Минор элемента матрицы. Ранг матрицы: определение, методы нахождения, примеры, решения

В данной теме рассмотрим понятия алгебраического дополнения и минора. Изложение материала опирается на термины, пояснённые в теме "Матрицы. Виды матриц. Основные термины" . Также нам понадобятся некоторые формулы для вычисления определителей . Так как в данной теме немало терминов, относящихся к минорам и алгебраическим дополнениям, то я добавлю краткое содержание, чтобы ориентироваться в материале было проще.

Минор $M_{ij}$ элемента $a_{ij}$

$M_{ij}$ элемента $a_{ij}$ матрицы $A_{n\times n}$ именуют определитель матрицы, полученной из матрицы $A$ вычёркиванием i-й строки и j-го столбца (т.е. строки и столбца, на пересечении которых находится элемент $a_{ij}$).

Для примера рассмотрим квадратную матрицу четвёртого порядка: $A=\left(\begin{array} {ccc} 1 & 0 & -3 & 9\\ 2 & -7 & 11 & 5 \\ -9 & 4 & 25 & 84\\ 3 & 12 & -5 & 58 \end{array} \right)$. Найдём минор элемента $a_{32}$, т.е. найдём $M_{32}$. Сперва запишем минор $M_{32}$, а потом вычислим его значение. Для того, чтобы составить $M_{32}$, вычеркнем из матрицы $A$ третью строку и второй столбец (именно на пересечении третьей строки и второго столбца расположен элемент $a_{32}$). Мы получим новую матрицу, определитель которой и есть искомый минор $M_{32}$:

Этот минор несложно вычислить, используя формулу №2 из темы вычисления :

$$ M_{32}=\left| \begin{array} {ccc} 1 & -3 & 9\\ 2 & 11 & 5 \\ 3 & -5 & 58 \end{array} \right|= 1\cdot 11\cdot 58+(-3)\cdot 5\cdot 3+2\cdot (-5)\cdot 9-9\cdot 11\cdot 3-(-3)\cdot 2\cdot 58-5\cdot (-5)\cdot 1=579. $$

Итак, минор элемента $a_{32}$ равен 579, т.е. $M_{32}=579$.

Часто вместо словосочетания "минор элемента матрицы" в литературе встречается "минор элемента определителя". Суть остается неизменной: чтобы получить минор элемента $a_{ij}$ нужно вычеркнуть из исходного определителя i-ю строку и j-й столбец. Оставшиеся элементы записывают в новый определитель, который и является минором элемента $a_{ij}$. Например, найдём минор элемента $a_{12}$ определителя $\left| \begin{array} {ccc} -1 & 3 & 2\\ 9 & 0 & -5 \\ 4 & -3 & 7 \end{array} \right|$. Чтобы записать требуемый минор $M_{12}$ нам понадобится вычеркнуть из заданного определителя первую строку и второй столбец:

Чтобы найти значение данного минора используем формулу №1 из темы вычисления определителей второго и третьего порядков :

$$ M_{12}=\left| \begin{array} {ccc} 9 & -5\\ 4 & 7 \end{array} \right|=9\cdot 7-(-5)\cdot 4=83. $$

Итак, минор элемента $a_{12}$ равен 83, т.е. $M_{12}=83$.

Алгебраическое дополнение $A_{ij}$ элемента $a_{ij}$

Пусть задана квадратная матрица $A_{n\times n}$ (т.е. квадратная матрица n-го порядка).

Алгебраическое дополнением $A_{ij}$ элемента $a_{ij}$ матрицы $A_{n\times n}$ находится по следующей формуле: $$ A_{ij}=(-1)^{i+j}\cdot M_{ij}, $$

где $M_{ij}$ - минор элемента $a_{ij}$.

