Жизнь паскаля. Краткая биография Блеза Паскаля. Вклад в науку и интересные факты из жизни

Портрет Блеза Паскаля стал привычной иллюстрацией на страницах учебников по физике и математике. Что дал миру знаменитый француз?

На память приходят его знаменитые выражения и философские фразы:

  • Ухо наше для лести — широко раскрытая дверь, для правды же — игольное ушко;
  • Величие человека тем и велико, что он осознает свое ничтожество;
  • Горе людям, не знающим смысла своей жизни.

Физик, религиозный философ, ученый и писатель, Паскаль стоял у истоков информатики, его выдающимся творением считается суммирующая машина, которой позже дали привычное сегодня название — калькулятор.

Огромное количество работ, основаны на теории чисел и теории вероятности. Паскаль основоположником математического анализа, сделал первый образец счетной машины и сформировал основной закон гидростатики.

Краткая биография

19 июня 1623 года на юге Франции, в предместье Клермон – Ферране, в семье юриста и судьи Этьен Паскаль родился третий ребенок, которого назвали Блез.

Незаурядная одаренность ребенка и желание отца развивать умственные способности сына, вынудили семью в 1631 году перебраться в Париж.

Здесь отец и сын начинают усердно заниматься математикой. В их доме проходят математические вечера, в которых активно участвует 16-летний Блез. В это же время появляется его работа «Опыт о конических сечениях», известная сегодня как теорема Паскаля.

Регулярные нагрузки по математике, к которой у Блеза было особое рвение, стали серьезно сказываться на его самочувствии. Для смены климата и врачебного обследования Блеза, в январе 1940 года семья вынуждена переехать в Руан. Отец настаивает, чтобы сын прекратил заниматься научной деятельностью. Паскаль младший покоряется и начинает вести светский образ жизни.

Блез Паскаль и религия

В 1646 году происходит событие, которое полностью меняет судьбу Паскаля. Его знакомство с религиозным направлением янсенизмом заставляет задуматься, не является ли его деятельность неугодной богу? Ноябрьской ночью 1664 года Блеза посещает озарение свыше, сути которого не знал даже отец.


Паскаль обрывает все светские связи и обращается с просьбой к главе монастыря Пор-Рояль стать его духовным настоятелем и уезжает из Парижа. Годы с 1656 по 1657 молодой Паскаль проводит в монастыре.

Отсюда выходят в свет его скандальные «Письма к провинциалу», породившие начало общественному движению янсенистов против ордена иезуитов. Публикация «Письма к провинциалу» произвела эффект «взрывного устройства». На следующий день после выхода статьи, в знак протеста против незаконных приемов богословского факультета, Сорбонну покинули 60 докторов. И хотя книга публикуется под псевдонимом, Блезу приходится соблюдать все меры предосторожности.

В 1652 году у Паскаля возникает желание заняться «Апологией христианской религии». Дальше черновых записей дело не пошло. Здоровье Блеза сильно пошатнулось и врачи настоятельно не рекомендуют заниматься умственным трудом. Эти обстоятельства мешают ученому собрать «Апологию» в одну фундаментальную работу.

19 августа 1662 года религиозный философ Блез Паскаль умирает. Он похоронен рядом с парижской приходской церковью Сен-Этьен-дю-Мон.


Имя выдающегося ученого и философа носит университет во Франции, язык программирования Pascal и один из кратеров на Луне.

После его смерти, друзья нашли сотни обрывков страниц со странными и незаконченными фразами. И только в 1669 году расшифрованная книга «Мысли о религии и других предметах» увидела свет.

Блез рос любопытным и одаренным ребенком. Его увлекала литература, манили сложные арифметические действия и влекло таинство наук. Юноша находил загадки даже в самых обычных явлениях.

После себя Блез Паскаль оставил много интересных открытий и удивительных фактов. Он придумал вычислительную машинку в помощь отцу, который в своей работе занимался сложными подсчетами. Юноша изобрел счетное устройство, которое производило арифметические действия с шестизначными числами. После этого Паскаля назвали «французским Архимедом».


Пытаясь создать механизм вечного двигателя, в своих экспериментах Блез использовал гирю, которая вращалась по маховому колесу. Именно это изобретение нашло неожиданное применение в рулетке.

В 1954 году готовятся к публикации его работы, посвященные отношениям человека и Бога. Эти рукописи содержат доказательства разумной веры, основанной на теории игры (есть бог или его нет), в последствие известной как «Пари Паскаля». В книге «Мысли», которая увидит свет после смерти философа, собраны все оставшиеся материалы. Их написанию Блез Паскаль посвятил последние годы своей жизни.

«Пари Паскаля» — спорный вопрос, на что делать ставку в жизни – на атеизм или религию? Блез выбирал Бога. Он говорил, что так как минимум ничего не потеряешь, а как максимум — обретешь бессмертие и вечную жизнь.

Блез Паскаль вошел в число великих французов, портретами которых оформлены денежные знаки. Он единственный, кто посещал маститый математический кружок Мерсенна с 13 лет, в котором занимались выдающиеся ученые Парижа.

Он оставил потомкам свою мудрость и удивительную простоту в коротких фразах и длинных высказываниях. Слова, которые прошли сквозь него за всю быстротечную и такую яркую жизнь:

  • Самая большая привилегия, которая дана человеку свыше — быть причиной добрых перемен в чьей-то жизни;
  • Мы никогда не живем настоящим, все только предвкушаем будущее и торопим его, словно оно опаздывает, или призываем прошлое и стараемся его вернуть, словно оно ушло слишком рано;
  • Никогда злые дела не творятся так легко и охотно, как во имя религиозных убеждений.

Во многих странах испокон веков существует традиция помещать на денежных знаках портреты великих соотечественников. В 1969 году во Франции была выпущена в обращение купюра достоинством 500 франков с портретом Блеза Паскаля. О нём и поговорим.

Это письмо получилось таким длинным потому, что у меня не было времени написать его короче.

Блез Паскаль

Свободу слову!

В XVI веке по Франции ходили «Письма к провинциалу», посвящённые обсуждению сложных богословских вопросов. Письма вызывали гнев и недовольство властей, потому что в них критиковалась позиция ордена иезуитов. Этот орден, с благословения папы римского, оказывал огромное влияние на правителей большинства европейских стран, не исключая Франции. Иезуиты были в ярости, но даже с помощью властей ничего не могли поделать, так как автор скрывался за псевдонимом Луи де Монтальт. Следователей, охотившихся за автором писем, контролировал сам канцлер Сегье, и не подозревавший, что он лично знаком с тем, кого так упорно ищет. Автором был Блез Паскаль.

«Делались попытки показать иезуитов отвратительными, - писал Вольтер через много лет, - Паскаль сделал гораздо больше: он показал их смешными». При жизни Блеза Паскаля его авторство так и не установили.

А письма замечательные. Большинство знатоков сходится во мнении, что написаны они безукоризненным французским языком. В России «Письма к провинциалу» также пользовались большой популярностью, многие именно по ним учились французскому языку. Всего Блез Паскаль написал 18 писем.

Геометрия по Паскалю

Вы заметили, что здесь фамилия Паскаль встречается обязательно вместе с именем? Это не случайно. В честь Блеза Паскаля названа единица измерения давления, во Франции ежегодно присуждается премия его имени за достижения в науке, университет в Клермон-Ферране носит имя Блеза Паскаля, в школах изучают язык программирования Pascal , а на Луне есть кратер с таким же именем.

В математике мы встречаем теорему Паскаля, арифметический треугольник Паскаля, улитку Паскаля... Стоп! Блез Паскаль не имеет к ней отношения.

Плоскую кривую под названием «улитка Паскаля» изучил и ввёл в геометрию Этьен Паскаль, отец нашего героя. Когда Блезу исполнилось двенадцать лет, он уговорил отца рассказать ему про геометрию. Если бы знал Этьен Паскаль, какого джинна выпустил он на свободу!

Юный Паскаль всё свободное время изучал геометрию. Нет, он изучал её не по учебникам. Блез сам находил закономерности в треугольниках, окружностях и других фигурах, и сам же доказывал их истинность. Однажды отец с удивлением обнаружил, что сын самостоятельно сформулировал и доказал, что углы любого треугольника в сумме составляют столько же, сколько два угла квадрата. А ведь это не что иное, как 32-е предложение первой книги Евклида - теорема о сумме внутренних углов треугольника!

Эта история многих вводит в заблуждение. Они почему-то считают, что раз юный Блез доказал 32-е предложение, то он вывел и доказал все предыдущие предложения. Вряд ли, но это дела не меняет. Блез Паскаль увлёкся наукой на всю оставшуюся, к сожалению короткую, жизнь.

Коварный кардинал Ришелье

Справедливость должна быть сильной, а сила должна быть справедливой.

Блез Паскаль

Мы с вами живём в кайнозойской эре. Длится она уже около 65 миллионов лет, так что свидетелей её рождения не осталось. А моему поколению повезло, мы стали свидетелями рождения эры космической. Но ошибается тот, кто думает, что в ХХ веке зародилась и эра вычислительной техники. Случилось это намного раньше, и причастен к этому, пусть косвенно, не кто иной, как сам кардинал Ришелье, тот самый, о котором писал Дюма в «Трёх мушкетерах».

Человек выдающегося ума и редкого коварства, кардинал Ришелье умел любую неблагоприятную ситуацию обратить на пользу себе и, надо честно признаться, на пользу Франции. Проводя одну из таких хитрых комбинаций, кардинал, сам того не ведая, поспособствовал созданию вполне надёжного счётного устройства.

А случилось вот что. Этьен Паскаль получал доход от правительственных ценных бумаг, то есть жил на ренту. Но в 1638 году из-за трудностей Тридцатилетней войны канцлер Сегье выплату этого дохода прекратил. Недовольные рантье, а среди них и Этьен Паскаль, устроили протестное выступление у дома Сегье. Наиболее активных бунтовщиков посадили в Бастилию, а Этьен спасся бегством в глухую провинцию.

Но случилась беда - заболела оспой дочь Жаклин. Она осталась лечиться в Париже, и отец, несмотря на опасность заразиться, навещал её. Выздоровев, Жаклин приняла участие в спектакле, на котором присутствовал сам Ришелье. Кардинал был восхищён игрой юной актрисы, и она, воспользовавшись благоприятным моментом, попросила за отца.

И вот оно - коварство кардинала: он простил Этьена Паскаля ради дочери и, более того, назначил в Руан на должность интенданта провинции. Теперь бывший главарь смутьянов волей-неволей проводил политику кардинала.

