранжевый +3.3 VDC
3 COM Черный Земля
4 5V Красный +5 VDC
5 COM Черный Земля
6 5V Красный +5 VDC
7 COM Черный Земля
8 PWR_OK Серый Power Ok - Все напряжения в пределах нормы. Это сигнал формируется при включении БП и используется для сброса системной платы.
9 5VSB Фиолетовый +5 VDC Дежурное напряжение
10 12V Желтый +12 VDC
11 12V Желтый +12 VDC
12 3.3V Оранжевый +3.3 VDC
13 3.3V Оранжевый +3.3 VDC
14 -12V Синий -12 VDC
15 COM Черный Земля
16 /PS_ON Зеленый Power Supply On. Для включения блока питания нужно закоротить этот контакт на землю (с проводом черного цвета).
17 COM Черный Земля
18 COM Черный Земля
19 COM Черный Земля
20 -5V Белый -5 VDC (это напряжение используется очень редко, в основном, для питания старых плат расширения.)
21 +5V Красный +5 VDC
22 +5V Красный +5 VDC
23 +5V Красный +5 VDC
24 COM Черный Земля

Схема блока питания ATX-300P4-PFC (ATX-310T 2.03).

Схема блока питания ATX-P6.

Схема блока питания API4PC01-000 400w производства Acbel Politech Ink.

Схема блока питания Alim ATX 250Watt SMEV J.M. 2002.

Типовая схема блока питания на 300W с пометками о функциональном назначении отдельных частей схемы.

Типовая схема блока питания на 450W с реализацией active power factor correction (PFC) современных компьютеров.

Схема блока питания API3PCD2-Y01 450w производства ACBEL ELECTRONIC (DONGGUAN) CO. LTD.

Схемы блоков питания ATX 250 SG6105, IW-P300A2, и 2 схемы неизвестного происхождения.

Схема БП NUITEK (COLORS iT) 330U (sg6105).

Схема БП NUITEK (COLORS iT) 330U на микросхеме SG6105 .

Схема БП NUITEK (COLORS iT) 350U SCH .

Схема БП NUITEK (COLORS iT) 350T .

Схема БП NUITEK (COLORS iT) 400U .

Схема БП NUITEK (COLORS iT) 500T .

Схема БП NUITEK (COLORS iT) ATX12V-13 600T (COLORS-IT - 600T - PSU, 720W, SILENT, ATX)

Схема БП CHIEFTEC TECHNOLOGY GPA500S 500W Model GPAxY-ZZ SERIES.

Схема БП Codegen 250w mod. 200XA1 mod. 250XA1.

Схема БП Codegen 300w mod. 300X.

Схема БП CWT Model PUH400W .

Схема БП Delta Electronics Inc. модель DPS-200-59 H REV:00.

Схема БП Delta Electronics Inc. модель DPS-260-2A.

Схема БП DTK Computer модель PTP-2007 (она же – MACRON Power Co. модель ATX 9912)

Схема БП DTK PTP-2038 200W.

Схема БП EC model 200X.

Схема БП FSP Group Inc. модель FSP145-60SP.

Схема источника дежурного питания БП FSP Group Inc. модель ATX-300GTF.

Схема источника дежурного питания БП FSP Group Inc. модель FSP Epsilon FX 600 GLN.

Схема БП Green Tech. модель MAV-300W-P4.

Схемы блока питания HIPER HPU-4K580 . В архиве - файл в формате SPL (для программы sPlan) и 3 файла в формате GIF - упрощенные принципиальные схемы: Power Factor Corrector, ШИМ и силовой цепи, автогенератора. Если у вас нечем просматривать файлы.spl , используйте схемы в виде рисунков в формате.gif - они одинаковые.

Схемы блока питания INWIN IW-P300A2-0 R1.2.

Схемы блока питания INWIN IW-P300A3-1 Powerman.
Наиболее распространенная неисправность блоков питания Inwin, схемы которых приведены выше - выход из строя схемы формирования дежурного напряжения +5VSB (дежурки). Как правило, требуется замена электролитического конденсатора C34 10мкФ x 50В и защитного стабилитрона D14 (6-6.3 V). В худшем случае, к неисправным элементам добавляются R54, R9, R37, микросхема U3 (SG6105 или IW1688 (полный аналог SG6105)) Для эксперимента, пробовал ставить C34 емкостью 22-47 мкФ - возможно, это повысит надежность работы дежурки.

Схема блока питания Powerman IP-P550DJ2-0 (плата IP-DJ Rev:1.51). Имеющаяся в документе схема формирования дежурного напряжения используется во многих других моделях блоков питания Power Man (для многих блоков питания мощностью 350W и 550W отличия только в номиналах элементов).

JNC Computer Co. LTD LC-B250ATX

JNC Computer Co. LTD. Схема блока питания SY-300ATX

Предположительно производитель JNC Computer Co. LTD. Блок питания SY-300ATX. Схема нарисована от руки, комментарии и рекомендации по усовершенствованию.