Найдем алгебраическое дополнение элемента $a_{32}$ матрицы $A=\left(\begin{array} {ccc} 1 & 0 & -3 & 9\\ 2 & -7 & 11 & 5 \\ -9 & 4 & 25 & 84\\ 3 & 12 & -5 & 58 \end{array} \right)$, т.е. найдём $A_{32}$. Ранее мы уже находили минор $M_{32}=579$, поэтому используем полученный результат:

Обычно при нахождении алгебраических дополнений не вычисляют отдельно минор, а уж потом само дополнение. Запись минора опускают. Например, найдем $A_{12}$, если $A=\left(\begin{array} {ccc} -5 & 10 & 2\\ 6 & 9 & -4 \\ 4 & -3 & 1 \end{array} \right)$. Согласно формуле $A_{12}=(-1)^{1+2}\cdot M_{12}=-M_{12}$. Однако чтобы получить $M_{12}$ достаточно вычеркнуть первую строку и второй столбец матрицы $A$, так зачем же вводить лишнее обозначение для минора? Сразу запишем выражение для алгебраического дополнения $A_{12}$:

Минор k-го порядка матрицы $A_{m\times n}$

Если в предыдущих двух пунктах мы говорили лишь о квадратных матрицах, то здесь поведём речь также и о прямоугольных матрицах, у которых количество строк вовсе не обязательно равняется количеству столбцов. Итак, пусть задана матрица $A_{m\times n}$, т.е. матрица, содержащая m строк и n столбцов.

Минором k-го порядка матрицы $A_{m\times n}$ называется определитель, элементы которого расположены на пересечении k строк и k столбцов матрицы $A$ (при этом предполагается, что $k≤ m$ и $k≤ n$).

Например, рассмотрим матрицу $A=\left(\begin{array} {ccc} -1 & 0 & -3 & 9\\ 2 & 7 & 14 & 6 \\ 15 & -27 & 18 & 31\\ 0 & 1 & 19 & 8\\ 0 & -12 & 20 & 14\\ 5 & 3 & -21 & 9\\ 23 & -10 & -5 & 58 \end{array} \right)$ и запишем для неё какой-либо минор третьего порядка. Чтобы записать минор третьего порядка нам потребуется выбрать какие-либо три строки и три столбца данной матрицы. Например, возьмём строки с номерами 2, 4, 6 и столбцы с номерами 1, 2, 4. На пересечении этих строк и столбцов будут располагаться элементы требуемого минора. На рисунке элементы минора показаны синим цветом:

Миноры первого порядка находятся на пересечении одной строки и одного столбца, т.е. миноры первого порядка равны элементам заданной матрицы.

Минор k-го порядка матрицы $A_{m\times n}=(a_{ij})$ называется главным , если на главной диагонали данного минора находятся только главные диагональные элементы матрицы $A$.

Напомню, что главными диагональными элементами именуют те элементы матрицы, у которых индексы равны: $a_{11}$, $a_{22}$, $a_{33}$ и так далее. Например, для рассмотренной выше матрицы $A$ такими элементами будут $a_{11}=-1$, $a_{22}=7$, $a_{33}=18$, $a_{44}=8$. На рисунке они выделены розовым цветом:

Например, если в матрице $A$ мы вычеркнем строки и столбцы с номерами 1 и 3, то на их пересечении будут расположены элементы минора второго порядка, на главной диагонали которого будут находиться только диагональные элементы матрицы $A$ (элементы $a_{11}=-1$ и $a_{33}=18$ матрицы $A$). Следовательно, мы получим главный минор второго порядка:

Естественно, что мы могли взять иные строки и столбцы, - например, с номерами 2 и 4, получив при этом иной главный минор второго порядка.

Пусть некий минор $M$ k-го порядка матрицы $A_{m\times n}$ не равен нулю, т.е. $M\neq 0$. При этом все миноры, порядок которых выше k, равны нулю. Тогда минор $M$ называют базисным , а строки и столбцы, на которых расположены элементы базисного минора, именуют базисными строками и базисными столбцами .

Для примера рассмотрим матрицу $A=\left(\begin{array} {ccc} -1 & 0 & 3 & 0 & 0 \\ 2 & 0 & 4 & 1 & 0\\ 1 & 0 & -2 & -1 & 0\\ 0 & 0 & 0 & 0 & 0 \end{array} \right)$. Звапишем минор этой матрицы, элементы которого расположены на пересечении строк с номерами 1, 2, 3 и столбцов с номерами 1, 3, 4. Мы получим минор третьего порядка:

Найдём значение этого минора, используя формулу №2 из темы вычисления определителей второго и третьего порядков :

$$ M=\left| \begin{array} {ccc} -1 & 3 & 0\\ 2 & 4 & 1 \\ 1 & -2 & -1 \end{array} \right|=4+3+6-2=11. $$

Итак, $M=11\neq 0$. Теперь попробуем составить любой минор, порядок которого выше трёх. Чтобы составить минор четвёртого порядка, нам придётся использовать четвёртую строку, однако все элементы этой строки равны нулю. Следовательно, в любом миноре четвёртого порядка будет нулевая строка, а это означает, что все миноры четвёртого порядка равны нулю. Миноры пятого и более высоких порядков составить мы не можем, так как матрица $A$ имеет всего 4 строки.

