Рецепторная функция мембраны связана с. Рецепторная функция биологических мембран одно из. Рецепторная функция белков

Важную роль в жизнедеятельности клетки играет рецепторная функция мембраны. Она связана с локализацией на плазматической мембране специальных структур (рецепторных белков), связанных со специфическим узнаванием химических или физических факторов. Многие пронзающие белки представляют собой гликопротеиды - с наружной стороны клетки они содержат полисахаридные боковые цепочки. Часть таких гликопротеидов, покрывающих клетку "лесом" молекулярных антенн, выполняет роль рецепторов гормонов. Когда определенный гормон связывается со своим рецептором, он изменяет структуру гликопротеида, что приводит к запусканию клеточного ответа. Открываются каналы, по которым определенные вещества поступают в клетку или выводятся из нее. Клеточная поверхность обладает большим набором рецепторов, делающих возможными специфические реакции с различными агентами. Роль многих клеточных рецепторов заключается в передаче сигналов извне внутрь клетки.

22. Рецепторы клетки: понятие, расположение, разновидности, строение.

На плазматических мембранах клетки расположены сигнальные молекулы - белки, получившие название рецепторы. Рецепторы клеток связывают молекулу и инициируют ответ. Они представлены трансмембранными белкоми, имеющих специальный участок для связывания физиологически активных молекул - гормонов и нейромедиаторов. Многие рецепторные белки в ответ на связывание определенных молекул меняют транспортные свойства мембран. Вследствие этого может изменяться полярность мембран, генерироваться нервный импульс или изменяться обмен веществ.

Различают внутриклеточные рецепторы и рецепторы, располагающиеся на поверхности клетки в плазматической мембране. Среди них выделяют рецепторы двух типов - связанные с каналами клетки и не связаны с каналами. Они различаются между собой по скорости и избирательностью воздействия сигнала на определенные мишени. Рецепторы, связанные с каналами, после взаимодействия с химическими веществами (гормон, нейро- медиатор) способствуют образованию в мембране открытого канала, в результате чего сразу же меняется ее проницаемость. Рецепторы, не связанные с каналами, также взаимодействуют с химическими веществами, но другой природы, в основном это ферменты. Здесь эффект косвенный, относительно замедленный, но более длительный. Функция этих рецепторов лежит в основе обучения и памяти.

23. Транспорт веществ через клеточную оболочку: понятие, разновидности, примеры.

Мембранный транспорт- транспорт веществ сквозь клеточную мембрану в клетку или из клетки, осуществляемый с помощью различных механизмов - простой диффузии, облегченной диффузии и активного транспорта. Разновидности транспорта описаны в 16 и 17 ответах.

24. Межклеточные контакты: понятие, разновидности, значение.

Межклеточные контакты - соединения между клетками, образованные при помощи белков. Они обеспечивают непосредственную связь между клетками. Кроме того, клетки взаимодействуют друг с другом на расстоянии с помощью сигналов (главным образом - сигнальных веществ), передаваемых через межклеточное вещество.

Каждый тип межклеточных контактов формируется за счет специфических белков, подавляющее большинство которых - трансмембранные белки. Специальные адапторные белки могут соединять белки межклеточных контактов с цитоскелетом, а специальные "скелетные" белки - соединять отдельные молекулы этих белков в сложную надмолекулярную структуру. Во многих случаях межклеточные соединения разрушаются при удалении из среды ионов Ca2+.

Все клетки должны обладать системами, позволяющими определять состояние и изменения окружающей среды, чтобы адаптироваться к ним. Эти системы представляют собой разнообразные рецепторные молекулы, которые располагаются в поверхностных структурах, чаще всего - в плазматических мембранах, реже - в клеточных стенках, причем у грамотрицательных бактерий - в наружной мембране. Функция рецепторных молекул и их ассоциаций состоит во взаимодействии с внеклеточными компонентами и инициировании специфического клеточного ответа.

Рецепторные молекулы в большинстве случаев представлены белками, но эту роль могут выполнять и другие молекулы, например гликолипиды, гликопротеины или сфинголипиды. Так, показано, что ганглиозиды служат местом связывания холерного и столбнячного токсинов, а также участвуют в регуляции процессов клеточного роста и дифференцировки.

