Входные контура усилителя мощности на гу 81м. Разное. Подобие предисловия


Усилитель мощности (УМ) выполнен по схеме с общей сеткой на проверенной временем надёжной лампе прямого накала с графитовыми анодами ГУ-81М (рис. 1). Несомненными преимуществами этого УМ является его готовность к работе через несколько секунд после включения и неприхотливость в эксплуатации. Применяемая в усилителе защита от перегрузок и коротких замыканий, мягкое включение и регулируемый спящий режим работы позволили создать экономичный УМ с достойными характеристиками при минимальных габаритах и затратах. В нём используются в основном отечественные комплектующие. Усилитель имеет низкий уровень акустического шума, поскольку вентилятор включается автоматически (только при достижении в ламповом отсеке температуры более 100 о С). Высокая линейность обеспечена выбором оптимального режима работы лампы и применением вариометра в П-контуре вместо традиционной катушки с закорачиваемыми витками. Всё это позволило получить подавление второй и третьей гармоник в выходном сигнале на уровне -55 дБ. Выходная мощность усилителя - 1 кВт при напряжении на аноде лампы 3 кВ и входной номинальной мощности 100 Вт.

Рис. 1. Схема усилителя мощности на лампе ГУ-81М

На входе усилителя включены диапазонные П-контуры L9-L17, C8-C25, переключаемые посредством реле К6- К14. Они обеспечивают согласование с любым импортным трансивером (даже не имеющим встроенного тюнера), обеспечивая КСВ по входу не хуже 1,5 на всех диапазонах. Время перехода УМ в спящий режим от 5 с до 15 мин устанавливает регулятор, который выведен на переднюю панель. Также введён режим работы усилителя при пониженной до 50 % выходной мощности ("TUNE"), который получается при снижении напряжения накала лампы VL1 до 9 В. При этом можно сколь угодно долго настраивать УМ и полноценно, без потери качества сигнала, работать в эфире.

В усилителе применена параллельная схема питания анодной цепи. По сравнению с последовательной схемой она более безопасная, поскольку на элементах П-контура отсутствует высокое напряжение. Применение высокодобротной катушки индуктивности, подключаемой параллельно обмоткам вариометра на ВЧ-диапазонах, и отсутствие закорачиваемых витков катушки П-контура позволило также получить практически одинаковую выходную мощность на всех диапазонах.

При включении УМ в сеть напряжение 220 В поступает через сетевой фильтр L19L20 на первичную обмотку трансформатора Т2 через галогеновую лампу EL1. Это обеспечивает мягкое включение усилителя, продлевая жизнь лампе ГУ-81М и другим элементам устройства. После зарядки конденсаторов С40-С49 высоковольтного выпрямителя до 2,5 кВ напряжение, снимаемое с делителя на резисторах R13- R16, поступает на базу транзистора VT3, транзистор открывается, срабатывает реле К4, замыкая своими контактами К4.1, К4.3, К4.4 галогеновую лампу EL1. На обмотку I трансформатора Т2 поступает полное напряжение сети. Особенность такого включения - малый гистерезис срабатывания/отпуска-ния реле К4, что обеспечивает надёжную защиту от различных перегрузок (короткое замыкание во вторичных цепях питания, цепи накала и замыканиях в обмотке трансформатора Т2). При возникновении любой из перечисленных неисправностей напряжение на базе транзистора VT3 уменьшится, реле К4 выключится и трансформатор Т2 вновь окажется подключённым к сети через лампу EL1, что ограничивает ток на уровне 1 А, предотвращая выход из строя лампы VL1 и УМ в целом.

Управление работой усилителя осуществляется узлом на транзисторе VT1. При замыкании на общий провод контакта Х1 "Упр. ТХ" (ток в этой цепи 10 мА) транзистор открывается и реле К1, К2 подключают своими контактами вход и выход усилителя к ВЧ-разъёмам XW1, XW2. Одновременно контакты реле К1.2 замыкают цепь катода лампы VL1 на общий провод, и усилитель переключается в режим передачи сигнала. В режиме "QRP" выключатель SA3 отключает питание транзистора VT1, что исключает переход усилителя в активный режим, и в антенну сигнал поступает непосредственно с выхода трансивера.