Схемы блока питания Key Mouse Electroniks Co Ltd модель PM-230W

Схемы блока питания L & C Technology Co. модель LC-A250ATX

Схемы блока питания LWT2005 на микросхеме KA7500B и LM339N

Схема БП M-tech KOB AP4450XA.

Схема БП MACRON Power Co. модель ATX 9912 (она же – DTK Computer модель PTP-2007)

Схема БП Maxpower PX-300W

Схема БП Maxpower PC ATX SMPS PX-230W ver.2.03

Схемы блока питания PowerLink модель LP-J2-18 300W.

Схемы блока питания Power Master модель LP-8 ver 2.03 230W (AP-5-E v1.1).

Схемы блока питания Power Master модель FA-5-2 ver 3.2 250W.

Схема БП Microlab 350W

Схема БП Microlab 400W

Схема БП Powerlink LPJ2-18 300W

Схема БП Power Efficiency Electronic Co LTD модель PE-050187

Схема БП Rolsen ATX-230

Схема БП SevenTeam ST-200HRK

Схема БП SevenTeam ST-230WHF 230Watt

Схема БП SevenTeam ATX2 V2

    На этой страничке размещено несколько десятков электрических принципиальных схем, и полезные ссылки на ресурсы, связанные с темой ремонта оборудования. В основном, компьютерного. Помня о том, сколько сил и времени иногда приходилось затрачивать на поиск нужной информации, справочника или схемки, я собрал здесь почти все, чем пользовался при ремонте и что имелось в электронном виде. Надеюсь, кому-нибудь, что-нибудь пригодится.

Утилиты и справочники.

- Справочник в формате.chm. Автор данного файла - Кучерявенко Павел Андреевич. Большинство исходных документов были взяты с сайта pinouts.ru - краткие описания и распиновки более 1000 коннекторов, кабелей, адаптеров. Описания шин, слотов, интерфейсов. Не только компьютерная техника, но и сотовые телефоны, GPS-приемники, аудио, фото и видео аппаратуа, игровые приставки, интерфейсы автомобилей.

Программа предназначена для определения ёмкости конденсатора по цветовой маркировке (12 типов конденсаторов).

startcopy.ru - по моему мнению, это один из лучших сайтов рунета, посвященный ремонту принтеров, копировальной техники, многофункциональных устройств. Можно найти методики и рекомендации по устранению практически любой проблемы с любым принтером.

Блоки питания.

Разводка для разъемов блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов:

Схемы блоков питания ATX 250 SG6105, IW-P300A2, и 2 схемы неизвестного происхождения.

Схема БП NUITEK (COLORS iT) 330U.

Схема БП Codegen 250w mod. 200XA1 mod. 250XA1.

Схема БП Codegen 300w mod. 300X.

Схема БП Delta Electronics Inc. модель DPS-200-59 H REV:00.

Схема БП Delta Electronics Inc. модель DPS-260-2A.

Схема БП DTK PTP-2038 200W.

Схема БП FSP Group Inc. модель FSP145-60SP.

Схема БП Green Tech. модель MAV-300W-P4.

Схемы блока питания HIPER HPU-4K580

Схема БП SIRTEC INTERNATIONAL CO. LTD. HPC-360-302 DF REV:C0

Схема БП SIRTEC INTERNATIONAL CO. LTD. HPC-420-302 DF REV:C0

Схемы блока питания INWIN IW-P300A2-0 R1.2.

Схемы блока питания INWIN IW-P300A3-1 Powerman.

JNC Computer Co. LTD LC-B250ATX

JNC Computer Co. LTD. Схема блока питания SY-300ATX

Предположительно производитель JNC Computer Co. LTD. Блок питания SY-300ATX. Схема нарисована от руки, комментарии и рекомендации по усовершенствованию.

Схемы блока питания Key Mouse Electronics Co Ltd модель PM-230W

Схемы блока питания Power Master модель LP-8 ver 2.03 230W (AP-5-E v1.1).

Схемы блока питания Power Master модель FA-5-2 ver 3.2 250W.

Схема БП Maxpower PX-300W

ВведениеИтак, перед Вами четвертая серия тестирования блоков питания стандарта ATX. На этот раз под мою горячую руку попались одиннадцать блоков разных производителей, продающихся как в составе корпусов, так и отдельно.

Тестирование блоков проводилось в соответствии с описанной мною методикой – на постоянной нагрузке, собранной на мощных полевых транзисторах и управляемой с компьютера. Измерения напряжений производились как блоком «Формоза» PowerCheck 2.0, так и отдельным цифровым мультиметром. Все осциллограммы снимались цифровым осциллографом-приставкой ETC M221 с разверткой 10мкс/дел и чувствительностью 50мВ/дел (использовался осциллографический щуп HP-9100 с делителем 1:1).