Среди огромного разнообразия клеточных рецепторов можно выделить несколько основных типов. В поверхностных структурах бактериальных, дрожжевых, животных клеток присутствуют рецепторы, определяющие способность клеток распознавать друг друга, взаимодействовать, образуя скопления, а также связываться с нерастворимыми компонентами внеклеточного матрикса. Примером рецепторов указанного типа служат белковые ворсинки, обнаруженные у патогенных штаммов E. coli, которые вызывают инфекционные заболевания мочевых путей человека. Ворсинки крепятся в наружной мембране и содержат на конце рецепторный белок - адгезин, способный специфически связываться с дигалактозидсодержащими гликолипидами. Эти липиды присутствуют на поверхности эпителиальных клеток, выстилающих мочевые пути, где размножаются бактерии.

Другой класс рецепторов представлен молекулами, расположенными в плазматических мембранах организмов и связывающими питательные вещества и метаболиты. Эти рецепторы участвуют в процессах эндо- и экзоцитоза, определяя специфичность этих видов транспорта.

Более сложные рецепторные реакции сопровождаются связыванием рецептора с метаболитом, гормоном или нейромедиатором, передачей сигнала внутрь клетки и следующим затем клеточным ответом. К подобному классу рецепторов относятся, например, белки бактерий, ответственные за хемотаксис . В составе плазматической мембраны E. coli присутствует рецептор для аспартата, который представляет собой трансмембранный белок. Этот белок осуществляет связывание аспартата, что влечет за собой конформационное изменение в той части молекулы, которая обращена в цитоплазму. Это изменение и служит сигналом, заставляющим опосредованным образом (через фосфорилирование другого белкового компонента системы) вращаться жгутики. В результате клетка перемещается по градиенту концентрации аспартата, получая возможность использовать его в качестве питательного субстрата. Клеточный ответ на сигнал, обусловленный рецепцией специфического вещества, может выражаться также в активации транскрипции отдельных генов. В такую рецепторную систему входит белок-регулятор, находящийся, по-видимому, в цитоплазме в растворимой форме. Считается, что рецепторы каким-то образом модифицируют регуляторные белки, и затем последние активируют транскрипцию.

Аналогичным образом происходит передача сигнала при связывании лиганда (нейромедиатора или гормона) со специфическим рецептором на наружной поверхности мембраны животной клетки. Это событие инициирует конформационный переход в молекуле рецептора и следующий затем каскад событий в клетке, который может включать открывание канала (никотиновый ацетилхолиновый рецептор), фосфорилирование клеточных белков, сопровождающееся изменением их активности, образование комплекса с G-белками. В последнем случае G-белки активируются, высвобождаются из комплекса и диффундируют к клеточным мишеням, вызывая специфический ответ. Одной из наиболее распространенных мишеней G-белков является аденилатциклаза (катализирует образование сАМР). Конформационное изменение этого фермента приводит к изменению внутриклеточной конценрации сАМР, который, как известно (глава 3), служит вторым посредником, влияя на множество внутриклеточных процессов.

Наконец, многие клетки имеют в составе мембран рецепторы, способные в ответ на стимул (внешний сигнал) генерировать нервный импульс. Нервный импульс, возникший в мембране специализированной рецепторной клетки передается через синапсы по отросткам центростремительных нервных клеток к центральной нервной системе, а затем по отросткам центробежных нервных клеток - к мышце или железе. В клетках скелетных мышц при этом возбуждается ацетилхолиновый рецептор и возникает потенциал действия , а через короткий промежуток времени (около 35 мс) происходит сокращение за счет движения актина и миозина внутриклеточных миофибрилл .