Вентиляторы М1 и М2 поддерживают температуру УМ, исключающую перегрев элементов усилителя. При пониженном напряжении питания они работают практически бесшумно. В отсеке питания усилителя установлен компьютерный вентилятор М1 (12 В, 0,12 А, диаметр 80 мм), работающий при напряжении 7...8 В. В ламповом отсеке установлен вентилятор М2 размерами 150x150x37 мм на рабочее напряжение 24 В, который питается от цепи накала лампы VL1. В обычном режиме вентилятор работает при пониженном до 8...10 В напряжении питания, а при полной выходной мощности оно повышается до 20...22 В. Управляет работой вентилятора М2 узел на транзисторе VT2. При переходе усилителя в режим "ТХ" напряжение +24 В с коллектора транзистора VT1 через диод VD3 и резистор R10 поступит на конденсатор С35. Когда температура в ламповом отсеке повысится до 100 о С, термоконтакты SK1 разомкнутся и через 8...10 с конденсатор С35 полностью зарядится. Откроется транзистор VT2, сработает реле К5 и переключит вентилятор М2 на повышенные обороты. После выхода усилителя из активного режима благодаря медленной разрядке конденсатора С35 через базовую цепь транзистор VT2 удерживается в открытом состоянии ещё 1,5...2 мин и работа вентилятора на повышенных оборотах продолжается. Если время передачи менее 8 с, вентилятор работает на пониженных оборотах, не создавая лишнего акустического шума. Резистор R34 подбирают по минимальным оборотам вентилятора, обеспечивающим температурный режим в УМ.

В усилителе применён режим энергосбережения, хорошо зарекомендовавший себя во многих конструкциях автора. Узел управления этим режимом выполнен на транзисторах VT4-VT6. При включении питания усилителя конденсатор С55 заряжается от источника + 12 В (DA1) через подстроечный резистор R9 и резистор R12. При каждом включении на передачу с коллектора транзистора VT1 напряжение +24 В поступает на базу транзистора VT4 через делитель на резисторах R6, R7. Транзистор VT4 открывается и разряжает конденсатор С55. Но если усилитель какое-то время не работал на передачу, конденсатор С55 успевает зарядиться полностью (время зарядки определяется резистором R9), открывается составной транзистор VT5, VT6 и замыкает на общий провод цепь базы тран-зистора VT13. Реле К4 обесточивается, и первичная обмотка трансформатора Т2 вновь запитывается через лампу EL1. Усилитель переключится в режим энергосбережения, при котором потребляемый ток и нагрев минимален, а готовность усилителя к работе на полную мощность составляет 1,5...2 с. В режиме ожидания напряжение накала лампы VL1 снижено до 9 В. Для выхода из этого режима достаточно кратковременно нажать на кнопку SB1 "ТХ" или перевести трансивер в режим передачи, соединив разъём X1 с общим проводом.

Стабилизаторы напряжения на микросхемах DA1 и DA2 служат для питания узлов автоматики и реле. Резистор R31 ограничивает ток при коротком замыкании в цепи +24 В. Высоковольтный выпрямитель построен по схеме удвоения напряжения, которая по своим характеристикам близка к мостовой схеме, но требует в два раза меньшего числа витков анодной обмотки трансформатора.

Трансформатор Т1 выполнен на магнитопроводе типоразмера K20x10x7 мм из феррита марки 200-400НН. Вторичная обмотка содержит 27 витков провода ПЭЛШО 0,25. Первичной обмоткой служит провод, проходящий через отверстие кольца и соединяющий контакт реле К2.1 с вариометром L1.

Сетевой трансформатор Т2 намотан на тороидальном магнитопроводе от ЛАТР-1М (9 А). Если УМ будет эксплуатироваться в "умеренном" режиме (т. е. без длительной работы в контестах), можно оставить "родную" сетевую обмотку, которая содержит 245 витков провода диаметром 1,2 мм. Если обмотку перематывать, диаметр провода желательно увеличить до 1,5 мм.Ток холостого хода сетевой обмотки должен быть 0,3...0,4 А. Вторичная обмотка (II) содержит 1300 витков провода ПЭВ-2 0,7. Обмотка питания реле (III) содержит 28 витков провода ПЭВ-2 0,7, накальная (IV) - 17 витков провода ПЭВ-2 2 с отводом от 12-го витка.

Усилитель смонтирован в металлическом корпусе размерами 500x300x300 мм. Глубина подвала шасси - 70 мм (рис. 2). В подвале (рис. 3) размещены платы высоковольтного выпрямителя, управления, стабилизаторов напряжения +12 и +24 В, плата измерителя мощности, сетевой фильтр, плата входных контуров, реле К3-К5, автоматический выключатель SF1 ВА47-29 на ток 10 А. Лампа EL1 расположена около выключателя SA4 "PWR" так, чтобы её свечение было видно через прозрачный корпус светодиода HL1 (синего цвета свечения), который установлен на лицевой панели рядом с SA4.