Так как оригинальная программа от «Формозы» довольно неудобна для обработки результатов (медленная работа, полное отсутствие настроек), то мной была написана отдельная программа, предназначенная только для просмотра и обработки результатов, полученных на установке:

Она позволяет читать файлы с данными, автоматически усредняя по заданному количеству точек, сохранять обработанные данные в файл, отображать на графике указанные пользователем токи и напряжения, автоматически масштабировать график по горизонтали (разбивая его на указанное пользователем количество страниц), вручную масштабировать отдельные участки графика и сохранять график или его отдельные участки в графический файл.

При обработке результатов я усреднял исходные данные по 10 точкам – так как период в 1мс, с которым сохраняет данные родная программа, избыточен, а усреднение позволяет устранить случайные шумы и тем самым улучшить вид графика, заодно и уменьшив общий объем данных.

Относительно же самих результатов хочу заметить, что блоки питания тестировались во всех допустимых режимах, включая минимальную нагрузку по шине +12В и максимальную по +5В. В реальном компьютере такие ситуации не встречаются, поэтому небольшой выход напряжения +12В за допустимые пределы (напомню, что допуск на все положительные напряжения – 5%) я не считаю критичным. Но – только небольшой и только для +12В. Если напряжение на шине +12В начинает зашкаливать за 13В, или хорошо (по идее) стабилизированное +5В выходит за пределы допуска – это повод задуматься о качестве блока питания. Для прочих же блоков основным результатом является относительное изменение напряжения во всем диапазоне нагрузок – в таблицах я привожу максимальное и минимальное наблюдавшееся напряжение и их разницу в процентах.

Отмечу, что все исследуемые блоки претендуют на возможность работы с Pentium 4, для чего требуется соответствие стандарту ATX12V. Соответственно, с точки зрения этого стандарта я и буду рассматривать их качество (по сравнению с ATX в чистом виде, он более требователен к нагрузочной способности шины +12В).

Приступим.

Delta Electronics DPS-300TB rev. 01

Этот блок питания сделан одним из крупнейших производителей БП – компанией Delta Electronics . Однако особый интерес он вызывает не только именитым производителем, но и ценой – стоят они в районе $20, что для блока такого класса очень немного.

Блок производит крайне приятное впечатление аккуратностью монтажа – детали высоковольтных цепей дополнительно изолированы термоусадочной трубкой, все транзисторы и диодные сборки посажены на термопасту и закреплены болтами М3 с гайками… На плате, трансформаторе и на дросселе PFC (да, этот блок питания – один из немногих в обзоре, снабженный пассивным PFC) стоит маркировка “Lite-On”, однако делала ли компания Lite-On Electronics Inc . только отдельные компоненты или же весь блок питания, и кто в последнем случае его разрабатывал – остается неизвестным.

Блок оборудован терморегулятором скорости вращения вентилятора, и можно смело сказать, что его работа заметна – сразу после включения вентилятор еле крутится и лишь при серьезной нагрузке разгоняется до полных оборотов. Здесь хочу отметить, что вентиляторы в блоках Delta сравнительно слабые, рассчитанные только на охлаждение самого БП – поэтому в корпусе компьютера обязательно должен стоять отдельный вытяжной вентилятор. С другой стороны, благодаря этому блоки Delta были самыми тихими из побывавших у меня.

Разумеется, все положенные фильтры аккуратно запаяны – наличествует полноценный сетевой фильтр, а также дроссели на всех мощных выходах (т.е. +5В, +12В и +3,3В). Емкость входных конденсаторов – 470мкФ, на выходе +12В стоит один конденсатор Chemi-Con серии “KZE” и емкостью 1200мкФ, на +5В – два Rubycon “ZL” по 2200мкФ, на выходе +3,3В – два Taicon “PW” по 2200мкФ.

После такого трудно было ожидать заметного уровня пульсаций на выходе – и блок питания мои ожидания не обманул. На шине +5В пульсации практически незаметны даже при максимальной нагрузке (“практически незаметны” на моем оборудовании означает, что их величина не превышала 5мВ), на шине +12В размах пульсаций при максимальной нагрузке составляет около 15мВ, что является превосходным результатом.

Диапазон изменения напряжений приведен в таблице, а на Вы можете увидеть весь график испытания.