У любых клеток есть мембранные белки-рецепторы. Это трансмембранные белки, пересекающие липидный бислой один или несколько раз. В состав многих из них входят олигосахариды (такие рецепторы правильнее называть гликопротеидами). Такие белки присутствуют не только на наружной мембране, но и на многих внутриклеточных мембранах. Например, рианодиновые рецепторы и рецепторы инозитолтрифосфата есть на мембране эндоплазматического ретикулума. Мембранные рецепторы связывают сигнальное вещество (лиганд) и при этом изменяют свою конформацию. Часть из них одновременно являются ионными каналами; при связывании лиганда канал может открываться или закрываться. Такие белки называются ионотропные рецепторы. Другие рецепторы при связывании лиганда запускают какую-нибудь химическую реакцию на внутренней стороне мембраны (так что они являются одновременно ферментами или регуляторными белками); такие белки называются метаботропные рецепторы. Два главных типа метаботропных рецепторов - это рецепторы, сопряженные с G-белками, и рецепторы с протеинкиназной активностью. Рецепторы, сопряженные с G-белками - это семиспиральные (семь раз пересекающие мембрану в виде альфа-спиралей) белки. Рассмотрим механизм их действия на примере бета-2 адренорецепторов. Это - один из типов адренорецепторов, чувствительный в основном к андреналину (норадреналин действует на них в меньшей степени). Выявленная с помощью рентгеноструктурного анализа структура β2-адренорецептора, связанного с одним из искусственных лигандов. При действии адреналина на эти рецепторы гладкие мышцы бронхов и кровеносных сосудов скелетных мышц расслабляются, а в клетках печени усиливается распад гликогена (гликогенолиз), и образующаяся глюкоза выходит в кровь. С данным типом рецепторов связан Gs-белок. Этот белок, как и другие G-белки, состоит из трех субъединиц (полипептидных цепей) - α,β, и γ. Он "приделан" к внутренней стороне мембраны с помощью двух хвостов жирных кислот и свободно передвигается в плоскости мембраны. С α-субъединицей неактивного Gs-белка связана молекула ГДФ. Когда на бета-2 рецептор действует адреналин, рецептор активируется (меняет свою конформацию) и активирует Gs-белок. В результате α-субъединица отделяется от βγ-субъединицы и обменивает молекулу ГДФ на молекулу ГТФ. Такая активная α-субъединица соединяется с трансмембранным белком-ферментом аденилатциклазой, активируя его.



Активация Gs-белка и аденилатциклазы

Этот фермент осуществляет синтез циклического аденозинмонофосфата (цАМФ) из АТФ. цАМФ - один из универсальных вторичных посредников, используемых для передачи сигнала в клетках. В данном случае цАМФ активирует одну из протеинкиназ - протеинкиназу А (РКА). Этот фермент состоит из четырех субъединиц - двух регуляторных и двух каталитических. При связывании четырех молекул цАМФ регуляторные субъединицы отделяются от каталитических, которые при этом активируются. В клетках печени РКА фосфорилирует другую протеинкиназу - киназу фосфорилазы. Киназа фосфорилазы, в свою очередь, фосфорилирует фосфорилазу гликогена. Под действием фосфорилазы происходит фосфоролиз гликогена . В результате образуется глюкоза,которая через белки-переносчики выходит из клеток печени в кровь и потребляется активно работающими при стрессе органами - в первую очередь скелетными мышцами.

Механизм активации и инактивации протеинкиназы А (РКА). PDE - фосфодиэстераза.

Зачем же нужна такая сложная и многоступенчатая система передачи сигнала? Во-первых, на первых этапах сигнал передается с внешней стороны мембраны (на которую действует гормон) на внутреннюю, где происходит синтез цАМФ. Хорошо растворимая, гидрофильная молекула цАМФ быстро диффундирует по всей клетке и передает сигнал во все ее участки. Во-вторых, на каждом этапе сигнализацию можно регулировать. Но главный смысл многоступенчатой передачи - в том, что на большинстве этапов происходит усиление сигнала. Так, за время активности рецептора он может активировать множество молекул G-белка. Каждый Gs-белок активирует одну молекулу аденилатциклазы, но аденилатциклаза синтезирует тысячи молекул цАМФ. 4 молекулы цАМФ активируют всего две каталитических субъединицы РКА, но те могут фосфорилировать множество молекул киназы фосфорилазы, и т.п. В результате такой системы многократного усиления под действием одной молекулы адреналина в клетке печени образуется около 10.000.000 молекул глюкозы. Когда стресс прошел, уровень секреции адреналина снижается. Из крови адреналин быстро выводится через почки и перестает действовать на рецепторы. После этого инактивируется Gs-белок. G-белки обладают ГТФ-азной активностью: α-субъединица расщепляет связанную с ней молекулу ГТФ до ГДФ (и фосфата), после чего связывается с βγ-субъединицей и переходит в неактивное состояние. таким образом, G-белок действует как автоматический "молекулярный выключатель". Уровень цАМФ в клетке понимается до исходного за счет того, что цАМФ расщепляет особый фермент - фосфодиэстераза. В результате каталитические субъединицы РКА объединяются с регуляторными и инактивируются. Инактивацию киназы фосфорилазы и фосфорилазы гликогена осуществляют ферменты протеинфосфатазы, отщепляющие от этих ферментов фосфатные группы. Так распад гликогена прекращается.