Считать так считать

По должности интендант провинции ведает всеми хозяйственными делами при губернаторе, так что у Этьена Паскаля появилось очень много счётной работы. Ему помогал в этом сын Блез. Это сейчас, с компьютерных высот (где тоже случаются ошибки), можно с усмешкой посматривать на «бедных счётчиков, перелопачивающих горы чисел вручную». А в те времена, четыре века назад, умеющий разделить одно целое число на другое, считался если не гением, то по крайней мере необыкновенно умным человеком.

Лучшие книги те, о которых читатели думают, что они могли бы написать их сами.

Блез Паскаль

И семнадцатилетний Блез Паскаль задумал сотворить механическое устройство, «позволяющее освободить ум от арифметических расчётов». Половина всего дела - проект конструкции механизма - много времени не заняла. А вот другая половина - воплощение проекта в жизнь - потребовала целых пять лет напряжённой работы. После тщательно продуманных испытаний и проверок машина демонстрируется в Париже. Сам канцлер Сегье одобряет работу и выделяет Блезу Паскалю королевскую привилегию на производство и продажу подобных машин. Всего Блез Паскаль изготовил около пятидесяти своих арифмометров, один из которых он подарил шведской королеве Кристине.

Увы, наша жизнь устроена так, что если за кем-то закрепится слава «первого», то обязательно найдётся ещё кто-то, сделавший то же самое раньше. Пожалуй, самый яркий пример - это открытие Америки. Общепризнанно, что Америку открыл Христофор Колумб. Но за 500 лет до него там уже побывал викинг Лейф Счастливый, и даже основал поселения. А его, по-видимому, на столетие опередил норвежец Гуннбьёрн (900 г.).

Будем же учиться хорошо мыслить - вот основной принцип морали.

Блез Паскаль

Конечно, огромный континент и арифметическая машинка - масштабы несравнимые, но судьба у них общая. За двадцать лет до Блеза Паскаля немецкий учёный Шиккард уже построил нечто похожее. Но его машинка умела только складывать и вычитать, а арифмометр Блеза Паскаля производил четыре действия над пятизначными числами!

Так что обладатели нынешних сверхмощных компьютеров при случае могут возложить цветы на могилу коварного кардинала.

Пустота

Когда воду качают насосом, вода сама поднимается вслед за поршнем, не позволяя образоваться пустому пространству между поршнем и поверхностью воды. В древности Аристотель объяснял это тем, что «природа не терпит пустоты».

Но однажды случилось невероятное. При строительстве большого фонтана во Флоренции вода, как ей и положено, послушно поднималась за поршнем насоса, но на высоте около 10 метров вдруг заупрямилась и остановилась. Строители обратились за разъяснениями к самому Галилею. Того занимали другие проблемы, и он отшутился, сказав, что начиная с такой высоты природа перестаёт бояться пустоты.

Шутки шутками, но Галилей предположил, что высота подъёма жидкости зависит от её плотности: во сколько раз плотность жидкости больше, во столько раз высота подъёма меньше. Он поручил своим ученикам Торричелли и Вивиани разобраться в этом непонятном явлении. Чтобы не возиться с длинными стеклянными трубками, ученики стали использовать вместо воды ртуть. В результате их исследований на свет появился гениально простой опыт, который каждый мог если не повторить, то увидеть, как это делает кто-то другой. Практически во всех школьных учебниках есть описание и изображение этого опыта. Запаянная с одного конца метровая стеклянная трубка полностью заполняется ртутью. Открытый конец трубки зажимается пальцем, трубка переворачивается и погружается в сосуд с ртутью. Потом палец убирается. И что же? Уровень ртути в трубке понизится и остановится на высоте 2,5 фута (760 мм) над поверхностью ртути в сосуде.

Уровень воды в трубке в 13,6 раза выше уровня ртути, и именно во столько же раз плотность воды меньше плотности ртути - замечательное подтверждение предположения Галилея. Торричелли сделал вывод, что в трубке над ртутью ничего нет (знаменитая «торричеллиева пустота»). А что ртуть не выливается, так ей не позволяет это сделать давление атмосферного воздуха.

Но какое отношение имеет ко всему этому Блез Паскаль? Самое прямое: ведь не случайно единица измерения давления носит его имя. А такой чести удостаиваются немногие.

В те далёкие времена радио и телевидение ещё не придумали, а об интернете и говорить нечего, так что до Руана сведения об удивительных опытах итальянцев с пустотой дошли не сразу. Конечно же, Блез Паскаль заинтересовался «торричеллиевой пустотой». Он повторил опыты итальянцев и получил те же результаты. К радости жителей Руана, он проводил свои опыты прямо на улице на виду у всех.

Но только повторением Блез Паскаль не ограничился. Он проверил зависимость высоты столба жидкости от её плотности. В ход пошли различные масла, сахарные и соляные растворы, плотность которых можно менять, добавляя новые порции сахара или соли. Особенно понравились руанцам опыты с многочисленными сортами вин, которыми так славится Франция. Представляете, целая бочка вина, а над ней возвышается высоченная стеклянная трубка, тоже заполненная вином. Естественно, все с удовольствием помогали молодому Блезу Паскалю. Результаты опытов ещё раз блестяще подтвердили гениальное предположение Галилея.

А что же заполняет трубку над поверхностью ртути? Существовало мнение, что там находится некая субстанция, «не обладающая никакими свойствами». Прямо как в сказке - пойди туда, не знаю куда, принеси то, не знаю что. Блез Паскаль решительно заявляет: раз эта материя не обладает никакими свойствами и её нельзя обнаружить, то её попросту нет. И кто с этим не согласен, пусть сумеет доказать её присутствие .

Не так-то просто понять, а тем более повторить современный физический эксперимент. А вот Блез Паскаль мог бы и в наши дни легко показать ту самую «пустоту» и научить всех желающих получать её самим. Возьмите пластиковый шприц (без иглы), наполните водой и выпустите излишки воздуха. Заткните шприц пальцем и с силой оттяните поршень. Из воды начнёт испаряться растворённый в ней воздух. Уберите палец и выпустите этот воздух. Повторите процедуру несколько раз. Вскоре большая часть растворённого воздуха испарится и, оттянув поршень в очередной раз, вы получите над водой практически пустоту.

Не только сама истина даёт уверенность, но и одно искание её даёт покой...

Блез Паскаль

И случай, бог изобретатель...

В те времена люди часто играли в кости. И вот перед Блезом Паскалем поставили такую задачу: «сколько раз требуется бросить сразу две игральные кости, чтобы вероятность того, что хотя бы один раз на обоих кубиках выпадут две шестёрки, превысила вероятность того, что две шестёрки не выпадут ни разу?» Дело в том, что при подсчёте разными способами получались разные же ответы, из-за чего даже сложилось мнение о «непостоянстве математики».

Блез Паскаль блестяще справился с этой задачей и принялся рассматривать другие, в частности задачу о разделе ставок. И дело здесь не в условии задачи, оно излишне громоздкое, а в том, что в то время никто другой не смог даже грамотно её сформулировать. Естественно, никто не смог и понять решение, предложенное Блезом Паскалем.

Хотя это не совсем так. Нашёлся в Европе один человек, понявший и по достоинству оценивший идеи Блеза Паскаля, - Пьер Ферма (тот самый, который сформулировал «великую теорему Ферма»).

Задачу о ставках Ферма решил иначе, чем Паскаль, и между ними возникли некоторые разногласия. Но после обмена письмами они пришли к согласию.

«Наше взаимопонимание полностью восстановлено, - пишет Блез Паскаль. - Я вижу, что истина одна и в Тулузе, и в Париже».

Они продолжили обмениваться письмами, и в конце концов из этой переписки родилась теория вероятностей.

Ни один раздел физики не может обойтись без теории вероятностей, основы которой заложил Блез Паскаль. Никогда и ничего невозможно измерить абсолютно точно. Также нельзя абсолютно точно предсказать поведение отдельных частиц и целых механизмов. Всё - и результаты экспериментов, и предсказанные модели поведения - носит вероятностный характер.

Большое пассажирское спасибо

Каких-нибудь полтора века назад всё, что находилось в Москве за Бульварным кольцом, считалось окраиной. Такой маленькой была Москва в сравнении с нынешней. Но топать пешком из конца в конец всё равно было весьма утомительно.

В Европе встречались города и побольше. Правда, вовсю работали извозчики, но поди дождись их где-нибудь на отдалённой окраине.

И осенью 1661 года Блез Паскаль предложил герцогу де Роанне организовать дешёвый и доступный способ передвижения в многоместных каретах по строго определённым маршрутам. Идея всем понравилась, и 18 марта 1662 года в Париже открылся первый маршрут общественного транспорта, получившего название омнибус (в переводе с латыни - «для всех»).

Само собой понятное и очевидное не следует определять: определение лишь затемнит его.

Блез Паскаль

Так что, читая книжку в метро или покачиваясь в трамвае, мы должны с благодарностью вспоминать Блеза Паскаля.

К сожалению, Блез Паскаль не отличался крепким здоровьем, часто болел и умер, не дожив до 40 лет. Он родился 19 июня 1623 года, а умер 19 августа 1662 года.

На самом деле над столбом жидкости есть её пары: совсем незначительное количество для ртути, но заметное для воды.

Биография

Блез Паскаль - французский математик, механик, физик, литератор и философ. Классик французской литературы, один из основателей математического анализа, теории вероятностей и проективной геометрии, создатель первых образцов счётной техники, автор основного закона гидростатики.

Детство

Паскаль родился в городе Клермон-Ферран (французская провинция Овернь) в семье председателя налогового управления Этьена Паскаля и Антуанетты Бегон, дочери сенешаля Оверни. У Паскалей было трое детей - Блез и две его сестры: младшая - Жаклин и старшая - Жильберта. Мать умерла, когда Блезу было 3 года. В 1631 году семья переехала в Париж.

Блез рос одарённым ребёнком. Его отец Этьен самостоятельно занимался образованием мальчика; Этьен и сам неплохо разбирался в математике - дружил с Мерсенном и Дезаргом, открыл и исследовал неизвестную ранее алгебраическую кривую, с тех пор получившую название «улитка Паскаля», входил в комиссию по определению долготы, созданную Ришельё.