Рис. 2. Смонтированный УМ

Рис. 3. Размещение плат в корпусе УМ

Переключатель SA1 применён от согласующего устройства радиостанции Р-130, который подвергся значительной модернизации: фиксатор переделан на десять положений, добавлена галета для переключения реле входных контуров, добавлен общий посеребрённый токосъёмник толщиной 1,5 мм.

Дроссель L6 содержит 50 витков провода ПЭВ-2 0,7, намотанного виток к витку на стержне диаметром 10 и длиной 80 мм из феррита 1000НН.

Двухобмоточный дроссель L7, L8 содержит 2x27 витков провода ПЭВ-2 1,8, намотанного бифилярно виток к витку на двух сложенных вместе стержневых магнитопроводах диаметром 10 и длиной 100 мм из феррита 600НН.

Катушки L9-L17 - бескаркасные, намотаны проводом ПЭВ-2 на оправке диаметром 18 мм. Все детали входных контуров распаяны со стороны печатных проводников на плате реле. Намоточные данные катушек и номиналы ёмкостей конденсаторов приведены в таблице.

Таблица

Диапазон, МГц

Обозначение на схеме

Число витков

Диаметр провода, мм

Емкость конденсатора Свх, пФ

Емкость конденсатора С вых, пФ

Дроссель L18 - ДМ-2,4 индуктивностью 10 мкГн. Сетевой фильтр L19L20 намотан на половине магнитопровода от трансформатора ТВС90 или ТВС110. Намотка - бифилярная проводом МГТФ 1 мм до заполнения.

Термоконтакт SK1 (от электрического кулера или другого нагревательного прибора) с нормально замкнутыми контактами рассчитан на температуру срабатывания 90...100 о С. Он установлен на ламповой панели ГУ-81М. Лампа ГУ-81М установлена в родной панели "подкова" на 30 мм ниже уровня шасси. Получившее распространённое мнение о необходимости "раздевания" ГУ-81М ничего, кроме проблем с нарушением контактов, усложнением крепления лампы и её охлаждения, не принесёт. А "значительное", по утверждению некоторых радиол юбителей - конструкторов, уменьшение ёмкости анод-катод, которое составило 2,8...3 пФ (проверено экспериментально), не окажет на работу УМ существенного влияния.

На лицевой панели УМ размещены органы управления, индикации и контроля (рис. 4). Измерительные приборы PA1 и PA2 - М42300. РА1 имеет ток полного отклонения 1 мА, а у РА2 он может быть существенно больше. Этот прибор должен измерять (с учётом шунта R30) ток до 1 А. Шкала прибора рА1 отградуирована непосредственно в ваттах. Индикатор VL2 - импортная неоновая лампа на напряжение 220 В. Лампа EL1 - галогеновая, 150 Вт на 220 В (диаметр 8 и длина 78 мм).

Рис. 4. Лицевая панель УМ

На задней панели усилителя размещены ВЧ-разъёмы, гнездо управления Х1 "тюльпан", клемма заземления, сетевой разъём и разъём подключения вентилятора. Все ВЧ-разъёмы, конденсатор С3, клемма заземления, блокировочные конденсаторы и вывод 6 панели лампы ГУ-81М соединены между собой медной шиной сечением 15x0,5 мм.

Реле К1 - РЭН33, К2 - РЭН34, КЗ - ТКЕ54, К4 - ТКЕ56, К6-К14 - РЭС9 (паспорт РС4.524.200). Все реле - на номинальное рабочее напряжение 24- 27 В.

Конденсатор переменной ёмкости СЗ - с зазором 0,8...1 мм, конденсаторы С4-С7, С27 - К15У-1, СЗЗ - КВИ-3. Оксидные конденсаторы С40-С49 - импортные, конденсаторы С35 и С55 должны иметь малый ток утечки. Все блокировочные конденсаторы - КСО, С8-С25 - КТ, КСО. Все постоянные резисторы (кроме R3) - типа МЛТ, R3 - серии SQP-5.

Первичное налаживание усилителя производят при отключённой обмотке II трансформатора Т2. Измеряют напряжение накала, напряжения на выходах стабилизаторов, отлаживают работу узлов автоматики, и только убедившись в полной работоспособности этих узлов, переходят к высоковольтным цепям. Вместо высоковольтной обмотки к выпрямителю-удвоителю подключают любой маломощный трансформатор и, подавая на выпрямитель-удвоитель переменное напряжение 100...200 В, проверяют его работоспособность и распределение напряжения на соединённых последовательно оксидных конденсаторах С40-С49. Если всё в норме, подключают, соблюдая меры предосторожности, высоковольтную обмотку. Напряжение ненагруженного выпрямителя может достигать 3000 В.