Рецепторная функция - это важнейшая способность клетки адекватно реагировать на сигналы внешней и внутренней среды, позволяющая приспосабливаться к меняющимся условиям существования.

Сигналы - это различные вещества или виды энергии, передающие в клетку определенную информацию. Сигналы могут быть:

Химическими - гормоны, медиаторы, факторы роста, цитокины и др.; пахучие вещества или отличающиеся вкусом;

Физическими - свет, звук, температура, давление, электрические потенциалы;

Физико-химическими - осмотическое давление, напряжение О 2 или СО 2 ;

Сложными.

Клеточные рецепторы - это генетически детерминированные макромолекулы, локализованные в различных областях клетки и специализированные на восприятии биологически значимых специфических сигналов химической и физической природы. По своей структуре рецептор состоит из 3 доменов:

1) внемембранного - обеспечивает связывание с сигнальным веществом - лигандом;

2) трансмембранного - переносит сигнал, способен к трансформации;

3) цитоплазматического - обеспечивает внутриклеточные процессы - реакцию на сигнал.

Клеточные рецепторы делят на 2 группы:

Рецепторы плазматической мембраны;

Внутриклеточные рецепторы – цитоплазматические и ядерные.

Рецепторы плазматической мембраны расположены на поверхности плазмолеммы и способны высокоспецифически связываться с лигандами. По химической природе это преимущественно гликопротеины.

Рецепторы выполняют функции:

1) регулируют проницаемость плазмолеммы, изменяя конформацию белков и ионных каналов;

2) регулируют поступление некоторых молекул в клетку;

3) действуют как датчики, превращая внеклеточные сигналы во внутриклеточные;



4) связывают молекулы внеклеточного матрикса с цитоскелетом; эти рецепторы называются интегринами , они обеспечивают формирование контактов между клетками и клеткой и межклеточным веществом.

Рецепторы плазматической мембраны можно разделить на 5 семейств:

- рецепторы, связанные с каналами , взаимодействуют с лигандом - нейромедиатором, который временно открывает или закрывает воротный механизм, в результате чего начинается или блокируется транспорт ионов через канал. Каналообразующие рецепторы состоят из ассоциированных белковых субъединиц, специфически пропускающих ионы. С этими рецепторами взаимодействуют глютаминовая кислота, γ-аминомасляная кислота, глицин, циклические мононуклеотиды (цАМФ, цГМФ);

- каталитические рецепторы включают внеклеточную часть (собственно рецептор, который воспринимает сигнал) и цитоплазматическую часть, которая работает как протеинкиназа. Информация сигнальной молекулы приводит к началу каскада биохимических изменений в клетке, что приводит к определенному физиологическому ответу. На такие рецепторы воздействует инсулин, эпидермальный и тромбоцитарный фактор роста, фактор роста нервов.

- рецепторы, связанные с G-белками - это трансмембранные белки, связанные с ионным каналом или ферментом. Это целый комплекс молекул, который включает:

1) сам рецептор, взаимодействующий с сигнальной молекулой (первый посредник) - это интегральный белок, который 7 раз прошивает плазмолемму, внутриклеточные петли этих рецепторов содержат центры связывания G-белка (например, β-адренорецептор);

2) G-белок (гуанозин трифосфат-связывающего регуляторный белок, состоящий из нескольких компонентов), который передает сигнал на связанный с мембраной фермент (аденилатциклазу) или ионный канал, после чего активируется;

3) второй внутриклеточный посредник - чаще циклический АМФ или ГМФ (цАМФ, гАМФ) или Са 2+ .