Паскаль-отец придерживался принципа соответствия сложности предмета умственным способностям ребёнка. По его плану древние языки Блез должен был изучать с 12 лет, а математику с 15-16-летнего возраста. Метод обучения состоял в объяснении общих понятий и правил и последующем переходе к изучению отдельных вопросов. Так, знакомя восьмилетнего мальчика с законами грамматики, общими для всех языков, отец преследовал цель научить его мыслить рационально. В доме постоянно велись беседы по вопросам математики и Блез просил познакомить его с этим предметом. Отец, опасавшийся, что математика помешает сыну изучать латинский и греческий языки, обещал в будущем познакомить его с этим предметом. Как-то раз, на очередной вопрос сына о том, что такое геометрия, Этьен кратко ответил, что это способ чертить правильные фигуры и находить между ними пропорции, однако запретил ему всякие исследования в этой области. Однако Блез, оставаясь один, принялся углём чертить на полу различные фигуры и изучать их. Не зная геометрических терминов, он называл линию «палочкой», а окружность «колечком». Когда отец случайно застал Блеза за одним из таких самостоятельных уроков, он был потрясён: мальчик, не знавший даже названий фигур, самостоятельно доказал 32-ю теорему Евклида о сумме углов треугольника. По совету своего друга Ле Пайера Этьен Паскаль отказался от своего первоначального плана обучения и разрешил читать сыну математические книги. В часы отдыха Блез изучал Евклидову геометрию, позднее, с помощью отца, перешёл к работам Архимеда, Аполлония и Паппа, потом - Дезарга.

В 1634 году (Блезу было 11 лет), кто-то за обеденным столом зацепил ножом фаянсовое блюдо. Оно зазвучало. Мальчик обратил внимание, что стоило прикоснуться к блюду пальцем, как звук исчез. Чтобы найти этому объяснение, Паскаль провёл серию опытов, результаты которых позднее изложил в «Трактате о звуках».

С 14 лет Паскаль участвовал в еженедельных семинарах Мерсенна, проводимых по четвергам. Здесь он познакомился с Дезаргом. Юный Паскаль был одним из немногих, кто изучал его труды, написанные сложным языком и насыщенные новоизобретёнными терминами. Он совершенствовал идеи, высказанные Дезаргом, обобщая и упрощая обоснования. В 1640 году выходит первое печатное произведение Паскаля - «Опыт о конических сечениях», результат исследования работ Дезарга. В это сочинение автор включил теоремы (доказательства не приводятся), три определения, три леммы и указал главы планируемого труда, посвящённого коническим сечениям. Третья лемма из «Опыта…» является теоремой Паскаля: если вершины шестиугольника лежат на некотором коническом сечении, то три точки пересечения прямых, содержащих противоположные стороны, лежат на одной прямой. Этот результат и 400 следствий из него Паскаль изложил в «Полном труде о конических сечениях», о завершении которого Паскаль сообщил пятнадцать лет спустя и который сейчас отнесли бы к проективной геометрии. «Полный труд…» так и не был опубликован: в 1675 году его прочёл в рукописи Лейбниц, рекомендовавший племяннику Паскаля Этьену Перье срочно напечатать его. Однако Перье не прислушался к мнению Лейбница, впоследствии рукопись была утеряна.

Руан

В январе 1640 года семья Паскалей переезжает в Руан. В эти годы здоровье Паскаля, и без того неважное, стало ухудшаться. Тем не менее он продолжал работать.

Отец Блеза по роду службы в Руане (интендантом Нормандии) часто занимался утомительными расчётами, сын также помогал ему в распределении податей, пошлин и налогов. Столкнувшись с традиционными способами вычислений и, находя их неудобными, Паскаль задумал создать вычислительное устройство, которое могло бы помочь упростить расчёты. В 1642 году (в 19 лет) Паскаль начал создание своей суммирующей машины «паскалины», в этом, по его собственному признанию, ему помогли знания, полученные в ранние годы. Машина Паскаля выглядела как ящик, наполненный многочисленными связанными друг с другом шестерёнками. Складываемые либо вычитаемые числа вводились соответствующим поворотом колёс, принцип работы основывался на счёте оборотов. Так как успех в осуществлении замысла зависел от того, насколько точно ремесленники воспроизводили размеры и пропорции деталей машины, Паскаль сам присутствовал при изготовлении её составляющих. Вскоре машина Паскаля была подделана в Руане одним часовщиком, который не видел оригинала и построил копию, руководствуясь лишь рассказами о «счётном колесе». Несмотря на то, что поддельная машина была совершенно непригодна для выполнения математических операций, Паскаль, задетый этой историей, оставил работу над своим механизмом. Чтобы побудить его продолжить совершенствование машины, друзья привлекли к ней внимание канцлера Сегье. Тот, изучив проект, рекомендовал Паскалю не останавливаться на достигнутом. В 1645 году Паскаль преподнёс Сегье готовую модель машины. До 1652 года под его наблюдением было создано около 50 вариантов «паскалины». В 1649 году он получил королевскую привилегию на счётную машину: возбранялись как копирование модели Паскаля, так и создание без его разрешения любых других видов суммирующих машин; запрещалась их продажа иностранцами в пределах Франции. Сумма штрафа за нарушение запрета составляла три тысячи ливров и должна была быть разделена на три равные части: для поступления в казну, парижскую больницу и Паскалю, либо обладателю его прав. Учёный затратил много средств на создание машины, однако сложность её изготовления и высокая стоимость препятствовали коммерческой реализации проекта.

Изобретённый Паскалем принцип связанных колёс почти на три столетия стал основой создания большинства арифмометров.

В 1646 году семья Паскаля через врачей, лечивших Этьена, знакомится с янсенизмом. Блез, изучив трактат Янсения «О преобразовании внутреннего человека» с критикой стремления к «величию, знанию, удовольствию», испытывает сомнения: не являются ли его научные изыскания греховным и богопротивным занятием? Из всей семьи именно он проникается наиболее глубоко идеями янсенизма, переживая своё «первое обращение». Однако пока он не оставляет занятия наукой.

Опыты с трубкой Торричелли

В конце 1646 года Паскаль, узнав от знакомого своего отца о торричеллиевой трубке, повторил опыт итальянского учёного. Затем он произвёл серию видоизменённых экспериментов, стремясь доказать, что пространство в трубке над ртутью не заполнено ни её парами, ни разреженным воздухом, ни некоей «тонкой материей». В 1647 году, уже находясь в Париже и несмотря на обострившуюся болезнь, Паскаль опубликовал результаты своих опытов в трактате «Новые опыты, касающиеся пустоты». В заключительной части своего труда Паскаль утверждал, что пространство в верхней части трубки «не заполнено никакими известными в природе веществами … и можно считать это пространство действительно пустым, до тех пор, пока экспериментально не доказано существования там какого-либо вещества». Это было предварительное доказательство возможности пустоты и того, что гипотеза Аристотеля о «боязни пустоты» имеет пределы.

Впоследствии Паскаль сосредоточился на доказательстве того, что столбик ртути в стеклянной трубке удерживается давлением воздуха. По просьбе Паскаля его зять Флорен Перье провёл серию экспериментов у горы Пюи-де-Дом в Клермоне и описал результаты (разница в высоте столбика ртути на вершине и у подножия горы составила 3 дюйма 1 1/2 линии) в письме Блезу. В Париже на башне Сен-Жак опыты повторяет уже сам Паскаль, полностью подтвердив данные Перье. В честь этих открытий на башне был установлен памятник учёному. В «Рассказе о великом эксперименте равновесия жидкостей» (1648) Паскаль привёл свою переписку с зятем и следствия, вытекающие из этого опыта: теперь есть возможность «узнать, находятся ли два места на одном уровне, то есть одинаково ли они удалены от центра земли, или которое из них расположено выше, как бы ни были они далеки друг от друга».

Паскаль отмечал также, что все явления, приписываемые ранее «боязни пустоты» на самом деле следствия давления воздуха. Обобщая полученные результаты, Паскаль сделал вывод, что давление воздуха есть частный случай равновесия жидкостей и давления внутри них. Паскаль подтвердил предположение Торричелли о существовании атмосферного давления. Развивая результаты исследований Стевина и Галилея в области гидростатики в своём «Трактате о равновесии жидкостей» (1653, опубликован в 1663), Паскаль подошёл к установлению закона распределения давления в жидкостях. Во второй главе трактата он формирует идею гидравлического пресса: «сосуд, наполненный водою, является новым принципом механики и новой машиной для увеличения сил в желаемой степени, потому что с помощью этого средства человек сможет поднять любую предложенную ему тяжесть» и отмечает, что принцип его действия подчиняется тому же закону, что и принцип действия рычага, блока, бесконечного винта. Паскаль вошёл в историю науки, начав с простого повторения опыта Торричелли, он опроверг одну из основных аксиом старой физики и установил основной закон гидростатики.

В 1651 году отец, Этьен Паскаль, умер. Младшая сестра, Жаклин, ушла в монастырь Пор-Рояль. Блез, ранее поддерживавший сестру в её стремлении к монашеской жизни, боясь потерять друга и помощника, просил Жаклин не оставлять его. Однако она осталась непреклонна.

Светская жизнь. «Математика случая»

Привычная жизнь Паскаля закончилась. Ухудшается и состояние его здоровья: врачи предписывают уменьшить умственную нагрузку. Паскаль чаще бывает в обществе, завязывает светские отношения. Весной 1652 года в Малом Люксембургском дворце, у герцогини д’Эгийон демонстрировал свою арифметическую машину и ставил физические опыты, заслужив всеобщее восхищение. Машина Паскаля вызвала интерес у шведской королевы Кристины - по просьбе аббата Бурдело учёный преподнёс ей один экземпляр своего изобретения. В этот период Паскаль пережил возрождение интереса к исследованиям, стремления к славе, которые он подавлял в себе под влиянием учения янсенистов.

Самым близким из друзей-аристократов для учёного стал герцог де Роанне, увлекавшийся математикой. В доме герцога, где Паскаль подолгу жил, ему была отведена особая комната. Через Роанне Паскаль познакомился с богачом и страстным игроком Дамье Миттоном, эрудитом кавалером де Мере. Размышления, основанные на наблюдениях, сделанных Паскалем в светском обществе, позднее вошли в его «Мысли».

Кавалер де Мере, большой поклонник азартных игр, предложил Паскалю в 1654 году решить некоторые задачи, возникающие при определённых игровых условиях. Первая задача де Мере - о количестве бросков двух игральных костей, после которого вероятность выигрыша превышает вероятность проигрыша, - была решена им самим, Паскалем, Ферма и Робервалем. В ходе решения второй, гораздо более сложной задачи, в переписке Паскаля с Ферма, закладываются основы теории вероятностей. Учёные, решая задачу о распределении ставок между игроками при прерванной серии партий (ею занимался итальянский математик XV века Лука Пачоли), использовали каждый свой аналитический метод подсчёта вероятностей и пришли к одинаковому результату. Информация об изысканиях Паскаля и Ферма подтолкнула Гюйгенса к занятию проблемами вероятности, сформулировавшего в своём сочинении «О расчётах в азартных играх» (1657) определение математического ожидания. Паскаль создаёт «Трактат об арифметическом треугольнике» (издан в 1665 году), где исследует свойства «треугольника Паскаля» и его применение к подсчёту числа сочетаний, не прибегая к алгебраическим формулам. Одним из приложений к трактату была работа «О суммировании числовых степеней», где Паскаль предлагает метод подсчёта степеней чисел натурального ряда.