Ток покоя лампы VL1 должен быть 25...30 мА. Не подключая трансивер, проверяют УМ на отсутствие самовозбуждения в режиме "ТХ" на всех диапазонах. Далее, подключив трансивер кабелем длиной не более 1,2 м, при отключённом тюнере (если таковой имеется) настраивают входные контуры L9-L17, C8-C25 при включённом на передачу УМ, подавая на его вход сигнал мощностью 10...15 Вт. Настройку производят, начиная с ВЧ-диапазонов, по минимуму КСВ на приборе трансивера. Затем увеличивают входную мощность и сдвиганием/раздвиганием витков этих катушек ещё раз уточняют настройку.

Настройку П-контура также производят при минимальной входной мощности, предварительно подключив к выходу усилителя эквивалент нагрузки 50 Ом достаточной мощности (например, от радиостанции Р-140), и начиная с ВЧ-диапазонов, подбирают положение отводов у катушки L2. Затем переходят к НЧ диапазонам.

Подавление гармоник, измеренное автором с помощью анализатора спектра С4-25 и импортного анализатора 8590А, составило не менее -45 дБ на диапазоне 28 МГц и -55 дБ на НЧ-диапазонах. Анод лампы ГУ-81М при длительной (3...5 мин) работе в режиме CW имел слегка розовый оттенок, что для лампы вполне допустимо.


Дата публикации: 01.12.2015

Мнения читателей
  • олег / 02.12.2019 - 06:45
    ГОД РАБОТЫ,ПОЛЕТ НОРМАЛЬНЫЙ. НА ВСЕХ БЭНДАХ 1КВТ. КРОМЕ 28МГЦ. ТАМ 700ВТ. ЗАМЕЧЕНО МОЩ.ПАДАЕТ ЕСЛИ НАПРУГА В СЕТИ МЕНЬШЕ 220В.
  • Lubomir / 22.07.2019 - 22:45
    Як запирається лампа на прийом??
  • Владимир / 28.01.2018 - 09:49
    При напряжении на аноде 2700-2800 в и раскачке 80-90 ватт отдает 700-800 ватт.При напряжении на аноде 1800 -2000 в больше 450-500 ватт не дает.
  • Александр / 17.08.2017 - 21:19
    Вот-вот, и я о том же, чтобы до киловатта в катод раскачать, на вход надо минимум 150 ватт.
  • Владимир / 29.07.2017 - 23:45
    Хороший усилитель,автору спасибо. Повторил эту схему, при 75 ватт раскачки отдаёт 500 ватт.
  • АЛЕКСАНДР / 16.05.2017 - 15:31
    У меня такой УМ только на двух лампах ГК-81М выполненный Вчячеславом работает уже почти два года безупречно...
  • Геннадий / 26.01.2017 - 15:40
    С таким качеством делал конструкции в 14-летнем возрасте, только мощности конечно поменьше, на хулиганский диапазон одноклассникам. За такое качество брать деньги стыдно.
  • Николай / 20.01.2017 - 20:49
    Все здорово.Все раскачается легко 100 ваттами даже меньше, я проверял Нужно чтобы высокое было под нагрузкой не меньше 3000,тогда лампа раскрывается С уважением R9SC
  • Александр / 30.10.2016 - 04:34
    Сомневаюсь я, что можно раскачать в катод до киловата на выходе, при ста ватах на входе, даже если и с входными контурами. А в схеме есть много интересных решений, питание, защита, охлаждение, ВКС. Взял за основу, но раскачивать буду в сетку. Автору спасибо.
  • Дон / 19.02.2016 - 15:27
    Достойно внимания
  • юрий / 31.01.2016 - 20:44
    схема и конструкция хорошая

КВ усилитель на двух лампах ГУ-81М

Светлой памяти моей
дорогой супруги Галины UR5CY
посвящается

Усилитель предназначен для усиления выходной мощности КВ радиостанции до уровня 1500 Вт при входной - до 30 Вт. Усилитель построен по классической схеме с общим катодом и последовательным питанием анода. Кроме того, применена автоматическая регулировка тока покоя ламп по огибающей SSB сигнала. Это позволило снизить начальный ток анода до 100мА на одну лампу. В усилителе возможно применение ламп ГУ-46М, ГУ-80, ГУ-81 без ущерба для характеристик.