+12V +5V +3,3V
min 11,81 4,94 3,31
max 12,92 5,15 3,39
min/max 8,6% 4,1% 2,4%

В заключение хотелось бы отметить одну особенность этого блока, из-за которой не все материнские платы с ним работают. Дело в том, что для запуска материнской плате необходимо наличие сигнала Power OK с блока питания, показывающего, что напряжения питания вошли в допустимые пределы. В рассматриваемом блоке сигнал Power OK формируется в микросхеме TSM111 от STMicroelectronics, в которой используется выход с открытым коллектором. Это означает, что для нормальной работы между выходом и +5В должен быть включен так называемый pull-up резистор; на плате блока питания место под резистор предусмотрено, но сам резистор не впаян. На приведенной ниже фотографии это R314 справа от микросхемы:


Выход прост – достаточно, даже не вскрывая самого блока, подключить между Power OK (серый провод) и +5В (красный провод) резистор сопротивлением 1...10кОм любой мощности. После такой доработки блок питания должен нормально работать с любыми материнскими платами. Дабы сразу не терять гарантию на блок, можно для проверки сначала воткнуть выводы резистора непосредственно в разъем питания материнской платы; потом резистор лучше все-таки припаять...

Delta Electronics DPS-300TB rev. 02

За названием, фактически неотличимым от предшественника, скрывается совершенно другой блок. И если внешний вид отличается слабо (хотя, взяв оба этих блока в руки, можно обнаружить, что у них разная конструкция корпуса), то внутреннее устройство – радикально:




Здесь уже нет надписей Lite-On – весь блок сделан Delta Electronics. Так же, как и предшественник, он оборудован пассивным PFC, наличествует сетевой фильтр и дроссели на выходе, все транзисторы и диодные сборки посажены на термопасту... В общем, по качеству исполнения блоки идентичны – ни к первому, ни ко второму претензий нет.

Больше всего обрадовал уровень пульсаций - точнее говоря, их отсутствие. Даже на полной нагрузке и даже на сравнительно “шумной” шине +12В пульсации были на уровне посторонних шумов, т.е. неразличимы.

Также хотелось бы отдельно отметить работу температурного контроля и вообще охлаждение блока. Даже на полной нагрузке (285Вт!) у блока питания лишь задняя стенка напротив радиаторов становится теплой, а выходящий из вентилятора воздух – по-прежнему холодный, причем вентилятор крутится с такой скоростью, что его практически не слышно. Впрочем, в этом кроется и недостаток, такой же, как и в предыдущем блоке – для нормального охлаждения системного блока требуется дополнительный вентилятор на его задней стенке, вытягивающий горячий воздух от процессора.

Единственная неприятность с этим блоком возникла с шиной +5В – блок питания ограничивал ток на уровне около 27А. Чтобы не вызывать срабатывания защиты, максимальная нагрузка на +5В была соответственно уменьшена. Однако общая мощность блока питания ничуть не ниже заявленной – пропорциональное увеличение нагрузки на шину +3,3В срабатывания защиты не вызывало.

+12V +5V +3,3V
min 11,80 4,98 3,31
max 12,86 5,21 3,36
min/max 8,2% 4,4% 1,5%

Графики напряжений Вы можете увидеть на .

FKI FV-300N20

Этот блок, установленный в корпусе FKI FK-603 , выпускается компанией Fong Kai Industrial Co.


Сетевой фильтр смонтирован полностью и размещен целиком на основной плате. Фильтрующие конденсаторы – Fuhjyyu серий “LP” и “TM”, на входе стоят два конденсатора емкостью по 470мкФ; на выходе на шине +12В – один 2200мкФ, +5В – 3300мкФ и 2200мкФ, +3,3В – два конденсатора по 2200мкФ. На шинах +5В и +3,3В стоят дополнительные сглаживающие дроссели. Скорость вращения вентилятора регулируется термодатчиком.

Блок оборудован четырьмя разъемами для питания жестких дисков и CD и двумя для питания дисководов. К сожалению, провода сечением 20AWG – при том, что стандартом рекомендуются более толстые провода 18AWG.

Осциллограммы напряжений на выходах радуют глаз – даже при максимальной нагрузке нет заметных пульсаций. Для примера приведу лишь одну осциллограмму, шина +12В при токе нагрузки 15А (максимально допустимом):


А вот со блок справляется чуть хуже, чем уже рассмотренные блоки Delta:

+12V +5V +3,3V
min 11,49 4,86 3,31
max 12,79 5,15 3,36
min/max 10,2% 5,6% 1,5%

В общем и целом блок можно, пожалуй, отнести к хорошему, добротному среднему классу.

Fortron/Source FSP300-60BTV

Блоки с маркировкой FSP несомненно известны читателям по корпусам InWin и AOpen – правда, в последнее время InWin отказался от услуг компании FSP Group и наладил собственное производство БП.

Выглядит блок весьма солидно:


К внутреннему устройству никаких нареканий не возникает – аккуратный монтаж, полностью собранный сетевой фильтр, большие радиаторы на транзисторах, терморегулятор скорости вращения вентилятора (он собран на отдельной плате, прикрученной прямо к радиатору – это хорошо видно на фото).

На входе стоят конденсаторы Teapo емкостью 680мкФ (что весьма неплохо для 300-ваттного блока), на выходе емкость конденсаторов (используются Fuhjyyu серии “TMR”) впечатляет еще больше – на шине +5В стоят два конденсатора по 4700мкФ, на +12В – один 2200мкФ, на +3,3В – один конденсатор 3300мкФ и еще один 4700мкФ, шины +5В и 3,3В включены через дроссели.