У Паскаля множество планов на будущее. В письме Парижской академии (1654) он сообщил, что готовит фундаментальный труд под названием «Математика случая».

Пор-Рояль

Сначала он живёт в замке Вомюрье у герцога де Люина, потом, в поисках уединения, переселяется в загородный Пор-Рояль. Он совершенно прекращает занятия наукой как греховные. Несмотря на суровый режим, которого придерживались отшельники Пор-Рояля, Паскаль чувствует значительное улучшение своего здоровья и переживает духовный подъём. Отныне он становится апологетом янсенизма и отдаёт все силы литературе, направив своё перо на защиту «вечных ценностей». Совершает паломничество по парижским церквям (он обошёл их все). Готовит для «малых школ» янсенистов учебник «Элементы геометрии» с приложениями «О математическом уме» и «Искусство убеждать».

«Письма к провинциалу»

Духовным лидером Пор-Рояля был один из самых образованных людей того времени - доктор Сорбонны Антуан Арно. По его просьбе Паскаль включается в полемику янсенистов с иезуитами и создаёт «Письма к провинциалу» - блестящий образец французской литературы, содержащий яростную критику ордена и пропаганду моральных ценностей, излагаемых в духе рационализма. Начав с обсуждения догматических расхождений между янсенистами и иезуитами, Паскаль перешёл к осуждению моральной теологии последних. Не допуская перехода на личности (большая часть отцов ордена вела безупречную жизнь), он порицал казуистику иезуитов, ведущую, по его мнению, к падению нравственности человека.

«Письма» были опубликованы в 1656-1657 годах под псевдонимом и вызвали немалый скандал. Паскаль рисковал попасть в Бастилию, ему пришлось некоторое время скрываться, он часто менял места своего пребывания и жил под чужим именем. Вольтер писал: «Делались попытки самыми различными способами показать иезуитов отвратительными; Паскаль сделал больше: он показал их смешными».

Исследования циклоиды

Отказавшись от систематических занятий наукой, Паскаль тем не менее изредка обсуждает математические вопросы с друзьями, но не собирается более заниматься научным творчеством. Единственным исключением стало фундаментальное исследование циклоиды (как рассказывали друзья, он занялся этой проблемой, чтобы отвлечься от зубной боли). За одну ночь Паскаль решает задачу Мерсенна о циклоиде и делает ряд открытий в её изучении. Сначала Паскаль не желал предавать полученные результаты гласности. Но его друг герцог де Роанне уговорил устроить конкурс на решение задач по определению площади и центра тяжести сегмента и объёмов и центров тяжести тел вращения циклоиды среди математиков Европы. В конкурсе участвовали многие прославленные учёные: Валлис, Гюйгенс, Рен и другие. Хотя не все участники решили поставленные задачи, в процессе работы над ними были сделаны важные открытия: Гюйгенс изобрёл циклоидальный маятник, а Рен определил длину циклоиды. Решения Паскаля жюри под председательством Каркави признало наилучшими, а использование им в работах метода бесконечно малых повлияло в дальнейшем на создание дифференциального и интегрального исчисления.

«Мысли»

Ещё около 1652 года Паскаль задумал создать фундаментальный труд - «Апологию христианской религии». Одной из главных целей «Апологии…» должна была стать критика атеизма и защита веры. Он постоянно размышлял над проблемами религии, его замысел менялся с течением времени, но приступить к работе над трудом, который задумывался им как основной труд жизни, мешали различные обстоятельства. Начиная с середины 1657 года Паскаль делает фрагментарные записи для «Апологии…» на отдельных листах, классифицируя их по темам. Своими планами он поделился с отшельниками Пор-Рояля осенью 1658 года, на создание книги Паскаль отводил себе десять лет. Болезнь помешала ему: с начала 1659 года он делал только отрывочные записи, врачи запретили ему любые умственные нагрузки, но больной умудрялся записывать всё, что приходило ему в голову, буквально на любом подручном материале. Позднее он не смог даже диктовать и прекратил работу. После смерти Блеза друзья-янсенисты нашли целые пачки таких записок, перевязанных бечёвкой. Сохранилось около тысячи отрывков, различных по жанру, объёму и степени завершённости. Они были расшифрованы и изданы книгой под названием «Мысли о религии и других предметах» (фр. Pensées sur la religion et sur quelques autres sujets), затем книга называлась просто «Мысли» (фр. Pensées). В основном они посвящены взаимоотношению Бога и человека, а также апологетике христианства в янсенистском понимании. «Мысли» вошли в классику французской литературы, а Паскаль стал единственным в новой истории великим литератором и великим математиком одновременно. Паскаль писал в своей последней книге:

«Не только невозможно, но и бесполезно знать Бога без Иисуса Христа» «Есть только три разряда людей: одни обрели Бога и служат Ему; эти люди разумны и счастливы. Другие не нашли и не ищут Его; эти люди безумны и несчастны. Третьи не обрели, но ищут Его; эти люди разумны, но пока несчастны». В этой же рукописи содержался диалог, так называемый «Фрагмент пари» или пари Паскаля, где автор заключает со своим собеседником, которого желает побудить жить в соответствии с христианской моралью, пари на существование Бога. Автор предлагает оценить вероятности выигрыша и проигрыша и утверждает, что вера (выигрыш - Бог есть) несёт благо, в то время как при неблагоприятном исходе (проигрыш - Бога нет) потери ничтожно малы.

Последние годы

С 1658 года здоровье Паскаля быстро ухудшается. Согласно современным данным, в течение всей жизни Паскаль страдал от комплекса заболеваний: рака головного мозга, кишечного туберкулёза и ревматизма. Его одолевает физическая слабость, появляются ужасные головные боли. Гюйгенс, посетивший Паскаля в 1660 году, нашёл его глубоким стариком, несмотря на то, что в тот момент Паскалю было всего 37 лет. Паскаль понимает, что скоро умрёт, но не испытывает страха перед смертью, говоря сестре Жильберте, что смерть отнимает у человека «несчастную способность грешить». Не имея возможности ни читать, ни писать, ни размышлять, он занимается благотворительностью и изредка посещает старых друзей.

Осенью 1661 года Паскаль поделился с герцогом де Роанне идеей создания дешёвого и доступного всем способа передвижения в многоместных каретах. Герцог создал акционерное общество для реализации этого проекта и 18 марта 1662 года в Париже открылся первый маршрут общественного транспорта, названного впоследствии омнибусом.

В октябре 1661 года, в разгар нового витка преследования янсенистов, умирает сестра Жаклин. Это был тяжёлый удар для Паскаля.

В то же время власти потребовали от пор-рояльской общины безоговорочного подписания формуляра, осуждавшего пять положений учения Янсения. Среди янсенистов не было полного согласия. Группа, возглавляемая Арно и Николем, считала, что следует выработать оговорки к формуляру, удовлетворяющие все стороны, и подписать его. Паскаль примыкал к тем, кто предлагал более жёсткий вариант разъяснения к формуляру, указывающий на ошибочность решения папы. Долгие споры было решено прекратить общим голосованием, состоявшемся на квартире Паскаля. Большинство согласилось с мнением Арно. Потрясённый Паскаль отказывается от борьбы и практически прекращает общение с отшельниками Пор-Рояля.

19 августа 1662 года после мучительной продолжительной болезни Блез Паскаль скончался. Похоронен в приходской церкви Парижа Сен-Этьен-дю-Мон.

Увековечение памяти

В честь Паскаля названы:

кратер на Луне;
единица измерения давления системы СИ;
язык программирования Pascal.
Один из двух университетов в Клермон-Ферране.
Ежегодная французская научная премия (официальный сайт).
Гимназия города Гомеля.

Паскаль носил в душе водоворот без дна.
Ш. Бодлер. "Пропасть".

Перевод К. Бальмонта.

Блез Паскаль родился 19 июня 1623 года. Он - один из самых знаменитых людей в истории человечества. Паскаль входит в число великих французов, портреты которых воспроизведены на ассигнациях (наряду с Корнелем, Расином, Вольтером и Пастером). Очень внушительно выглядит собрание высказываний великих людей о Паскале, и соблазнительно хотя бы перечислить некоторые из них, но нас останавливает предостережение самого Паскаля: "...когда мы цитируем авторов, мы цитируем их доказательства, а не их имена...". Мы лишь заметим, что разные люди в разные времена воспринимали Паскаля - мыслителя и писателя - как своего современника.

Правильно оценить Паскаля - математика и физика - можно лишь в исторической перспективе. Сегодня об открытиях Паскаля рассказывается на страницах школьных учебников. Для того, чтобы понять величие этих открытий, нужно научиться удивляться тому, чему удивлялись его современники. Заодно мы можем заметить, сколь различаются скорости "старения" естественно-научных и гуманитарных открытий.

Упомянем еще об одной грани наследия Паскаля - его практических достижениях. Некоторые из них удостоились высшего отличия - сегодня мало кто знает имя их автора. Многим ли известно, что самую обыкновенную тачку изобрел Паскаль (а не безымянный умелец в Древнем Египте или Китае)? А еще Паскалю принадлежит идея омнибусов - общедоступных карет ("за 5 су") с фиксированными маршрутами - первого вида регулярного городского транспорта.

1. Палочки и монетки

Когда мы учимся рисовать графики, то в калейдоскопе безымянных кривых иногда появляются кривые, имеющие какое-то название или носящие чье-то имя: спираль Архимеда, трезубец Ньютона, конхоида Никомеда, лист Декарта, локон Марии Аньезе, улитка Паскаля (рис. 1)... Редко, кто усомнится в том, что это тот же Паскаль, которому принадлежит "закон Паскаля". Однако в названии замечательной кривой 4-го порядка увековечено имя Этьена Паскаля (1588-1651) - отца Блеза Паскаля. Э. Паскаль, как было принято в роде Паскалей, служил в парламенте (суде) города Клермон-Феррана. Совмещение юридической деятельности с занятиями науками, далекими от юриспруденции, было делом нередким.

Примерно в это же время посвящал математике свой досуг советник тулузского парламента Пьер Ферма (1601-1665). Хотя собственные достижения Э. Паскаля были скромными, его основательные познания позволяли ему поддерживать профессиональные контакты с большинством французских математиков.