Входной сигнал от трансивера через контакты реле RL17 и входные резонансные контура подается на управляющие сетки ламп ГУ-81М. Задача входных контуров согласовать низкоомный выход трансивера с высокоомным входом ламп. Катушки L7, L9 и L11 с помощью конденсаторов С35, С37 и С39 настраиваются на выходное сопротивление трансивера 50 Ом а катушки L6, L8 и L10в резонанс на середину соответствующего диапазона. Процедура настройки контуров проводится при среднем положении ферритовых сердечников и только подбором количества витков катушек и величин соответствующих емкостей. Результатом правильной настройки входных контуров является присутствие на управляющих сетках ламп высокочастотного напряжения величиной 120В, при входной мощности 30Вт, что соответствует 38 вольтам напряжения на нагрузке 50 Ом. Если напряжение на управляющих сетках ламп окажется больше 120В, катушки L6, L8 и L10 необходимо зашунтировать двухваттными резисторами соответствующей величины.

Одновременно с высокочастотным напряжением возбуждения на сетки ламп подается отрицательное напряжение смещения через одну из обмоток трансформатора ТА2. Напряжение смещения по величине зависит от уровня входного ВЧ сигнала и изменяется в пределах -150-120В. Работа и настройка стабилизатора напряжения управляющей сетки неоднократно публиковалась в различных конструкциях усилителей, поэтому повторять нет необходимости. Единственное отличие данной схемы от ранее опубликованных – это применение в качестве составного транзистора двух транзисторов КТ854 и КТ940 вследствие более высокого напряжения смещения ламп ГУ-81М по отношению к металлокерамическим тетродам.

При необходимости может быть задействована система ALC, которая заведена и работает через трансформатор ТА2.

Питание экранной сетки осуществляется от выпрямителя с удвоением напряжения. Ввиду низкой крутизны характеристики ламп применение стабилизатора напряжения экранной сетки нецелесообразно. Практическая проверка коэффициента усиления каскада при изменении напряжения экранной сетки подтверждает это. Увеличение напряжения экранной сетки на 50В практически не влияет на величину крутизны характеристики лампы, а значит и коэффициент усиления каскада мало изменится.Напряжение +700В подается на экранные сетки ламп через контакты реле RL1 и токоограничивающий резистор R14. Для ограничения бросков тока через лампы катоды ламп включены на корпус через резисторы R5 и R6. На этих же резисторах измеряется анодный ток ламп.

Колебательная система представляет собой обычный П-контур с фиксированными «горячими» конденсаторами, переменными индуктивностью и конденсатором в «холодном» конце. В качестве катушки П-контура применен шаровый вариометр от радиостанции Р-140. В первом положении коммутации катушек при параллельно-последовательном включении индуктивность изменяется от 1.8мкГ до 9.6мкГ и перекрываются диапазоны 80 и 40м. Во втором положении при параллельном включении катушек вариометра индуктивность меняется от 0.6мкГ до 2.5мкГ – перекрываются диапазоны 20, 15 и 10м.

Выходная мощность измеряется с помощью трансформатора ТА1 и измерительного прибора PV1. Трансформатор выполнен на ферритовом кольце М25*16*5 с проницаемостью 2000НМ. Первичная обмотка этого трансформатора являет собой антенный провод продетый в кольцо, а вторичная – 10 витков провода ПЭЛШО-0.25.

Входные контура выполнены на пластмассовых каркасах диаметром 12мм и высотой 30мм с ферритовыми подстроечными сердечниками. Катушки намотаны проводом ПЭЛШО-0.5. L6 имеет 9 витков, L7-4, L8-14, L9-5, L10-25, L11-10 витков. Для остальных диапазонов изготовить входные контура не представляет больших трудностей.

Реле RL1 и RL17 типа РЭН-33, RL2 – РЭВ-15, RL14-RL16 – РЭС-9, остальные типа «тещин язык». Реле RL1 и RL2 в блоке питания типа РЭС-49. Конденсаторы С8, С16, С17 и С18 типа К15-У на напряжение не менее 6кВ, С9 и С10 типа КВИ на напряжение не менее 10 кВ.

Трансформатор ТА2 изготовлен на ферритовом кольце М2000 типоразмера 28*16*6. Обмотка, через которую подается смещение на управляющую сетку лампы, содержит 6 витков провода МГТФ, обмотка ALC-1виток, третья обмотка – 2 витка с отводом от середины. Возможно изготовление данного трансформатора в виде «бинокля». Узлы формирования RX/TX, ALC и динамический стабилизатор напряжения управляющей сетки размещены на печатных платах.

Настройка усилителя производится обычными способами.