Однако, как ни странно, пульсации выходных напряжений достаточно заметны, хоть и лежат в пределах допусков, особенно на +12В:


На +5В пульсации также присутствуют, но по амплитуде заметно меньше:


Напряжение +5В и +12В блок держит очень хорошо, но вот с +3,3В не повезло – оно гуляет аж на 6%, опускаясь ниже минимально допустимого (3,14В). Графики зависимости напряжения от нагрузки, как всегда, можно посмотреть на отдельной

+12V +5V +3,3V
min 11,91 4,92 3,12
max 12,79 5,14 3,32
min/max 6,9% 4,3% 6,0%

Блок снабжен шестью разъемами для подключения винчестеров и двумя – для дисководов. Все провода имеют сечение 18AWG, так что с этой стороны никаких претензий предъявить невозможно.

GIT G-300PT

Этот блок из корпуса Noblesse изготовлен компанией Herolchi (HEC).


Если судить по внешнему виду – типичный представитель среднего класса, без каких-либо выдающихся признаков. Фильтр распаян полностью, но первая его часть вынесена на отдельную платку (в дорогих блоках такое практически не встречается). Во входном выпрямителе используются конденсаторы CapXon серии “LP” емкостью 470мкФ, в выходных – конденсаторы Pce-tur и CapXon серии “GL”. Суммарная емкость конденсаторов на шине +5В – 3200мкФ, на шине +12В – 2200мкФ и на +3,3В – 2670мкФ; дроссель предусмотрен только на шине +3,3В. В блоке предусмотрен терморегулятор скорости вращения вентилятора. Для подключения нагрузки есть 5 разъемов для винчестеров и 2 для дисководов, все провода – сечением 18AWG.

А вот до тестов, к сожалению, дело не дошло. Дело в том, что на мощности около 270-280Вт срабатывала защита от перегрузки, а при подборе максимальной мощности в ручном режиме блок умер с громким хлопком минут через десять работы. Вскрытие показало, что в лучший мир отправился один из транзисторов, нагревшись при этом так, что на нем расплавилась полистироловая изолирующая шайба:

HEC 300ER

Еще один блок производства Herolchi, но на этот раз снят он был с корпуса Genius Venus 2.


По сравнению с предыдущим блоком, сетевой фильтр сократился вдвое – исчезла платка с первым дросселем, но распаянные на основной плате детали остались. Зато емкость конденсаторов в высоковольтном выпрямителе увеличилась до 680мкФ, а на шине +5В – до 5300мкФ (два CapXon по 1000мкФ и один Pce-tur на 3300мкФ). Правда, в качестве компенсации оная емкость на шине +3,3В уменьшилась до мизерных 470мкФ, к тому же вместо дросселя оказалась “фильтрующая перемычка”... а по прочим шинам с большими токами дросселей и в предыдущем блоке не было. Емкость по шине +12В сохранилась – 2200мкФ, только поменялся производитель – с CapXon на Pce-tur. Помимо конденсаторов и дросселей, производитель пожертвовал и температурным мониторингом – в этом блоке вентилятор подключен непорседственно к +12В. Зато прибавился еще один разъем для питания периферии – теперь их стало шесть... Вот такой вот закон сохранения.

Но самое веселое началось при попытке снять характеристики блока. Проблема заключалась в том, что после небольшого прогрева защита от перегрузки начинала срабатывать на мощности около 200Вт. И это при том, что блок заявлен как 300-ваттный! Фактически на полной мощности удалось снять только зависимость выходных напряжений от тока нагрузки, которую можно увидеть на , а минимальные и максимальные значения напряжений – в таблице:

+12V +5V +3,3V
min 11,62 4,91 3,26
max 13,27 5,15 3,31
min/max 12,4% 4,7% 1,5%

Если нагрузку по шинам +3,3В и +5В блок держит хорошо, то +12В могут лишь огорчить. Забегая вперед, скажу, что как по стабильности, так и по абсолютному значению этого напряжения HEC-300ER занял третье с конца место, обогнав лишь блоки IPower.

Точно такая же картина наблюдалась и с пульсациями – если по шине +5В они держались на невысоком уровне, то на +12В были более чем заметны:


Шина +5В


Шина +12В


Причем эта осциллограмма снята на суммарной мощности всего 185Вт, ибо после прогрева на большей мощности блок стабильно работать отказывался.

Спустя некоторое время после начала тестирования от блока начало попахивать паленой пластмассой. Вскрытие показало ту же проблему, что и у GIT G-300PT – начала плавиться шайба на одном из транзисторов:


Судьба такого блока предрешена – из-за расплавления шайбы транзистор перестает прижиматься к радиатору и начинает греться еще сильнее... шайба плавится тоже быстрее... замкнутый круг, приводящий к гибели транзистора от перегрева. Что и случилось минут через двадцать работы на мощности 185Вт (sic!) – сверкнула молния, грянул гром, испарился предохранитель, и раскололся пополам транзистор:


Впечатляет, не так ли?