С великим Ферма он обменивался трудными задачами на построение треугольников; в споре Ферма с Рене Декартом (1596-1650) о задачах на максимум и минимум Паскаль выступал на стороне Ферма. Б. Паскаль унаследовал добрые отношения отца со многими математиками, но вместе с тем к нему перешли и напряженные отношения с Декартом.

Рано овдовев, Этьен Паскаль посвящает себя главным образом воспитанию своих детей (кроме сына, у него были две дочери - Жильберта и Жаклина). У маленького Блеза очень рано обнаруживается поразительное дарование, но, как это часто бывает, в сочетании с плохим здоровьем. (Всю жизнь с Б. Паскалем случались странные происшествия; в раннем детстве он едва не погиб от непонятной болезни, сопровождавшейся припадками, которую семейная легенда связывает с колдуньей, сглазившей мальчика.)

Этьен Паскаль тщательно продумывает систему воспитания детей. На первых порах он решительно исключает математику из числа предметов, которым обучает Блеза: отец боялся, что увлеченность математикой помешает гармоничному развитию, а неизбежные напряженные размышления повредят слабому здоровью сына. Однако 12-летний мальчик, узнав о существовании таинственной геометрии, которой занимался отец, уговорил его рассказать немного о запретной науке. Полученных сведений оказалось достаточно для того, чтобы начать увлекательную "игру в геометрию", доказывать теорему за теоремой. В этой игре участвовали "монетки" - круги, "треуголки" - треугольники, "столы" - прямоугольники, "палочки" - отрезки. Мальчик был застигнут отцом в тот момент когда он обнаружил, что углы треуголки составляют столько же, сколько два угла стола. Э. Паскаль без труда узнал знаменитое 32-е предложение первой книги Евклида - теорему о сумме углов треугольника. Результатом были слезы на глазах отца и доступ к шкафам с математическими книгами.

История о том, как Паскаль сам построил евклидову геометрию, известна по восторженному рассказу его сестры Жильберты. Этот рассказ породил очень распространенное заблуждение, заключающееся в том, что раз Паскаль открыл 32-е предложение "Начал" Евклида, то он открыл перед этим все предыдущие теоремы и все аксиомы. Нередко это воспринималось как аргумент в пользу того, что аксиоматика Евклида - единственно возможная. На самом же деле, вероятно, геометрия у Паскаля находилась на "доевклидовском" уровне, когда интуитивно неочевидные утверждения доказываются путем сведения к очевидным, причем набор последних никак не фиксируется и не ограничивается. Лишь на следующем, существенно более высоком уровне делается великое открытие, что можно ограничиться конечным сравнительно небольшим набором очевидных утверждений - аксиом, предположив истинность которых можно остальные геометрические утверждения доказать. При этом, наряду с неочевидными утверждениями (такими, как, например, теоремы о замечательных точках треугольника), приходится доказывать "очевидные" теоремы, в справедливость которых легко поверить (например, простейшие признаки равенства треугольников). Собственно 32-е предложение - первое неочевидное в этом смысле предложение "Начал". Нет сомнения, что у юного Паскаля не было ни времени для огромной работы по отбору аксиом, ни, скорее всего, потребности в ней.

Это интересно сопоставить со свидетельством А. Эйнштейна, который в те же 12 лет в значительной степени самостоятельно постигал геометрию (в частности, нашел доказательство теоремы Пифагора, о которой узнал от дяди): "Вообще мне было достаточно, если я мог в своих доказательствах опираться на такие положения, справедливость которых представлялась мне бесспорной".

Примерно в 10 лет Б. Паскаль сделал первую физическую работу: заинтересовавшись причиной звучания фаянсовой тарелки и проведя поразительно хорошо организованную серию экспериментов при помощи подручных средств, он объяснил заинтересовавшее его явление колебанием частичек воздуха.

2. "Мистический шестивершинник" или "великая паскалева теорема"

В 13 лет Б. Паскаль уже имеет доступ в математический кружок Мерсенна, в который входило большинство парижских математиков, в том числе Э. Паскаль (Паскали жили в Париже с 1631 года).

Францисканский монах Марен Мерсенн (1588-1648) сыграл в истории науки большую и своеобразную роль ученого-организатора. (При оценке деятельности Мерсенна надо иметь в виду, что первый научный журнал - "Журнал ученых" - был основан в 1665 году.) Его основная заслуга состояла в том, что он вел обширную переписку с большинством крупных ученых мира (у него было несколько сот корреспондентов). Мерсенн умело концентрировал информацию и сообщал ее заинтересованным ученым. Эта деятельность требовала своеобразного дарования: умения быстро понимать новое, хорошо ставить задачи. Обладающий высокими нравственными качествами, Мерсенн пользовался доверием корреспондентов. Наряду с заочным коллективом корреспондентов существовал и очный кружок - "четверги Мерсенна", - в который и попал Блез Паскаль. Здесь он нашел себе достойного учителя. Им был Жерар Дезарг (1593 - 1662), инженер и архитектор, создатель оригинальной теории перспективы. Его главное сочинение "Черновой набросок вторжения в область того, что происходит при встрече конуса с плоскостью" (1639 г.) нашло лишь нескольких читателей и среди них особое место занимает Б. Паскаль, сумевший существенно продвинуться вперед.

Хотя в то время Декарт прокладывал в геометрии совершенно новые пути, создавая аналитическую геометрию, в основном геометрия едва достигла уровня, на котором она находилась в Древней Греции. Многое из наследия греческих геометров оставалось неясным. Это прежде всего относилось к теории конических сечений. Самое выдающееся сочинение на эту тему - 8 книг "Konika" Аполлония - было известно лишь частично. Предпринимались попытки дать модернизированные изложения теории, среди которых наиболее известное принадлежит Клоду Мидоржу (1585-1647), члену кружка Мерсенна, но это сочинение фактически не содержало новых идей. Дезарг заметил, что систематическое применение метода перспективы позволяет построить теорию конических сечений с совершенно новых позиций.

Рассмотрим центральную проекцию из некоторой, точки O картинок на плоскости α на плоскость β (рис. 2). Применять такое преобразование в теории конических сечений очень естественно, поскольку само их определение - как сечений прямого кругового конуса - можно перефразировать так (рис. 3): все они получаются при центральном проектировании из вершины конуса на различные плоскости одного из них (например, окружность). Далее, заметив, что при центральном проектировании пересекающиеся прямые могут перейти или в пересекающиеся или в параллельные, объединим два последних свойства в одно, считая, что все параллельные друг другу прямые пересекаются в одной "бесконечно удаленной точке"; разные лучи параллельных прямых дают разные бесконечно удаленные точки; все бесконечно удаленные точки плоскости заполняют "бесконечно удаленную прямую". Если принять эти соглашения, то две любые различные прямые (уже не исключая параллельных) будут пересекаться в единственной точке. Утверждение, что через точку A вне прямой m можно провести единственную прямую, параллельную m, можно переформулировать так: через обычную точку A и бесконечно удаленную точку (отвечающую семейству прямых, параллельных m) проходит единственная прямая - в результате в новых условиях без всяких ограничений справедливо утверждение, что через две различные точки проходит единственная прямая (бесконечно удаленная, если обе точки бесконечно удалены). Мы видим, что получается очень изящная теория, но для нас важно то, что при центральном проектировании точка пересечения прямых (в обобщенном смысле) переходит в точку пересечения. Важно продумать, какую роль в этом утверждении играет введение бесконечно удаленных элементов (при каких условиях точка пересечения переходит в бесконечно удаленную точку, когда прямая переходит в бесконечно удаленную прямую, и обратно). Не останавливаясь на использовании этого простого соображения Дезаргом, мы расскажем о том, как замечательно применил его Паскаль.

В 1640 году Б. Паскаль напечатал свой "Опыт о конических сечениях". Небезынтересны сведения об этом издании: тираж - 50 экземпляров, 53 строки текста напечатаны на афише, предназначенной для расклейки на углах домов (про афишу Паскаля достоверно не известно, но Дезарг заведомо рекламировал таким способом свои результаты). В афише, подписанной инициалами автора (B. P.), без доказательства сообщается следующая теорема, которую ныне называют теоремой Паскаля. Пусть на коническом сечении L (на рис. 4 L - парабола, на рис. 5 - эллипс) произвольно выбраны и занумерованы 6 точек. Обозначим через P, Q, R точки пересечения трех пар прямых (1, 2) и (4, 5); (2, 3) и (5, 6); (3, 4) и (6, 1). При простейшей нумерации ("по порядку" - рис. 5) - это точки пересечения противоположных сторон шестиугольника. Тогда точки P, Q, R лежат на одной прямой.

(Сформулируйте самостоятельно следствия, получающиеся из этой теоремы, когда некоторые из рассматриваемых точек являются бесконечно удаленными.)

Паскаль вначале формулирует теорему для окружности и ограничивается простейшей нумерацией точек. В этом случае это элементарная, хотя и не слишком простая задача. А вот переход от окружности к любому коническому сечению очень прост. Нужно преобразовать при помощи центральной проекции такое сечение в окружность и воспользоваться тем, что при центральном проектировании прямые переходят в прямые, а точки пересечения (в обобщенном смысле) - в точки пересечения. Тогда, как уже доказано, образы точек P, Q, R при проектировании будут лежать на одной прямой, а отсюда следует, что и сами точки P, Q, R обладают этим свойством.

Теорема, которую Паскаль назвал теоремой о "мистическом шестивершиннике", не была самоцелью; он рассматривал ее как ключ для построения общей теории конических сечений, покрывающей теорию Аполлония. Уже в афише упоминаются обобщения важных теорем Аполлония, которые не удавалось получить Дезаргу. Дезарг высоко оценил теорему Паскаля, назвав ее "великой паскалевой"; он утверждал, что в ней содержатся первые четыре книги Аполлония.

Паскаль начинает работу над "Полным трудом о конических сечениях", который в 1654 году упоминается как оконченный в послании "Знаменитейшей Парижской математической академии". От Мерсенна известно, что Паскаль получил около 400 следствий из своей теоремы. Готфрид Вильгельм Лейбниц (1646-1716) был последним, кто видел трактат Паскаля уже после его смерти, в 1675-1676 году. Несмотря на совет Лейбница, родные не опубликовали рукопись, а со временем она была утеряна.