Мы нашли минор третьего порядка, не равный нулю. При этом все миноры высших порядков равны нулю, следовательно, рассмотренный нами минор - базисный. Строки матрицы $A$, на которых расположены элементы этого минора (первая, вторая и третья), - базисные строки, а первый, третий и четвёртый столбцы матрицы $A$ - базисные столбцы.

Данный пример, конечно, тривиальный, так как его цель - наглядно показать суть базисного минора. Вообще, базисных миноров может быть несколько, и обычно процесс поиска такого минора куда сложнее и объёмнее.

Введём ещё одно понятие - окаймляющий минор.

Пусть некий минор k-го порядка $M$ матрицы $A_{m\times n}$ расположен на пересечении k строк и k столбцов. Добавим к набору этих строк и столбцов ещё одну строку и столбец. Полученный минор (k+1)-го порядка именуют окаймляющим минором для минора $M$.

Для примера обратимся к матрице $A=\left(\begin{array} {ccc} -1 & 2 & 0 & -2 & -14\\ 3 & -17 & -3 & 19 & 29\\ 5 & -6 & 8 & -9 & 41\\ -5 & 11 & 19 & -20 & -98\\ 6 & 12 & 20 & 21 & 54\\ -7 & 10 & 14 & -36 & 79 \end{array} \right)$. Запишем минор второго порядка, элементы которого расположены на пересечении строк №2 и №5, а также столбцов №2 и №4.

Добавим к набору строк, на которых лежат элементы минора $M$, ещё строку №1, а к набору столбцов - столбец №5. Получим новый минор $M"$ (уже третьего порядка), элементы которого расположены на пересечении строк №1, №2, №5 и столбцов №2, №4, №5. Элементы минора $M$ на рисунке выделены розовым цветом, а элементы, которые мы добавляем к минору $M$ - зелёным:

Минор $M"$ является окаймляющим минором для минора $M$. Аналогично, добавляя к набору строк, на которых лежат элементы минора $M$, строку №4, а к набору столбцов - столбец №3, получим минор $M""$ (минор третьего порядка):

Минор $M""$ также является окаймляющим минором для минора $M$.

Минор k-го порядка матрицы $A_{n\times n}$. Дополнительный минор. Алгебраическое дополнение к минору квадратной матрицы.

Вновь вернёмся к квадратным матрицам. Введём понятие дополнительного минора.

Пусть задан некий минор $M$ k-го порядка матрицы $A_{n\times n}$. Определитель (n-k)-го порядка, элементы которого получены из матрицы $A$ после вычеркивания строк и столбцов, содержащих минор $M$, называется минором, дополнительным к минору $M$.

Для примера рассмотрим квадратную матрицу пятого порядка: $A=\left(\begin{array} {ccc} -1 & 2 & 0 & -2 & -14\\ 3 & -17 & -3 & 19 & 29\\ 5 & -6 & 8 & -9 & 41\\ -5 & 11 & 16 & -20 & -98\\ -7 & 10 & 14 & -36 & 79 \end{array} \right)$. Выберем в ней строки №1 и №3, а также столбцы №2 и №5. На пересечении оных строк и столбцов будут элементы минора $M$ второго порядка:

Теперь уберём из матрицы $A$ строки №1 и №3 и столбцы №2 и №5, на пересечении которых находятся элементы минора $M$ (убираемые строки и столбцы показаны красным цветом на рисунке ниже). Оставшиеся элементы образуют минор $M"$:

Минор $M"$, порядок которого равен $5-2=3$, является минором, дополнительным к минору $M$.

Алгебраическим дополнением к минору $M$ квадратной матрицы $A_{n\times n}$ называется выражение $(-1)^{\alpha}\cdot M"$, где $\alpha$ - сумма номеров строк и столбцов матрицы $A$, на которых расположены элементы минора $M$, а $M"$ - минор, дополнительный к минору $M$.