Напрашивается вывод, что у двух сгоревших блоков HEC имеется серьезный конструктивный недостаток – я не вдавался в подробности схемотехники, но такие «эффекты» могут возникать, скажем, при слишком пологих фронтах импульсов, переключающих ключевые транзисторы; при этом в момент переключения возникает заметный сквозной ток, сильно подогревающий транзисторы.

IPower LC-B250ATX

Блок питания, поставляемый в составе корпуса E-Star model 8870 “Extra” . Бесподобный образец работы китайской инженерной мысли:


Внушает уважение труд людей, способных заставить блок питания работать даже при таком количестве отсутствующих деталей... Сетевого фильтра нет вообще – только перемычки на месте дросселей. Та же участь постигла и выходные дроссели – их просто нет. И не только их, а еще и половины фильтрующих конденсаторов на выходе блока – как правило, на каждую шину ставят по два конденсатора, до и после дросселя, здесь же один их них исчез вместе с дросселем. Итого, емкость конденсаторов высоковольтного выпрямителя – 330мкФ, выходные конденсаторы по всем шинам – по 1000мкФ на каждую шину, производитель конденсаторов - Luxon Electronics (маркировка “G-Luxon”). Но на этом экономия не заканчивается! В блоке отсутствует даже изолирующая пластиковая прокладка между корпусом и высоковольтной частью схемы... Качество монтажа не просто низкое, оно местами кошмарное – при взгляде на некоторые детали кажется, что их просто воткнули как получилось, а потом сверху шлепнули побольше припоя, чтобы не отвалилось...

Из прочего можно отметить всего четыре разъема питания винчестеров и один – дисковода, расположенные на коротких проводах сечения 20AWG. Терморегулятор отсутствует, да и трудно было после увиденного ожидать его найти.

Ясно, что чудес от этого блока ожидать было трудно. Он их и не показал, а показал вместо этого нестабильность напряжения +12В 15% (не говоря уж о максимальном абсолютном значении этого напряжения среди всех протестированных блоков) и +5В – 7%.

+12V +5V +3,3V
min 11,52 4,89 3,21
max 13,55 5,26 3,32
min/max 15,0% 7,0% 3,3%

График изменения напряжений можно посмотреть на Причем, если разглядывать отдельные части графика с увеличением (разумеется, не на приведенном скриншоте, а при обработке исходных данных), видно, что после резкого изменения нагрузки напряжения выходят на постоянный уровень лишь спустя примерно 500мс, что является очень медленной реакцией на изменение нагрузки.

Не радовали и осциллограммы. На +12В блок показал самый большой размах пульсаций среди всех протестированных:


Причем при уменьшении мощности нагрузки вдвое размах пульсаций уменьшался лишь на 10%. Впрочем, и на +5В блок явно выделялся среди прочих – размах пульсаций превышал 50мВ:


Как ни странно, испытания он пережил – но, судя по всему, на последнем дыхании. До радиаторов стало возможным дотронуться лишь через четверть часа после выключения блока, на дросселе групповой стабилизации расплавился и стек на окружающие конденсаторы герметик, которым он был залит, а в процессе тестирования дующий из блока воздух был даже не теплым, а горячим.

IPower LC-B300ATX

Еще один блок того же производителя, на этот раз из корпуса E-Star 8870 “Classica” .


Эволюционное развитие предыдущего блока. На радиаторах появилось сравнительно неплохое оребрение, в сетевом фильтре появился хоть и плохонький (намотанный монтажным проводом в хлорвиниловой изоляции), но все же дроссель, на выходе тоже добавилось как дросселей, так и конденсаторов. Емкости конденсаторов высоковольтного выпрямителя увеличились до 470мкФ, на выходе по шине +12В теперь стоит конденсатор CapXon на 2200мкФ, по +5В – два G-Luxon по 2200мкФ каждый, на шине +3,3В теперь стоят два G-Luxon по 1000мкФ. Более того, на +5В и +3,3В появились дроссели. Количество разъемов питания также увеличилось – теперь их пять для винчестеров и два для дисководов; правда, провода так и остались тонкими 20AWG.

А вот на изолирующей прокладке между платой и корпусом сэкономили и в этом блоке.