Через такие рецепторы реализуются эффекты 80 % нейромедиаторов, пептидных гормонов;

- иммуноглобулиновые рецепторы - это рецепторы-иммуноглобулины на поверхности макрофагов и иммунокомпетентных клеток, обеспечивающие распознавание всего чужеродного и иммунный ответ организма.

- интегрины - клеточные адгезионные молекулы - трансмембранные белки, которые служат рецепторами для внеклеточных фибриллярных макромолекул - фибронектина и ламинина. Фибронектин связывается с клетками и молекулами внеклеточного матрикса (коллагеном, гепарином, фибрином). Фибронектин как адгезионный мостик между клеткой и межклеточным веществом. Внутриклеточная часть интегрина соединяется через другие белки (винкулин, талин, α-актинин) с цитоскелетом.

Таким образом, рецепторы плазмолеммы воспринимают различные сигналы, которые при необходимости изменяют метаболизм в клетке, инициируют и регулируют сокращения, секрецию клетки, модулируют электрический потенциал на поверхности мембраны.

Внутриклеточные рецепторы. Внутриклеточные рецепторы являются белками, регулирующими генную активность клетки. Они располагаются:

В цитоплазме и в мембране органелл. Цитоплазматические рецепторы обнаружены для стероидных гормонов, например, для глюко- и минералокортикоидов, андрогенов и прогестерона. Митохондрии имеют рецепторы к тиреоидным гормонам;

В ядре - ядерные рецепторы для тиреоидных гормонов, рецепторов для эстрогенов, витамина Д, ретиноевой кислоты.

Рецепторы для стероидных гормонов имеют 3 домена (части):

1) гормон-связывающий - для взаимодействия с лигандом;

2) ДНК-связывающий;

3) домен, активирующий транскрипцию.

Сигнальные молекулы для таких рецепторов гидрофобные и свободно диффундируют через плазмолемму, затем связываются с внутриклеточными белками-рецепторами. После этого изменяется конформация белка, происходит его активация, повышается сродство к ДНК. Такие гормон-рецепторные комплексы связываются со специфическими генами в ядре, и, регулируя их экспрессию, обеспечивают биосинтез ряда ферментов, изменяющих функциональное состояние клетки.

ТЕМА 5

МЕЖКЛЕТОЧНЫЕ СОЕДИНЕНИЯ, ТИПЫ И СТРУКТУРНО-

ФУНКЦИОНАЛЬНАЯ КЛАССИФИКАЦИЯ

Межклеточные соединения - это специальные структуры, которые вместе с плазмолеммой обеспечивают взаимодействие между клетками. Межклеточные контакты обеспечиваются гликокаликсом и связанными с ним белками. Межклеточные соединения можно подразделить на 2 основных вида:

1. Механические соединения - обеспечивают механическую связь клеток друг с другом. К ним относят простые и сложные соединения: плотные соединения (плотный контакт), десмосомы, интердигитации.

2. Коммуникационные соединения - обеспечивают химическую связь между клетками. К ним относят щелевые соединения.

Механические соединения

I. Простое межклеточное соединение - сближение плазмолемм соседних клеток на расстояние 15–20 нм. При этом гликопротеиды соседних клеток специфичны и «узнают» друг друга, то есть являются рецепторами (кадгерины, интегрины). Обязательным условием соединения является наличие ионов Са 2+ . Например, Е-кадгерины обеспечивают соединение эпителиальных клеток по всей контактирующей поверхности (рисунок 3).

Рисунок 3 - Простое межклеточное соединение (схема):

Краткий обзор:

Гликокаликс- это внешний по отношению к липопротеидной мембране слой, содержащий полисахаридные цепочки мембранных интегральных белков - гликопротеидов.

Одной из важнейших функций плазмалеммы является обеспечение коммуникации (связи) клетки с внешней средой посредством присутствующего в мембранах рецепторного аппарата, имеющего белковую или гликопротеиновую природу. Основная функция рецепторных образований плазмалеммы - распознавание внешних сигналов, благодаря которым клетки правильно ориентируются и образуют ткани в процессе дифференцировки. С рецепторной функцией связана деятельность различных регуляторных систем, а также формирование иммунного ответа.