Словосочетание "алгебраическое дополнение к минору $M$" часто заменяют словосочетанием "алгебраическое дополнение минора $M$".

Для примера рассмотрим матрицу $A$, для которой мы находили минор второго порядка $ M=\left| \begin{array} {ccc} 2 & -14 \\ -6 & 41 \end{array} \right| $ и дополнительный к нему минор третьего порядка: $M"=\left| \begin{array} {ccc} 3 & -3 & 19\\ -5 & 16 & -20 \\ -7 & 14 & -36 \end{array} \right|$. Обозначим алгебраическое дополнение минора $M$ как $M^*$. Тогда согласно определению:

$$ M^*=(-1)^\alpha\cdot M". $$

Параметр $\alpha$ равен сумме номеров строк и столбцов, на которых находится минор $M$. Этот минор расположен на пересечении строк №1, №3 и столбцов №2, №5. Следовательно, $\alpha=1+3+2+5=11$. Итак:

$$ M^*=(-1)^{11}\cdot M"=-\left| \begin{array} {ccc} 3 & -3 & 19\\ -5 & 16 & -20 \\ -7 & 14 & -36 \end{array} \right|. $$

В принципе, используя формулу №2 из темы вычисления определителей второго и третьего порядков , можно довести вычисления до конца, получив значение $M^*$:

$$ M^*=-\left| \begin{array} {ccc} 3 & -3 & 19\\ -5 & 16 & -20 \\ -7 & 14 & -36 \end{array} \right|=-30. $$

Пусть в матрице выделены
какие-либо k строк и k столбцов, k и k. Элементы, расположенные на пересечении этих строк и столбцов, образуют квадратную матрицу А¢ порядка k (подматрицу матрицы А).
Ее определитель называется минором k-го порядка данной матрицы А. Очевидно, что в общем случае таких миноров матрицы А может быть несколько. При этом максимальный порядок миноров равен минимальному из чисел m и n, т.е. . Из всех возможных миноров матрицы А выделим те, которые отличны от нуля. В свою очередь, среди этих миноров можно найти по крайней мере один минор наибольшего порядка.

Определение. Наибольший порядок минора, отличного от нуля, называется рангом матрицы.

Определение. Отличный от нуля минор матрицы, порядок которого равен рангу матрицы, называется базисным минором этой матрицы.

Строки и столбцы, на пересечении которых стоит базисный минор, называются базисными .

В общем случае у матрицы может быть несколько базисных миноров.

Важную роль играет следующая основная теорема, которую мы приводим без доказательства.

Теорема 3.6. (о базисном миноре). Базисные строки (базисные столбцы) матрицы линейно независимы. Любая строка (любой столбец) матрицы А является линейной комбинацией базисных строк (базисных столбцов).

Таким образом, если ранг матрицы А равен r , то в этой матрице обязательно имеется минор r -го порядка, отличный от нуля, а все миноры, порядок которых больше r , равны нулю.

Ранее было дано определение ранга матрицы как наибольшего числа линейно независимых ее вектор-строк (столбцов). В курсе алгебры доказывается, что эти два определения эквивалентны. Это дает возможность вычислять ранг матрицы, а значит, и ранг системы векторов.

Пример. Найти все базисные миноры матрицы

А=.

○ Любой минор матрицы А третьего порядка равен нулю, так как содержит нулевую строку. Будем находить миноры второго порядка, отличные от нуля.

, , , , .

Среди миноров второго порядка есть отличные от нуля, значит ранг матрицы А равен 2 и базисными минорами являются . ●

Теорема 3.7. Для того чтобы определитель n-го порядка был равен нулю, необходимо и достаточно, чтобы его строки (столбцы) были линейно зависимы.

□ 1) Пусть определитель квадратной матрицы А порядка n равен нулю. Тогда максимальный порядок миноров, не равных нулю, должен быть меньше n ; следовательно, ранг матрицы А меньше n . Это означает, что система всех строк матрицы линейно зависима.

2) Если строки А 1 , А 2 ,…, А m определителя линейно зависимы,
то по свойству 6° линейной зависимости одна строка А i является линейной комбинацией остальных строк определителя, т.е.