В качестве примера приведем одно из самых простых, но и самых важных следствий из теоремы Паскаля. Коническое сечение однозначно определяется любыми своими пятью точками. Действительно, пусть {1, 2, 3, 4, 5} - точки конического сечения (рис. 6) и m - произвольная прямая, проходящая через (5). Тогда на m существует единственная

точка (6) конического сечения, отличная от (5). В обозначениях теоремы Паскаля точка P является точкой пересечения (1, 2) и (4, 5), Q - точка пересечения (2, 3) и m, R - точка пересечения (3, 4) и PQ, а тогда (6) определится как точка пересечения (1, R) и m.

3. "Паскалево колесо"

2 января 1640 года семья Паскалей переезжает в Руан, где Этьен Паскаль получает место интенданта провинции, фактически ведающего всеми делами при губернаторе.

Этому назначению предшествовали любопытные события. Э. Паскаль принял активное участие в выступлениях парижских рантьеров, за что ему грозило заточение в Бастилию. Он был вынужден скрываться, но в это время заболела оспой Жаклина, и отец, несмотря на страшную угрозу, навещает ее. Жаклина выздоровела и даже участвовала в спектакле, на котором присутствовал кардинал Ришелье. По просьбе юной актрисы кардинал простил ее отца, но одновременно назначил его на должность. Бывший смутьян должен был проводить в жизнь политику кардинала (читателей "Трех мушкетеров" это коварство, наверное, не удивит).

Теперь у Этьена Паскаля было очень много счетной работы, в которой ему постоянно помогает сын. В конце 1640 года Блезу Паскалю приходит мысль построить машину, чтобы освободить ум от расчетов "с помощью пера и жетонов". Основной замысел возник быстро и оставался неизменным на протяжении всей работы: "...каждое колесо или стержень некоторого разряда, совершая движение на десять арифметических цифр, заставляет двигаться следующее только на одну цифру". Однако блестящая идея - это только первый шаг. Несравненно больших сил потребовала ее реализация. Позднее в "Предуведомлении" тому, кто "будет иметь любознательность видеть арифметическую машину и пользоваться ею", Блез Паскаль скромно напишет: "Я не экономил ни время, ни труд, ни средства, чтобы довести ее до состояния быть тебе полезной". За этими словами стояло пять лет напряженной работы, которая привела к созданию машины ("паскалева колеса", как говорили современники), надежно, хотя и довольно медленно, производившей четыре действия над пятизначными числами. Паскаль изготовил около пятидесяти экземпляров машины; вот только перечень материалов, которые он перепробовал: дерево, слоновая кость, эбеновое дерево, латунь, медь. Он потратил много сил на поиски лучших ремесленников, владеющих "токарным станком, напильником и молотком", и ему много раз казалось, что они не в состоянии достичь необходимой точности. Тщательно продумывается система испытаний, в их число включается перевозка на 250 лье. Паскаль не забывает и о рекламе: он заручается поддержкой канцлера Сегье, добивается "королевских привилегий" (нечто вроде патента), много раз демонстрирует машину в салонах и даже посылает экземпляр шведской королеве Христине. Наконец налаживается производство; точное число произведенных машин неизвестно, но до настоящего времени сохранилось восемь экземпляров.

Поражает, как блестяще умел делать Паскаль самые разные вещи. Сравнительно недавно стало известно, что в 1623 году Шиккард, друг Кеплера, построил арифметическую машину, однако машина Паскаля была гораздо совершенней.

4. "Боязнь пустоты" и "Великий эксперимент равновесия жидкостей"

В конце 1646 года до Руана докатилась молва об удивительных "итальянских опытах с пустотой". Вопрос о существовании пустоты в природе волновал еще древних греков; в их взглядах на этот вопрос проявлялось присущее древнегреческой философии разнообразие точек зрения: Эпикур считал, что пустота может существовать и действительно существует; Герон - что она может быть получена искусственно, Эмпедокл - что ее нет и ей неоткуда взяться, и, наконец, Аристотель утверждал, что "природа боится пустоты". В средние века ситуация упростилась, поскольку истинность учения Аристотеля была установлена практически в законодательном порядке (еще в XVII веке за выступление против Аристотеля во Франции можно было попасть на каторгу). Классический пример "боязни пустоты" демонстрирует вода, поднимающаяся вслед за поршнем, не давая образоваться пустому пространству. И вдруг с этим примером произошел казус. При сооружении фонтанов во Флоренции обнаружилось, что вода "не желает" подниматься выше 34 футов (10,3 метра). Недоумевающие строители обратились за помощью к престарелому Галилео Галилею (1564-1642), который сострил, что, вероятно, природа перестает бояться пустоты на высоте, превышающей 34 фута, но все же предложил разобраться в странном явлении своим ученикам Эванджелиста Торричелли (1608-1647) и Винченцо Вивиани (1622-1703). Вероятно, Торричелли (а, возможно, и самому Галилею) принадлежит мысль, что высота, на которую может подняться жидкость в насосе, обратно пропорциональна ее удельному весу. В частности, ртуть должна подняться на высоту в 13,3 раза меньшую, чем вода, т. е. на 76 см. Опыт приобрел масштабы более благоприятные для лабораторных условий и был проведен Вивиани по инициативе Торричелли. Этот опыт хорошо известен, но все же напомним, что запаянная с одного конца метровая стеклянная трубка заполняется ртутью, открытый конец зажимается пальцем, после чего трубка переворачивается и опускается в чашку с ртутью. Если отнять палец, то уровень ртути в трубке упадет до 76 см. Торричелли делает два утверждения: во-первых, пространство над ртутью в трубке пусто (потом его назовут "торричеллевой пустотой"), а, во-вторых, ртуть из трубки не выливается полностью, поскольку этому препятствует столб воздуха, давящий на поверхность ртути в чашке. Приняв эти гипотезы, можно все объяснить, но можно получить объяснение и введя специальные довольно сложно действующие силы, препятствующие образованию вакуума. Принять гипотезы Торричелли было непросто. Лишь немногие из его современников смирились с тем, что воздух имеет вес; некоторые, исходя из этого, поверили в возможность получения вакуума, но поверить, что легчайший воздух удерживает в трубке тяжелую ртуть, было почти невозможно. Упомянем, что Галилей пытался объяснить этот эффект свойствами самой жидкости, а Декарт утверждал, что кажущийся вакуум всегда заполнен "тончайшей материей".

Паскаль с увлечением повторяет итальянские опыты, придумав много остроумных усовершенствований. Восемь таких опытов описаны в трактате, опубликованном в 1647 году. Он не ограничивается опытами со ртутью, а экспериментирует с водой, маслом, красным вином, для чего ему потребовались бочки вместо чашек и трубки длиной около 15 м. Эффектные опыты выносятся на улицы Руана, радуя его жителей. (До сих пор гравюры с винным барометром любят воспроизводить в учебниках физики.)

На первых порах Паскаля более всего интересует вопрос о доказательстве того, что пространство над ртутью пусто. Была распространена точка зрения, что кажущийся вакуум заполняет материя, "не имеющая свойств" (вспоминается подпоручик Киже из повести Ю. Н. Тынянова, "не имеющий фигуры"). Доказать отсутствие такой материи просто невозможно. Четкие высказывания Паскаля очень важны в плане постановки более широкой проблемы о характере доказательств в физике. Он пишет: "После того, как я доказал, что ни одна из материй, которые доступны нашим чувствам и которые нам известны, не заполняет это пространство, кажущееся пустым, мое мнение, пока мне не докажут существование какой-то материи, заполняющей его, - что это пространство в самом деле пусто и лишено всякой материи". Менее академические высказывания содержатся в письме ученому-иезуиту Ноэлю: "Но у нас больше оснований отрицать ее (тончайшей материи. - С. Г.) существование, потому что нельзя ее доказать, чем верить в нее по той единственной причине, что нельзя доказать, что ее нет". Итак, необходимо доказывать существование объекта и нельзя требовать доказательства его отсутствия (это ассоциируется с юридическим принципом, состоящим в том, что суд должен доказать виновность и не вправе требовать от обвиняемого доказательств невиновности).

На родине Паскаля в Клермоне жила в это время старшая сестра Б. Паскаля Жильберта; ее муж Флорен Перье, служа в суде, свободное время посвящал наукам. 15 ноября 1647 года Паскаль отправляет Перье письмо, в котором просит сравнить уровни ртути в трубке Торричелли у подножия и на вершине горы Пюи-де-Дом: "Вы понимаете, если бы высота ртути на вершине горы оказалась меньшей, чем у подошвы (я так думаю по многим основаниям, хотя все, писавшие об этом предмете, придерживаются другого мнения), то из этого можно было бы заключить, что единственная причина явления - тяжесть воздуха, а не пресловутый horror vacui (боязнь пустоты - С. Г.). Ясно, в самом деле, что внизу горы воздух должен быть сгущеннее, чем наверху, между тем как нелепо предполагать в нем больший страх пустоты у подножия, нежели на вершине". Эксперимент по разным причинам откладывался и состоялся лишь 19 сентября 1648 года в присутствии пяти "уважаемых жителей Клермона". В конце года вышла брошюра, в которую были включены письмо Паскаля и ответ Перье с очень скрупулезным описанием опыта. При высоте горы около 1,5 км разница уровней ртути составила 82,5 мм: это "повергло участников эксперимента в восхищение и удивление" и, вероятно, было неожиданным для Паскаля. Предположить существование предварительных оценок невозможно, а иллюзия легкости воздуха была очень велика. Результат был столь ощутим, что уже одному из участников эксперимента аббату де ла Мару приходит в голову мысль, что результаты может дать эксперимент в куда более скромных масштабах. И, действительно, разница уровней ртути у основания и наверху собора Нотр-Дам-де-Клермон, имеющего высоту 39 м, составила 4,5 мм. Если бы Паскаль допускал такую возможность, он не стал бы ожидать десять месяцев. Получив известие от Перье, он повторяет эксперименты на самых высоких зданиях Парижа, получая те же результаты. Паскаль назвал этот эксперимент "великим экспериментом равновесия жидкостей" (это название может вызвать удивление, поскольку речь идет о равновесии воздуха и ртути и тем самым воздух назван жидкостью). В этой истории есть одно запутанное место.

Декарт утверждал, что именно он подсказал идею эксперимента. Вероятно, здесь произошло какое-то недоразумение, так как трудно предположить, что Паскаль сознательно не ссылался на Декарта.

Паскаль продолжает экспериментировать, используя наряду с барометрическими трубками большие сифоны (подбирая короткую трубку так, чтобы сифон не работал); он описывает разницу в результатах экспериментов для различных местностей Франции (Париж, Овернь, Дьепп). Паскаль знает, что барометр можно использовать как высотомер (альтиметр) , но вместе с тем понимает, что зависимость между уровнем ртути и высотой местности - не простая и ее не удается пока обнаружить. Он замечает, что показания барометра в одной и той же местности зависят от погоды; сегодня предсказание погоды - основная функция барометра (прибор для измерения "изменений воздуха" хотел построить Торричелли). А однажды Паскаль решил вычислить общий вес атмосферного воздуха ("мне хотелось доставить себе это удовольствие и я провел расчет"). Получилось 8,5 триллиона французских фунтов.