…..говорят, будто парусу реквием спели....
В. Высоцкий

Желающие увидеть здесь что- то необычное, новое могут листать дальше.
Многие понимающие, что и как должно выглядеть, собирают устройства, не имея перед собой полной схемы, пробуя различные варианты и оставляя лучший. После этого остаётся куча изрисованных и исчёрканных клочков бумаги с фрагментами схем и расчетами, которые надо дополнять и додумывать, порой вспоминая, какой же вариант реализован в "железе"? Это как- то оправдано тем, что собирать их вместе и систематизировать, когда устройство уже изготовлено и исправно работает - большая неинтересная работа. Зачем? Я и так все вспомню, если потребуется. Тем, кто не хочет или не умеет экспериментировать, нужна нормальная понятная схема с описанием.

Это становится очевидным при общении в эфире. Даже посвящённый, при рассмотрении схемы, всегда может увидеть что- то интересное или набрести на ценную мысль. Публикация в инетрнте - дело неблагодарное. В форуме всегда найдутся несколько "плечистых" на язык "дятлов" с кликухами вместо имен или позывных, которые с наслаждением задолбят и обгадят самый гениальный проект, вместе с его автором. Поэтому многие из "продвинутых" конструкторов, к сожалению, предпочитают там не появляться.

Без претензий на уникальность, хочу показать схему хорошо работающего усилителя, в описании которого старался осветить наиболее часто задаваемые в эфире вопросы. Не буду рассказывать, зачем применил именно такую лампу. Нравится она мне, и всё.
Питание на усилитель подается включением тумблера В1. Напряжение сети, через фильтр поступает на трансформатор Тр3, обеспечивающий накал лампы, смещение на управляющую сетку и 27 Вольт. Лампа закрыта напряжением –310 в. Через 2-3 секунды срабатывает реле Р6 в коллекторе Т1, подключая своими контактами К6-1 и К6-2 сетевую обмотку высоковольтного трансформатора через резистор R13.

После окончания переходного процесса напряжение на Р7 достигает уровня срабатывания. Своими контактами К7-1 оно шунтирует R13. Полное напряжение поступает на сетевую обмотку трансформатора высоковольтного выпрямителя, с него на анод лампы, а через стабилизатор на Т2 на её экранную сетку. Стрелка амперметра "ток лампы", рассчитанного на 1 Ампер, еле заметно отклоняется от начала шкалы, что косвенно указывает на исправную работу стабилизатора экранной сетки. Степень отклонения стрелки зависит от тока через стабилитроны Д14-Д18.

Усилитель готов к работе.

С целью минимизации тепла, выделяемого нитью накала лампы, предусмотрен тумблер В3. При интенсивной работе он включен, и реле Р5 подает полный накал на лампу, в выключенном состоянии - половину, поддерживая её готовность. Сигнал "передача" подаётся замыканием входа "РТТ" на общий провод. Это может быть педаль, контакты реле или коллектор ключевого транзистора в трансивере.

Тумблер В2 при этом должен быть включен. Своим отключением он позволяет оперативно организовать режим "Обход" (без усилителя). Реле Р1- промежуточное, для уменьшения тока в цепи "РТТ", что важно при управлении от транзисторного ключа трансивера. При его срабатывании, срабатывают реле Р2 и Р3, подключающие антенную цепь через усилитель, Р4-открывает лампу и обеспечивает ей ток покоя, переводя стабилитроны Д6, Д7 из "подвешенного" в динамический режим, а также Р5, которое, в зависимости от положения В3, либо уже держит лампу под полным накалом, либо срабатывает через диод Д25.

Судя по отзывам при работе в эфире, после переключения на полный накал от сигнала "РТТ", лампа успевает разогреться, хотя совсем необязательно её постоянно так дергать, достаточно включить В3. Конечно, QSK в таком режиме исключён, но он и не предусматривался изначально. Контакты К6-1, К6-2 и К7-1 рассчитаны на 20А. При указанных элементах реле Р6 в коллекторе Т1 срабатывает через 2- 3 секунды, после включения выключателя В1. Время задержки определяется номиналами R14 и С26.
Поскольку КПД усилителя ограничен, а сам он обладает значительной мощностью, его желательно вентилировать. Корпус 490х370х280 от УИП-1, в котором он собран, имеет, на мой взгляд, идеальную для такого устройства перфорацию, в дополнение к которой установлена турбина от ксерокса. При включении тумблера В4, она забирает воздух из внутреннего объема усилителя, создавая там циркуляцию, обдувает лампу и выгоняет его наружу через перфорированную часть корпуса. Турбина закреплена вертикально, на демпфирующих резиновых прокладках. Имея основание 4х5 см и высоту почти во весь "рост" лампы, она занимает очень мало места и практически не шумит, а повышенная температура баллона не перегревает ее стальных лопастей. В последствии, параллельно В4 был подключен биметаллический контакт.