Прибавив к строке А i эту линейную комбинацию, умноженную на (–1), получим одну строку, целиком состоящую из нулей, при этом на основании свойства 7° определителя величина определителя не изменится. Но тогда по свойству 2° определитель равен нулю. ■


Пример. Доказать, что векторы a 1 =(2;–1;3), a 2 =(–1;1;0), a 3 =(1;1;6) компланарны.

○ Три ненулевые трехмерные векторы компланарны, если они линейно зависимы. Составим определитель из координат этих векторов

Так как определитель равен нулю, то его строки линейно зависимы, значит, линейно зависимы векторы a 1 =(2;–1;3), a 2 =(–1;1;0), a 3 =(1;1;6), следовательно, они компланарны. ●

Определение. Рангом матрицы называется максимальное число линейно независимых строк, рассматриваемых как векторы.

Теорема 1 о ранге матрицы. Рангом матрицы называется максимальный порядок отличного от нуля минора матрицы.

Понятие минора мы уже разбирали на уроке по определителям , а сейчас обобщим его. Возьмём в матрице сколько-то строк и сколько-то столбцов, причём это "сколько-то" должно быть меньше числа строк и стобцов матрицы, а для строк и столбцов это "сколько-то" должно быть одним и тем же числом. Тогда на пересечении скольки-то строк и скольки-то столбцов окажется матрица меньшего порядка, чем наша исходная матрица. Определитель это матрицы и будет минором k-го порядка, если упомянутое "сколько-то" (число строк и столбцов) обозначим через k.

Определение. Минор (r +1)-го порядка, внутри которого лежит выбранный минор r -го порядка, называется называется окаймляющим для данного минора.

Наиболее часто используются два способа отыскания ранга матрицы . Это способ окаймляющих миноров и способ элементарных преобразований (методом Гаусса).

При способе окаймляющих миноров используется следующая теорема.

Теорема 2 о ранге матрицы. Если из элементов матрицы можно составить минор r -го порядка, не равный нулю, то ранг матрицы равен r .

При способе элементарных преобразований используется следующее свойство:

Если путём элементарных преобразований получена трапециевидная матрица, эквивалентная исходной, то рангом этой матрицы является число строк в ней кроме строк, полностью состоящих из нулей.

Отыскание ранга матрицы способом окаймляющих миноров

Окаймляющим минором называется минор большего порядка по отношению к данному, если этот минорм большего порядка содержит в себе данный минор.

Например, дана матрица

Возьмём минор

окаймляющими будут такие миноры:

Алгоритм нахождения ранга матрицы следующий.

1. Находим не равные нулю миноры второго порядка. Если все миноры второго порядка равны нулю, то ранг матрицы будет равен единице (r =1 ).

2. Если существует хотя бы один минор второго порядка, не равный нулю, то составляем окаймляющие миноры третьего порядка. Если все окаймляющие миноры третьего порядка равны нулю, то ранг матрицы равен двум (r =2 ).

3. Если хотя бы один из окаймляющих миноров третьего порядка не равен нулю, то составляем окаймляющие его миноры. Если все окаймляющие миноры четвёртого порядка равны нулю, то ранг матрицы равен трём (r =2 ).

4. Продолжаем так, пока позволяет размер матрицы.

Пример 1. Найти ранг матрицы

.

Решение. Минор второго порядка .

Окаймляем его. Окаймляющих миноров будет четыре:

,

,

Таким образом, все окаймляющие миноры третьего порядка равны нулю, следовательно, ранг данной матрицы равен двум (r =2 ).

Пример 2. Найти ранг матрицы

Решение. Ранг данной матрицы равен 1, так как все миноры второго порядка этой матрицы равны нулю (в этом, как и в случаях окаймляющих миноров в двух следующих примерах, дорогим студентам предлагается убедиться самостоятельно, возможно, используя правила вычисления определителей), а среди миноров первого порядка, то есть среди элементов матрицы, есть не равные нулю.

Пример 3. Найти ранг матрицы

Решение. Минор второго порядка этой матрицы , в все миноры третьего порядка этой матрицы равны нулю. Следовательно, ранг данной матрицы равен двум.

Пример 4. Найти ранг матрицы

Решение. Ранг данной матрицы равен 3, так как единственный минор третьего порядка этой матрицы равен 3.