Мы не имеем возможности останавливаться на других опытах Паскаля о равновесии жидкостей и газов, поставивших его наряду с Галилеем и Симоном Стевином (1548-1620) в число создателей классической гидростатики. Здесь и знаменитый закон Паскаля, и идея гидравлического пресса, и существенное развитие принципа возможных перемещений. Одновременно он придумывает, например, зрелищно эффектные опыты, иллюстрирующие открытый Стевином парадоксальный факт, что давление жидкости на дно сосуда зависит не от формы сосуда, а лишь от уровня жидкости: в одном из опытов наглядно видно, что требуется груз в 100 фунтов, чтобы уравновесить давление на дно сосуда воды весом в одну унцию; в процессе опыта вода замораживается, и тогда хватает груза в одну унцию. Паскаль демонстрирует своеобразный педагогический талант. Было бы хорошо, если бы и сегодня школьника удивляли те факты, которые поражали Паскаля и его современников.

Физические исследования Паскаля были прерваны в 1653 году в результате трагических происшествий, о которых мы расскажем ниже.

5. "Математика случая"

В январе 1646 года Этьен Паскаль во время гололеда вывихнул бедро, и это едва не стоило ему жизни. Реальность потери отца произвела ужасное впечатление на сына, и это прежде всего сказалось на его здоровье: головные боли стали невыносимыми, он мог передвигаться лишь на костылях и был в состоянии проглотить только несколько капель теплой жидкости. От врачей-костоправов, лечивших отца, Б. Паскаль узнал об учении Корнелия Янсения (1585-1638), которое в то время распространялось во Франции, противостоя иезуитизму (последний существовал к тому времени примерно сто лет). На Паскаля произвел наибольшее впечатление побочный элемент в учении Янсения: допустимо ли бесконтрольное занятие наукой, стремление все познать, все разгадать, связанное прежде всего с неограниченной пытливостью человеческого ума, или, как писал Янсений, с "похотью ума". Паскаль воспринимает свою научную деятельность как греховную, а выпавшие на его долю беды - как кару за этот грех. Это событие сам Паскаль назвал "первым обращением". Он решает отказаться от дел "греховных и противных богу". Однако это ему не удается: мы уже забежали вперед и знаем, что вскоре он каждую минуту, которую ему оставляет болезнь, посвятит физике.

Здоровье несколько улучшается, и с Паскалем происходят вещи, мало понятные для его близких. Он мужественно переносит в 1651 году смерть отца, и его рационалистические, внешне холодные рассуждения о роли отца в его жизни резко контрастируют с реакцией пятилетней давности. А потом у Паскаля появились знакомые, мало подходящие для янсениста. Он путешествует в свите герцога де Роанне и знакомится там с кавалером де Мере, человеком высоко образованным и умным, но несколько самоуверенным и поверхностным. С де Мере охотно общались великие современники, и только поэтому его имя сохранилось в истории. При этом он умудрился писать Паскалю письма с поучениями по разным вопросам, не исключая и математики. Сейчас все это выглядит наивным и, по словам Сент-Бева, "такого письма вполне достаточно, чтобы погубить человека, его писавшего, во мнении потомства". Тем не менее, довольно длительное время Паскаль охотно общался с де Мере, он оказался способным учеником кавалера по части светской жизни.

Мы переходим к истории о том, как "задача, поставленная перед суровым янсенистом светским человеком, стала источником теории вероятностей" (Пуассон). Собственно, задач было две и, как выяснили историки математики, обе они были известны задолго до де Мере. Первый вопрос состоит в том, сколько раз нужно кинуть две игральные кости, чтобы вероятность того, что хотя бы один раз выпадет две шестерки, превысит вероятность того, что две шестерки не выпадут ни разу. Де Мере и сам решил эту задачу, но, к сожалению... двумя способами, давшими разные ответы: 24 и 25 бросков. Будучи уверенным в одинаковой достоверности обоих способов, де Мере обрушивается на "непостоянство" математики. Паскаль, убедившись в том, что правильный ответ - 25, даже не приводит решения. Основные его усилия были направлены на решение второй задачи - задачи "о справедливом разделе ставок". Происходит игра, все участники (их число может быть больше двух) вначале делают ставки в "банк"; игра разбивается на несколько партий, и для выигрыша банка надо выиграть некоторое фиксированное число партий. Вопрос состоит в том, как следует справедливо разделить банк между игроками в зависимости от числа выигранных ими партий, если игра не доведена до конца (никто не выиграл числа партий, достаточного для получения банка). По словам Паскаля, "де Мере... даже не смог подступиться к этому вопросу...".

Никто из окружения Паскаля не сумел понять предложенное им решение, но все же достойный собеседник нашелся. Между 29 июля и 27 октября Паскаль обменивается письмами с Ферма (при посредничестве Пьера Каркави, унаследовавшего функции Мерсенна). Часто считают, что в этой переписке родилась теория вероятностей. Ферма решает задачу о ставках иначе, чем Паскаль, и первоначально возникают некоторые разногласия. Но в последнем письме Паскаль констатирует: "Наше взаимопонимание полностью восстановлено", и далее: "Как я вижу, истина одна и в Тулузе и в Париже". Он счастлив тем, что нашел великого единомышленника: "Я и впредь хотел бы по мере возможностей делиться с вами своими мыслями".

В том же 1654 году Паскаль опубликовал одну из самых популярных своих работ "Трактат об арифметическом треугольнике". Теперь его называют треугольником Паскаля, хотя оказалось, что он был известен еще в Древней Индии, а в XVI веке был переоткрыт Штифелем. В основе лежит простой способ вычислять число сочетаний C k n индукцией по n (по формуле C k n = C k n-1 + C k-1 n-1). В этом трактате впервые принцип математической индукции, который фактически применялся раньше, формулируется в привычной для нас форме.

В 1654 году Паскаль в послании "Знаменитейшей Парижской математической академии" перечисляет работы, которые готовятся им к публикации, и в их числе трактат, который "может по праву претендовать на ошеломляющее название "Математика случая"".

6. Луи де Монтальт

Вскоре после смерти отца Жаклина Паскаль уходит в монастырь, и Блез Паскаль лишается присутствия очень близкого человека. Какое-то время его привлекает возможность жить, как живет большинство людей: он подумывает о том, чтобы купить должность в суде и жениться. Но этим планам не суждено было сбыться. В середине ноября 1654 года, когда Паскаль переезжал мост, передняя пара лошадей сорвалась, а коляска чудом задержалась у края пропасти. С тех пор, по словам Ламетри, "в обществе или за столом Паскалю всегда была необходима загородка из стульев или сосед слева, чтобы не видеть страшной пропасти, в которую он боялся упасть, хотя знал цену подобным иллюзиям". 23 ноября происходит необычный нервный припадок. Находясь в состоянии экстаза, Паскаль записывает на клочке бумаги мысли, которые проносятся в его голове. Позднее он перенес эту запись на пергамент; после его смерти обе бумаги обнаружили зашитыми в его камзоле. Это событие называют "вторым обращением" Паскаля.

С этого дня, по свидетельству Жаклины, Паскаль чувствует "огромное презрение к свету и почти непреодолимое отвращение ко всем принадлежащим ему вещам". Он прерывает занятия и с начала 1655 года поселяется в монастыре Пор-Рояль, добровольно ведя монашеский образ жизни.

В это время Паскаль пишет "Письма к провинциалу" - одно из величайших произведений французской литературы. "Письма" содержали критику иезуитов. Они издавались отдельными выпусками - "письмами", - начиная с 23 января 1656 года до 23 марта 1657 года (всего 18 писем). Автора - "друга провинциала" - звали Луи де Монтальтом. Слово "гора" в этом псевдониме (la montagne) уверенно связывают с воспоминаниями об опытах на Пюи-де-Дом. Письма читали по всей Франции, иезуиты были в бешенстве, но не могли достойно ответить (королевский духовник отец Анна предлагал 15 раз - по числу написанных к тому времени писем - сказать, что Монтальт - еретик). За автором, оказавшимся смелым и талантливым конспиратором, охотился судебный следователь, которого контролировал сам канцлер Сегье, когда-то покровительствовавший создателю арифметической машины (по свидетельству современника, уже после двух писем канцлеру "семь раз отворяли кровь"), и, наконец, в 1660 году государственный совет постановил сжечь книгу "мнимого Монтальта". Но это было по существу символическим мероприятием. Тактика Паскаля дала поразительные результаты. "Делались попытку самыми различными способами показать иезуитов отвратительными; Паскаль сделал больше: он показал их смешными", - так оценивает "Письма" Вольтер. "Шедевром шутливой логики" назвал их Бальзак, "кладом для комедиографа" - Расин. Образы Паскаля предвещали появление мольеровского Тартюфа.

Работая над "Письмами", Паскаль ясно понимал, что правильное владение логикой важно не только математикам. В Пор-Рояле много думали о системе образования, и существовали даже специальные янсенистские "маленькие школы". Паскаль активно включился в эти размышления, сделав, например, интересные замечания о первоначальном обучении грамоте (он считал, что нельзя начинать с изучения алфавита). В 1667 году посмертно вышли два фрагмента работы Паскаля "Разум геометра и искусство убеждения". Это сочинение не является научной работой; его назначение более скромно - быть введением к учебнику геометрии для янсенистских школ. Многие высказывания Паскаля производят очень сильное впечатление, и не верится, что такая четкость формулировок была достижима в середине XVII века. Вот одно из них: "Все должно быть доказано, и при доказательстве нельзя использовать ничего, кроме аксиом и ранее доказанных теорем. Никогда нельзя злоупотреблять тем обстоятельством, что разные вещи нередко обозначаются одним и тем же словом, поэтому определяемое слово должно быть мысленно заменено определением". В другом месте Паскаль замечает, что обязательно существуют неопределяемые понятия. Исходя из этих высказываний, Жак Адамар (1865-1963) считал, что Паскалю оставался маленький шаг, чтобы произвести "глубокую революцию во всей логике - революцию, которую Паскаль мог бы осуществить тремя веками раньше, чем это действительно случилось". Вероятно, здесь имеется в виду тот взгляд на аксиоматические теории, который сложился после открытия неевклидовой геометрии.