Основная часть:

В качестве таких рецепторов на поверхности клетки могут высту­пать белки мембраны или элементы гликокаликса - гликопротеиды. Такие чувствительные к отдельным веществам участки могут быть раз­бросаны по поверхности клетки или собраны в небольшие зоны.

Разные клетки животных организмов могут обладать разными на­борами рецепторов или же разной чувствительностью одного и того же рецептора.

Роль многих клеточных рецепторов заключается не только в связы­вании специфических веществ или способности реагировать на физи­ческие факторы, но и в передаче межклеточных сигналов с поверхно­сти внутрь клетки. В настоящее время хорошо изучена система переда­чи сигнала клеткам с помощью некоторых гормонов, в состав которых входят пептидные цепочки. Гормон взаимодействует специфически с рецепторной частью этой системы и, не проникая внутрь клетки, активирует аденилатциклазу (белок, ле­жащий уже в цитоплазматической части плазматической мембраны), которая синтезирует циклический АМФ. Последний активирует или ингибирует внутрикле­точный фермент или группу ферментов. Таким образом, команда (сиг­нал от плазматической мембраны) передается внутрь клетки. Эффек­тивность этой аденилатциклазной системы очень высока. Так, взаимо­действие одной или нескольких молекул гормона может привести за счет синтеза множества молекул цАМФ к усилению сигнала в тысячи раз. В данном случае аденилатциклазная система служит преобразова­телем внешних сигналов.

Разнообразие и специфичность наборов рецепторов на поверхно­сти клеток приводят к созданию очень сложной системы маркеров, позволяющих отличать свои клетки (той же особи или того же вида) от чужих. Сходные клетки вступают друг с другом во взаимодействия, приводящие к слипанию поверхностей (конъюгация у простейших и бактерий, образование тканевых клеточных комплексов). При этом клетки, отличающиеся набором детерминантных маркеров или не воспринимающие их, либо исключаются из такого взаимодействия, либо (у высших животных) уничтожаются в результате иммунологиче­ских реакций.

С плазматической мембраной связана локализация специфических рецепторов, реагирующих на физические факторы. Так, в плазматиче­ской мембране или в ее производных у фотосинтетических бактерий и синезеленых водорослей локализованы белки-рецепторы (хлорофиллы), взаимодействующие с квантами света. В плазматической мембра­не светочувствительных клеток животных расположена специальная система фоторецепторных белков (родопсин), с помощью которых световой сигнал превращается в химический, что в свою очередь при­водит к генерации электрического импульса.

Виды активного транспорта через плазматическую мембрану

Кратко:


  • первично-активный транспорт - осуществляется транспортными АТФ-азами, которые получили название ионных насосов.
  • вторично-активный транспорт - перенос через мембрану вещества против гради­ента его концентрации за счет энергии градиента концентрации другого вещества, создаваемого в процессе активного транспорта.

Полный:
Активный транспорт осуществля­ется транспортными аденозинтрифосфатазами (АТФазами) и проис­ходит за счет энергии гидролиза АТФ.
Виды активного транспорта веществ:

  • первично-активный транспорт,
  • вторично-активный транспорт.

Первично-активный транспорт

Транспорт веществ из среды с низкой кон­центрацией в среду с более высокой концентрацией не может быть объяснен движением по градиенту, т.е. диффузией. Этот процесс осуществляется за счет энергии гидролиза АТФ или энергии, обу­словленной градиентом концентрации каких-либо ионов, чаще все­го натрия. В случае, если источником энергии для активного транс­порта веществ является гидролиз АТФ, а не перемещение через мембрану каких-то других молекул или ионов, транспорт называ­ется первично активным.

Первично-активный перенос осуществляется транспортными АТФ-азами, которые получили название ионных насосов. В клетках животных наиболее распространена Na+ ,K+ - АТФаза (натриевый насос), пред­ставляющая собой интегральный белок плазматической мембраны и Са2+ - АТФазы, содержащиеся в плазматической мембране сарко-(эндо)-плазматического ретикулума. Все три белка обладают общим свойством - способностью фосфорилироваться и образовывать про­межуточную фосфорилированную форму фермента. В фосфорилиро-ванном состоянии фермент может находиться в двух конформациях, которые принято обозначать Е1 и Е2.Конформация фермента - это способ пространственной ориентации (укладки) полипептидной цепи его молекулы. Две указанные конформации фермента характеризуются различным сродством к переносимым ионам, т.е. различной способ­ностью связывать транспортируемые ионы.