Разумеется, увеличение емкости конденсаторов на абсолютные значения напряжений и коэффициент стабилизации повлиять не могло, и эти параметры столь же плохи, как и у менее мощного блока:

+12V +5V +3,3V
min 11,64 4,99 3,30
max 13,30 5,27 3,37
min/max 12,5% 5,3% 2,1%

А вот с пульсациями стало немного получше. На шине +5В они теперь – благодаря появлению дросселя и увеличению в четыре раза (!) емкости фильтрующих конденсаторов –стали несущественны:


Впрочем, на +12В картина вида «биение гордого сердца, песня о буревестнике и девятый вал» (В. Ерофеев, «Путешествие Москва – Петушки») хоть и уменьшилась количественно, но качественно сохранилась прекрасно:


Причем такая картина наблюдается только на нагрузке, близкой к максимальной. На половинной же нагрузке все тихо и спокойно:


Графики изменения напряжений в зависимости от нагрузки можно посмотреть на .

Macropower MP-300AR-PFC

Четвертый (после двух Delta и одного FSP) в данном обзоре блок с PFC. Этот блок устанавливается в недавно появившиеся в продаже корпуса ASUS Ascot 6AR и на самом деле изготавливается уже знакомой нам компанией HEC. Впрочем, уже по очень солидному внешнему виду заметно, что продукция HEC ориентирована на разных потребителей, и этот блок имеет все шансы оказаться очень неплохим.


Внутри блок очень напоминает своего неудачного собрата – GIT G-300PT; впрочем, забегая вперед, скажу, что проблемы с перегревом транзисторов на MP-300AR я не заметил. Блок оборудован полноценным сетевым фильтром, емкость конденсаторов высоковольтного выпрямителя составляет 680мкФ (используются конденсаторы CapXon серии “LP”). На выходе по шине +5В стоит дроссель, два конденсатора Pce-tur по 1000мкФ каждый и один CapXon “GL” на 3300мкФ; на шине +12В – один Pce-tur на 2200мкФ; на шине +3,3В – дроссель, один конденсатор Pce-tur на 1000мкФ и один CapXon “GL” 2200мкФ. Вентилятор включен через терморегулятор.

Отдельно хочу отметить, что блок оборудован аж восемью разъемами для питания винчестеров; все прочее стандартно – 2 разъема для дисководов, ATX, ATX12V и AUX разъемы. Разумеется, используются полноценные провода сечением 18AWG – класс блока питания обязывает.

Пульсации заметны, но их размах на шине +5В около 15мВ. На шине +12В – несколько больше, около 40мВ при полной нагрузке:


Шина +5В


Шина +12В


При уменьшении нагрузки размах пульсаций снижается, но незначительно. А вот по уровню стабильности блок может конкурировать и с куда более именитым соперинком – с Delta Electronics... Равзе что шина +12В немного подвела, зато +5В на высоте:

+12V +5V +3,3V
min 11,68 5,02 3,36
max 12,92 5,21 3,38
min/max 9,6% 3,6% 0,6%

В заключение хотелось бы отметить не очень удачное расположение дросселя пассивного PFC – он крепится к верхней крышке блока питания непосредственно за вентилятором, перекрывая часть потока воздуха.

Samsung SPS300W (мод. PSCD331605D)

Этот блок производства Samsung был извлечен из корпуса Space K-1 . Внешне он примечателен в первую очередь расположением вентилятора – он стоит на нижней стенке блока, т.е. внутри компьютера, но дует при этом из системного блока наружу.


Во внутреннем устройстве блока обращают на себя внимание необычные радиаторы – без оребрения, но с загнутым под 90 градусов и перфорированными верхними частями. Впрочем, это понятно – в этом блоке поток воздуха направляется на них сверху, а не вдоль платы. Сетевой фильтр выполнен почти целиком. “Почти” – потому что первый дроссель представляет собой ферритовое кольцо, на которое намотаны несколько витков сетевого провода. Печатная плата прооизводит не особо приятное впечатление – какие-то разводы на верхней поверхности, остатки флюса на нижней...

В высоковольтном выпрямителе используются конденсаторы CapXon “LP” емкостью 330мкФ – немного для 300-ваттного блока... На выходах +5В и +3,3В – по дросселю и по два конденсатора CapXon “GL” по 1000мкФ; на выходе +12В – конденсатор CapXon “KM” на 2200мкФ. На последнем хотелось бы остановиться отдельно – дело в том, что серия “KM” – это конденсаторы широкого применения, а “GL” – так называемые LowESR, т.е. с низким эквивалентным последовательным сопротивлением. В импульсных источниках питания конденсаторы широкого применения не используются, т.к. из-за высокого сопротивления они могут заметно нагреваться, что в итоге приводит к их “вспуханию” и выходу блока питания из строя. Что будет с этим конденсатором через год-два – сказать трудно...