7. Амос Деттонвилль

"Я провел много времени в изучении отвлеченных наук; недостаток сообщаемых ими сведений отбил у меня охоту к ним. Когда я начал изучение человека, я увидал, что эти отвлечения ему несвойственны и что я еще больше запутался, углубляясь в них, чем другие, не зная их". Эти слова Паскаля характеризуют его настроение в последние годы жизни. И все же полтора года из них он занимался математикой...

Началось это весной 1658 года как-то ночью, когда во время страшного приступа зубной боли Паскаль вспомнил одну нерешенную задачу Мерсенна про циклоиду. Он замечает, что напряженные размышления отвлекают от боли. К утру он уже доказал целый ряд результатов о циклоиде и... исцелился от зубной боли. Поначалу Паскаль считает случившееся грехом и не собирается записывать полученные результаты. Позднее, под влиянием герцога де Роанне, он изменяет свое решение; в течение восьми дней, по свидетельству Жильберты Перье, "он только и делал, что писал, пока рука могла писать". А затем в июне 1658 года Паскаль, как это часто делалось тогда, организовал конкурс, предложив крупнейшим математикам решить шесть задач про циклоиду. Наибольших успехов добились Христиан Гюйгенс (1629-1695), решивший четыре задачи, и Джон Валлис (1616-1703), у которого с некоторыми пробелами были решены все задачи. Но наилучшей была признана работа неизвестного Амоса Деттонвилля. Гюйгенс признавал позднее, что "эта работа выполнена столь тонко, что к ней нельзя ничего добавить". Заметим, что "Amos Dettonville" состоит из тех же букв, что "Louis de Montalte". Так был придуман новый псевдоним Паскаля. На премиальные 60 пистолей труды Деттонвилля были изданы.

Теперь несколько слов о работе. Прежде всего приведем слова Паскаля о кривой, называемой циклоидой или рулеттой: "Рулетта является линией столь обычной, что после прямой и окружности нет более часто встречающейся линии; ... ибо это ни что иное, как путь, описываемый в воздухе гвоздем колеса, когда оно катится своим движением с того момента, как гвоздь начал подниматься от земли, до того, когда непрерывное качение колеса не приводит его опять к земле после окончания целого оборота, считая, что колесо - идеальный круг, гвоздь - точка его окружности, а земля - идеально плоская" (см. рис. 7). Паскаль считал, что циклоиду открыл Мерсенн, хотя на самом деле это сделал Галилей. Первоначальный интерес к этой кривой стимулировался тем, что ряд интересных задач для нее удалось решить элементарно. Например, по теореме Торричелли, чтобы провести касательную к циклоиде в точке A (рис. 8), нужно взять соответствующее этой точке положение производящего (катящегося) круга и соединить его верхнюю точку B с A (попытайтесь это доказать!). Вот еще одна теорема, которую Торричелли и Вивиани приписывают Галилею: площадь криволинейной фигуры, ограниченной аркой циклоиды (на рис. 9 она закрашена), равна утроенной площади производящего круга.


Задачи, рассмотренные Паскалем, уже не допускают элементарных решений (площадь и центр тяжести произвольного сегмента циклоиды, объемы соответствующих тел вращения и т. д.). На этих задачах Паскаль разработал по существу все, что необходимо для построения дифференциального и интегрального исчисления в общем виде. Лейбниц, который делит с Ньютоном славу создателей этой теории, пишет, что, когда, по совету Гюйгенса, он ознакомился с работами Паскаля, его "озарило новым светом", он удивился, насколько был близок Паскаль к построению общей теории, и неожиданно остановился, будто "на его глазах была пелена".

Для работ, предвосхищавших появление дифференциального и интегрального исчисления, было характерно то, что интуиция их авторов сильно опережала возможности провести строгие доказательства; математический язык был недостаточно развит, чтобы перенести на бумагу ход мыслей. Выход был найден позднее путем введения новых понятий и специальной символики. Паскаль не прибегал ни к какой символике, но он так виртуозно владел языком, что временами кажется, что у него в этом просто не было потребности. Приведем высказывание Н. Бурбаки: "Валлис в 1655 году и Паскаль в 1658 году составили каждый для своего употребления языки алгебраического характера, в которых, не записывая ни единой формулы, они дают формулировки, которые можно немедленно, как только будет понят их механизм, записать в формулах интегрального исчисления. Язык Паскаля особенно ясен и точен; и если не всегда понятно, почему он отказался от применения алгебраических обозначений не только Декарта, но и Виета, все же нельзя не восхищаться его мастерством, которое могло проявиться лишь на основе совершенного владения языком". Хочется сказать, что здесь Паскаль-писатель помог Паскалю-математику.

8. "Мысли"

После середины 1659 года Паскаль уже не возвращался ни к физике, ни к математике. В конце мая 1660 года он в последний раз приезжает в родной Клермон; Ферма приглашает его заехать в Тулузу. Горько читать ответное письмо Паскаля от 10 августа. Вот несколько выдержек из него: "... в настоящее время я занимаюсь вещами, столь далекими от геометрии, что с трудом вспоминаю о геометрии... хотя Вы тот человек, кого во всей Европе я считаю самым крупным математиком, не это качество привлекает меня; но я нахожу столько ума и прямоты в Вашей беседе и поэтому ищу общения с Вами... я нахожу математику наиболее возвышенным занятием для ума, но в то же время я знаю, что она столь бесполезна, что я делаю малое различие между человеком, который только геометр, и искусным ремесленником. Поэтому я называю ее самым красивым ремеслом на свете, но в конце концов это лишь ремесло. И я часто говорил, что она хороша, чтобы испытать свою силу, но не для приложения этой силы...". И, наконец, строчки, говорящие о физическом состоянии Паскаля: "Я так слаб, что не могу ни ходить без палки, ни ездить верхом. Я не могу даже ехать в экипаже более двух или трех лье...". В декабре 1660 года Гюйгенс дважды посетил Паскаля и нашел его глубоким стариком (Паскалю было 37 лет), который не в состоянии вести беседу.

Паскаль отдает последние годы жизни "изучению человека". Ему так и не удалось завершить свою главную книгу. Оставшиеся материалы были изданы посмертно в разных вариантах под разными заглавиями. Чаще всего эту книгу называют просто "Мысли".

Блез Паскаль - великий математик и физик, замечательный философ, интересный литератор – все это совмещал в себе знаменитый французский ученый, оставаясь при этом вполне светским человеком.

Его называли человеком великого ума и великого сердца.

Краткая биография

Блез Паскаль появился на свет 19 июня 1623 года в городке Клермон-Ферран на юге Франции. Его родители Этьен Паскаль и Антуанетта, урожденная Бегон, были потомственными дворянами, получившими хорошее образование.

Блез с раннего детства проявлял выдающиеся способности, но родители оберегали его от утомительности занятий науками по причине слабого здоровья.

Но застав восьмилетнего сына в собственной библиотеке за доказательством теорем Евклида, отец решил больше не препятствовать занятиям. Тем более, что он сам был не чужд интереса к математике, как и многие из его друзей. Они даже организовали своеобразный научный кружок и на собраниях обсуждали новые исследования в математических кругах.

Впоследствии эти дружественные посиделки со спорами, дискуссиями и чтениями научных докладов стали зачатком Парижской академии.

Научная деятельность

Когда Блезу исполнилось 16 лет, он стал полноправным и деятельным членом этого кружка. Обширные знания, помноженные на врожденные способности, позволили молодому человеку вскоре занять лидирующее положение среди взрослых членов. И даже написать в столь юном возрасте свою первую научную работу о том, какие фигуры образует при пересечении с плоскостью усеченный конус.

В 18 лет он придумывает и собирает арифметическую машину названную "паскалина”, тем самым приносит себе известность не только во Франции, но и за ее пределами. Прообраз современного калькулятора привел в восторг ученых-современников Паскаля.

Люди же счетных профессий отнеслись к этому изобретению довольно враждебно, посчитав арифметическую машину конкуренткой для себя. Да и для практического использования она была несколько громоздкой. Однако, гения Блеза Паскаля как ученого это ничуть не умаляет.

Не смотря на то, что с 18 лет его стали мучить постоянные головные боли, это не отвратило молодого человека от научных изысканий. Его очень заинтересовало открытие молодым ученым из Италии Торричелли атмосферного давления. Пытливый ум Паскаля предположил, что сила атмосферного давления зависит от высоты нахождения измеряющего прибора – чем выше прибор, тем ниже давление, и, наоборот.

арифметическая машина Паскаля фото

Теоретических предположений Паскалю оказалось мало и он принял участие в практических испытаниях. Несколько подъемов в 1647 году на гору Пюи-де-Дом вместе с трубкой Торричелли и барометром, подтвердили практически гипотезу Паскаля о том, что вес воздуха влияет на атмосферное давление. Он справедливо предположил, что эту гипотезу можно отнести к жидким и газообразным веществам.

Паскаль не смог закончить эту работу и вывести окончательную формулу для своего открытия. Это было сделано позднее другими учеными, но сама единица измерения механического напряжения носит имя Паскаля. Зарождении тории вроятности К сожалению, в 27 лет не слишком крепкое здоровье Паскаля серьезно пошатнулось – он был частично парализован.

Занятия наукой пришлось сократить до минимума. Но его не просто деятельный и энергичный, но кипучий ум невозможно было ограничить. Начав вести рассеянную, светскую жизнь он стал посещать, в том числе и игорные дома и совершил открытие, что можно математически рассчитать вероятность выигрыша с поразительно высокой в процентном отношении величиной.

Свое открытие он сформулировал как теорию принятия решений. Возможность рассчитывать ее математически с использованием статистических данных позволяет успешно применять открытие 17 века в экономике, современном маркетинге, игре на бирже и так далее.

Своеобразной шуткой гения можно считать изобретение рулетки, которое пришло к Паскалю, когда он мучился от зубной боли. Желая отвлечься, он начал просчитывать вероятность выигрыша в лото с 36 картами. Итогом стала одна из самых азартных мировых игр. Но это же открытие о вероятности высчитать разные исходы событий, кардинально поменяло и жизнь самого Паскаля.

Материалист и христианин

Извечный спор между ученым материалистом и христианином о существовании Бога, закончился для него в пользу христианства. Паскаль перестал заниматься математическими исследованиями и остаток жизни посвятил приобщению к вере как можно больше людей. Этому посвящено его незавершенное сочинение "Мысли”. Не стало Блеза Паскаля 19 августа 1662 года.

  • Как дань гениальности Паскаля можно считать то, что язык программирования назван именем великого французского ученого.
  • "Паскаль” – так в международной системе называется единица измерения механического напряжения. Решение об этом было принято учеными в середине 20 века.