Для некоторой тепловой инерции, он расположен на плоском черном радиаторе с противоположной вентилятору стороны лампы. Радиатор установлен в плоскости анода, где его тепловое излучение максимально, а степень охлаждения незначительна. Такой датчик хорошо поддерживает температурный режим, при необходимости включая обдув, а также остается возможность при желании включать вентилятор принудительно. Стабилизатор экранного напряжения выполнен на транзисторе Т2, установленном на радиаторе. Тип транзистора выбран из расчета напряжения коллектор-эмиттер, (перепад напряжения плюс запас 200-300 вольт), и рассеиваемой им мощности (с запасом 50-80 Вт). Многие "наши" здесь тоже будут надежно работать.
Пять последовательно включенных стабилитронов Д14-Д18 расположены на небольших радиаторах, они создают опорное напряжение для Т2. Резистор R12 обеспечивает через них номинальный ток. Диод Д13 предотвращает выгорание стабилитронов (всё-таки пять штук) при возможном в нештатных ситуациях пробое транзистора. Д10-Д12 защищают от перенапряжения переход эмиттер-база.

Если Вы очень аккуратны или располагаете значительным запасом радиодеталей, то диоды Д10-Д13 можно исключить из схемы.
Стабилизатор смещения выполнен на стабилитронах Д6, Д7. Ток через них определяется номиналом R10. R11 разряжает С19 при выключении усилителя. Работа лампы ГУ-81 допустима с незначительным током первой сетки. Контроль величины, которого осуществляется прибором "ток сетки". Однако его появление надо расценивать как сигнал к ограничению мощности раскачки. Для линейной работы такого усилителя, источник напряжения смещения должен обладать низким выходным сопротивлением. Поэтому применять схемы с плавной регулировкой на резистивных делителях здесь крайне нежелательно.

Выбор величины тока покоя лампы осуществляется подбором экземпляра одного или обоих стабилитронов. Высоковольтный источник совсем необязательно выполнять с таким множеством диодов и обмоток, хотя как вариант, он вполне оправдан. Его схема определялась только желанием поэкспериментировать с различными напряжениями на электродах лампы. Трансформатор намотан на тороиде, от какого- то импортного транзисторного эстрадного стереоусилителя 2х600Вт. Его внешний диаметр около 200мм. Сечение железа 60х60мм. первичная обмотка 2х110 в. оставлена. Она намотана проводом 1,8мм. Вторичные обмотки намотаны проводом ПЭЛ 0,65мм. Точные данные не привожу, по причине не распространенности такого изделия.

При нагрузке 0.6А анодное напряжение 3 кВ "проседает" на 270вольт (менее 10%), что удовлетворяет требованиям к линейному усилителю SSB сигнала.

ТР3- это два трансформатора с параллельно соединенными сетевыми обмотками. Один намотан на небольшом (50Вт) тороиде для 24в. и напряжения смещения первой сетки, Другой ТН-61 – для накала лампы. Лампа установлена вертикально, в штатную заводскую панель. Вопреки распространенному мнению, отпиливание "рогов и копыт" - (сказка про ртутные антенны), никак не улучшает её работу, зато придает "сиротский" внешний вид и приводит к извращениям при её размещении в пространстве. Как можно использовать те 4см. по высоте, возле изделия с такой температурой, сэкономленные в результате варварских действий? А сколько добавиться к той мифической, якобы уменьшившейся при "раздевании" ёмкости, при приближении "голой" лампы к шасси, и что станет с её охлаждением? Об этом в таких опусах умалчивается.

Трансформатор Т1 содержит 20 витков провода МГТФ, равномерно распределенного по ферритовому кольцу К25х15х5 1000НН. Он размещён в экране из жести. Кольцо с обмоткой надето на свободный от оплетки центральный провод коаксиала, припаянный к антенному разъему. Элементы схемы детектора уровня выхода размещены на небольшой плате, укрепленной на клеммах соответствующего измерительного прибора. Трансформатор подключен к ней посредством скрученных проводов, являющихся продолжением выводов обмотки, расположенных в экране.