Вторично-активный транспорт

Вторичным активным транспортом называется перенос через мембрану вещества против гради­ента его концентрации за счет энергии градиента концентрации другого вещества, создаваемого в процессе активного транспорта. В клетках животных основным источником энергии для вторичного активного транспорта служит энергия градиента концентрации ионов натрия, который создается за счет работы Na+/K+ - АТФазы. Напри­мер, мембрана клеток слизистой оболочки тонкого кишечника со­держит белок, осуществляющий перенос (симпорт) глюкозы и Na+ в эпителиоциты. Транспорт глюкозы осуществляется лишь в том слу­чае, если Na+, одновременно с глюкозой связываясь с указанным белком, переносится по электрохимическому градиенту. Электрохи­мический градиент для Na+ поддерживается активным транспортом этих катионов из клетки.

В головном мозге работа Na+-насоса сопряжена с обратным по­глощением (реабсорбцией) медиаторов -физиологически активных веществ, которые выделяются из нервных окончаний при действии возбуждающих факторов.

В кардиомиоцитах и гладкомышечных клетках с функционирова­нием Na+, K+-АТФазы связан транспорт Са2+ через плазматическую мембрану, благодаря присутствию в мембране клеток белка, осу­ществляющего противотранспорт (антипорт) Na+ и Са2+. Ионы каль­ция переносятся чере мембрану клеток в обмен на ионы натрия и за счет энергии концентрационного градиента ионов натрия.

В клетках обнаружен белок, обменивающий внеклеточные ионы натрия на внутриклеточные протоны - Na+/H+ -обменник. Этот переносчик играет важную роль в поддержании постоянства внут­риклеточного рН. Скорость, с которой осуществляется Na+/Ca2+ и Na+/H+ - обмен, пропорциональна электрохимическому градиенту Na+ через мембрану. При уменьшении внеклеточной концентрации Na+ ингибировании Na+ , K+-АТФазы сердечными гликозидами или в бескалиевой среде внутриклеточная концентрация кальция и про­тонов увеличена. Это увеличение внутриклеточной концентрации Са2+ при ингибировании Na+, K+-АТФазы лежит в основе применения в клинической практике сердечных гликозидов для усиления сердеч­ных сокращений.

Различные транспортные АТФазы, локализованные в клеточных мембранах и участвующие в механизмах переноса веществ, являются основным элементом молекулярных устройств - насосов, обеспечивающих избирательное поглощение и откачивание определенных веществ (например, электролитов) клеткой. Активный специфический транспорт неэлектролитов (молекулярный транспорт) реализуется с помощью нескольких типов молекулярных машин - насосов и переносчиков. Транспорт неэлектролитов (моносахаридов, аминокислот и других мономеров) может сопрягаться с симпортом - транспортом другого вещества, движение которого по градиенту концентрации является источником энергии для первого процесса. Симпорт может обеспечиваться ионными градиентами (например, натрия) без непосредственного участия АТФ.

Транспортные АТФазы- это высокомолекулярные транспортные белки, способные расщеплять АТФ с высвобождением энергии. Этот процесс служит двигателем активного транспорта. Таким образом переносятся протоны (протонный насос_ или неорганические ионы (ионный насос).

Активный транспорт осуществляется путём эндо- и экзоцитоза.
Эндоцитоз- образование пузырьков путём впячивания плазматической мембраны при поглощении твёрдых частиц (фагоцитоз) или растворённых веществ (пиноцитоз). Возникающие при этом гладкие или окаймлённые пузырьки называются фагосомами или пиносомами. Путём эндоцитоза яйцеклетки поглощают желточные белки, лейкоциты поглащают чужеродные частицы и иммуноглобулины, почечные канальцы всасывают белки из первичной мочи.
Экзоцитоз- процесс, противоположный эндоцитозу. Различные пузырьки из аппарата Гольджи, лизосом сливаются с плазматической мембраной, освобождая своё содержимое наружу. При этом мембрана пузырька может либо встраиваться в плазматическую мембрану, либо в форме пузырька возвращаться в цитоплазму.