Отыскание ранга матрицы способом элементарных преобразований (методом Гаусса)

Уже на примере 1 видно, что задача определения ранга матрицы способом окаймляющих миноров требует вычисления большого числа определителей. Существует, однако, способ, позволяющий свести объём вычислений к минимуму. Этот способ основан на использовании элементарных преобразований матриц и ещё называется также методом Гаусса.

Под элементарными преобразованиями матрицы понимаются следующие операции:

1) умножение какой-либо строки или какого либо столбца матрицы на число, отличное от нуля;

2) прибавление к элементам какой-либо строки или какого-либо столбца матрицы соответствующих элементов другой строки или столбца, умноженных на одно и то же число;

3) перемена местами двух строк или столбцов матрицы;

4) удаление "нулевых" строк, то есть таких, все элементы которых равны нулю;

5) удаление всех пропорциональных строк, кроме одной.

Теорема. При элементарном преобразовании ранг матрицы не меняется. Другими словами, если мы элементарными преобразованиями от матрицы A перешли к матрице B , то .

Матрицы, элементы которой стоят в данной прямоугольной матрице порядка k (который называется также порядком этого минора) на пересечении строк с номерами и столбцов с номерами .

Если номера отмеченных строк совпадают с номерами отмеченных столбцов, то минор называется главным , а если отмечены первые k строк и первые k столбцов ― угловым или ведущим главным .

Дополнительный минор элемента матрицы n-го порядка есть определитель порядка (n-1), соответствующий той матрице, которая получается из матрицы путем вычеркивания i-ой строки и j-го столбца.

Базисным минором матрицы называется любой её ненулевой минор максимального порядка. Для того чтобы минор был базисным, необходимо и достаточно, чтобы все окаймляющие его миноры (то есть содержащие его миноры на единицу большего порядка) были равны нулю. Система строк (столбцов) матрицы, связанных с базисным минором, является максимальной линейно независимой подсистемой системы всех строк (столбцов) матрицы.

Пример

Например, есть матрица:

Предположим, надо найти дополнительный минор M 23 . Этот минор - определитель матрицы, получающейся путем вычеркивания строки 2 и столбца 3:


Получаем M 23 = 13

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Минор матрицы" в других словарях:

    Минор (от лат. minor меньший) k го порядка матрицы, определитель, составленный из элементов, стоящих на пересечении произвольно выделенных k строк и k столбцов матрицы. Так, определитель есть М. 2 го порядка матрицы составленный из ее элементов,… …

    Определитель, составленный из элементов, состоящих на пересечении произвольно выделенных k строк и k столбцов данной матрицы или определителя … Большой Энциклопедический словарь

    МИНОР, определитель, составленный из элементов, состоящих на пересечении произвольно выделенных k строк и k столбцов данной матрицы или определителя … Энциклопедический словарь

    1. М. элемента aij определителя А есть определитель, полученный из А после вычеркивания элементов i ой строки и j гo столбца. М. m го порядка матрицы А ||aij|| есть определитель m го порядка, составленный из m2 элементов, стоящих на пересечении… … Геологическая энциклопедия

    Минор - см. Определитель матрицы … Экономико-математический словарь

    У этого термина существуют и другие значения, см. Минор (значения). Минор матрицы ― определитель такой квадратной матрицы порядка (который называется также порядком этого минора), элементы которой стоят в матрице на пересечении строк с номерами … Википедия

    I Минор Лазарь Соломонович , советский невропатолог, заслуженный деятель науки РСФСР (1927). В 1879 окончил медицинский факультет Московского университета, работал у А. И. Бабухина, А. Я. Кожевникова. В 1910 17… … Большая советская энциклопедия

    А; м. [от итал. minore меньший]. 1. Музыкальный лад, звуки которого образуют аккорд, построенный на малой трапеции (характеризуется звуковой окраской, связанной с настроениями грусти, скорби; противоп.: мажор). Играть в миноре. 2. Разг. О… … Энциклопедический словарь

    Порядка к определитель матрицы, элементы к рой стоят в данной прямоугольной матрице на пересечении кразных столбцов и кразных строк. Если номера отмеченных строк совпадают с номерами отмеченных столбцов, то М. наз. главным, а есля отмечены первые … Математическая энциклопедия

    Определитель, составленный из элементов, стоящих на пересечении произвольно выделенных k строк и k столбцов данной матрицы или определителя … Естествознание. Энциклопедический словарь