Вторая неприятная деталь – разъем ATX12V. Этот разъем был введен в дополнение к стандарту ATX 2.03 для систем, в которых процессоры питаются от шины +12В (это все системы на Pentium 4, двухпроцессорные системы на Athlon MP и так далее). Во-первых, небольшой разъем позволяет подвести питание непосредственно к стабилизатору питания процессора; во-вторых, в разъеме ATX всего один контакт +12В, и при большом токе он может разогреваться вплоть до расплавления корпуса разъема – в ATX12V разъеме таких контактов уже два. В блоке Samsung SPS300W разъем ATX12V изначально не предусмотрен, но для владельцев систем на Pentium 4 прилагается переходник. Проблема же в том, что переходник этот сделан с разъема питания ATX, т.е. проблема с перегревом и обгоранием контакта остается. Владельцам этого блока в случае таких неприятностей я бы советовал приобрести или сделать переходник на ATX12V с разъема питания винчестера; впрочем, и это не идеальный выход, ибо в рассматриваемом блоке таких разъемов всего четыре штуки.

И третье. Тестирование этого блока проводилось с максимальной нагрузкой на шину +3,3В, равной 14А (это максимально допустимый ток, несмотря на требования спецификации ATX поддерживать ток до 28А) и максимальной суммарной мощностью по шинам +5В и +3,3В, равной 160Вт.

Пульсации выходного напряжения были заметны, но существенной роли не играли – их размах составлял около 20мВ на шине +5В и около 40мВ на шине +12В, т.е. на среднем уровне:


Шина +5В


Шина +12В


А вот с напряжениями получилось хуже – во-первых, блок довольно-таки плохо держит напряжение на шине +5В, хуже даже, чем блоки IPower:

+12V +5V +3,3V
min 11,50 4,86 3,22
max 12,52 5,25 3,34
min/max 8,1% 7,4% 3,6%

Во-вторых, при нулевой нагрузке блок выдает напряжения, сильно выходящие за допустимые рамки – это хорошо видно на зависимости напряжения от тока, т.к. тесты начинались и заканчивались нулевой нагрузкой. Напомню, что, согласно требованиям спецификации, блок питания должен нормально реагировать на попытки запустить его на холостом ходу, либо, если уж он выдает напряжения – держать их в рамках дозволенного.

Ну и последняя ложка дегтя... Полную нагрузку блок выдержать не смог – он умер через четыре минуты после начала теста. Диагноз – не выдержал диодный мост в цепи +5В.

Simplex MPT-301

Этот блок, извлеченный из корпуса DTK WT-PT074W , произведен компанией Macron Power Co., Ltd.


Сетевой фильтр присутствует в полном объеме, половина собрана на отдельной плате, напаянной прямо на контакты сетевого разъема. Во входных цепях стоят конденсаторы Fuh-jyyu “LP” емкостью 470мкФ; на выходе в цепи +5В – два конденсатора Fuhjyuu “TM” емкостью по 2200мкФ каждый, в цепи +12В – один 3300мкФ G-Luxon, в цепи +3,3В – дроссель и два конденсатора Fuhjyyu “TM” по 2200мкФ.

По непонятным причинам производитель блока применяет нестандартную расцветку проводов в ATX-разъеме: фиолетовый +3,3В, оранжевый Power OK и синий -12В. Сами провода полагающегося сечения 18AWG и несут на себе четыре разъема питания винчестеров и два – дисководов. Не считая, разумеется, стандартных ATX, ATX12V и AUX.

Размах пульсаций по +12В вполне приемлем – около 40мВ, но вот на шине +5В с более жесткими требованиями он мог бы быть и поменьше. На обеих шинах наблюдается аккуратный «треугольник» достаточно заметной амплитуды:


Шина +5В


Шина +12В


Выходные напряжения блок держит сравнительно неплохо, вот только +12В немного подкачало:

+12V +5V +3,3V
min 11,80 5,02 3,31
max 13,18 5,26 3,33
min/max 10,5% 4,6% 0,6%

Кроме того, на можно заметить проблему, уже имевшую место для блоков IPower – замедленную реакцию на скачкообразное изменение нагрузки, когда выходные напряжения выходят на постоянный уровень лишь спустя несколько сотен миллисекунд после изменения нагрузки.

Заключение

Итак, еще одиннадцать блоков питания прошли через мои руки. Достойными среди них оказались пять – два блока питания от Delta Electronics, а также блоки от Fong Kai, FSP Group и Macropower; лидерство по качеству принадлежит блокам от Delta Electronics, однако и изделия других производителей не разочаруют своих владельцев. Не дотягивает до их уровня недорогой Simplex от Macron Power, из-за проблем с перегревом ключевых транзисторов выбыли HEC 300ER (который перед смертью успел продемонстрировать весьма странные параметры) и GIT G-300PT. На блоке питания от Samsung непонятно как оказалась этикетка с надписью “300W”, хотя на самом деле этот блок рассчитан максимум на 250Вт, что понятно даже при визуальном осмотре. Впрочем, бывает и хуже - блок питания IPower LC-B250 вообще способен играть роль разве что габаритного макета, но никак не устройства, могущего нормально питать современный компьютер; и лишь его старший брат LC-B300 имеет шансы занять место среди самых дешевых low-end блоков, рекомендовать которые к покупке у меня не поднимется рука.