Верхняя секция (25вит.) "через виток". Провод медный, со стальным покрытием диаметр 0,3мм. в какой-то неорганической термостойкой зеленой изоляции. Его диаметр в изоляции около 0.5 мм. (я бы намотал ПЭЛШО, но его не было). Индуктивность дросселя получилась140 мкГн. Проволочный резистор R5, являясь дополнительным дросселем в штатных условиях (электролиты очень не любят высокочастотные переменные составляющие.) уменьшит ток в анодной цепи, пока сгорает предохранитель, при возможных К.З. ПР1- высоковольтный, стеклянный, длина около 5 см. Он припаян прямо за выводы, без держателя. С7 и С8 блокировочные, типа КВИ. С2- КСО-8. С3 – воздушный, четырех секционный. С4 - воздушный, с разрезным ротором и статором и меняющимся при повороте расстоянием между пластинами, от радиостанции Р-856. С5 и С6 - К15-у. на10 кВ.

Р8- Р14 вакуумные замыкатели В1В. R4 без индукционный, он обеспечивает стекание заряда с элементов "П" - контура. П1- керамический галетного типа. L1- 30 витков голого медного провода диаметром 3мм. вкрученного в пятимиллиметровую пластину
из оргстекла, с шагом 1мм. Внешний диаметр 60 мм. L2- 11 витков медной трубы диаметром 6мм. длина 110мм. Внешний диаметр 55мм. L3- 2,5 витка медной трубы диаметром 6мм. Внешний диаметр 55 мм. расстояние между витками подбирается при настройке на 24 - 28 мГц. L4- на фторопластовом тороиде 80х40х20мм. 100 витков ПЭЛ-07. Витки, расположенные на внешней части кольца, зачищены и облужены, что дает возможность оперативно подбирать положение отводов при настройке.

Отвод, на который подается сигнал от трансивера (П1-а), подбирается по минимуму КСВ, при настроенном контуре. Др2- ПЭЛШО- 0.25 в навал на керамическом пяти-секционном каркасе. Витки не считал. Его параметры не критичны. С9,С10,С12- С15, С20- КСО-8. С11- воздушный. Вращением его оси удобно подстраиваться по максимуму показаний прибора "уровень выхода" по диапазонам и на отдельных участках "широких" диапазонов. Если в трансивере включен КСВ- метр, то по нему видно, как по мере настройки контура одновременно снижается КСВ между трансивером и усилителем. R7- без индукционный. Он собран в виде блока из десяти 24 килоомных резисторов МЛТ-2, включенных параллельно. От его сопротивления зависит мощность, требуемая для "раскачки" и полоса (необходимость подстройки С11 в пределах диапазона), а также"устойчивость" усилителя. При 10Вт мощности трансивера на 7мГц ток лампы около 600мА при согласованной нагрузке. При этом ток управляющей сетки около 3мА., что для этой лампы вполне допустимо, а ток экранной сетки не превышает 120мА.

Для достижения номинальной мощности на 21-28 мГц приходится пропорционально увеличивать уровень сигнала на входе. R8 состоит из двух, последовательно включенных резисторов МЛТ-2 по 75кОм, что удваивает рассеиваемую ими мощность и увеличивает рабочее напряжение, которое для одного МЛТ-2 = 700 вольт. Кольцами на выводах R6 и R9, на схеме показаны "противоблудовые" ферритовые трубочки. Их длина около 2см. На выводе L3, два ферритовых кольца 12х6х5 1000 нн.

Реле "omron" и сетевой фильтр от импортной оргтехники, с подходящими для конкретного случая параметрами. Обмотки всех реле кроме Р7, включая Р8-Р14 (диоды на схеме не показаны), зашунтированы диодами 1N4007. Диоды Д2-Д5 того же типа, они удерживают в закороченном состоянии неиспользованные отводы катушек "П" контура. Р7- реле переменного тока с обмоткой на 220 вольт.

Детали высоковольтного выпрямителя расположены на печатной плате 175х240х2мм., вырезанной на одностороннем стеклотекстолите. В нем используются 105- градусные, фирмы "LG" электролитические конденсаторы С1-С10, резисторы R1-R10 МЛТ-2, и 24 диода 1N5408. Это трехамперные 1000- вольтовые, малогабаритные диоды с прекрасной перегрузочной способностью.

Таблица намоточных данных контуров усилителя.

L4 П1б

L4 П1а

"П" контур L1/L2

100вит.(43 мкГн)

78вит.(35,5 мкГн)

L1+L2 полностью

40 вит.(14.5 мкГн)

33вит.(11 мкГн)

21 вит.(6.3 мкГн)

16вит.(4.4 мкГн)

12 вит.(3 мкГн)

8 вит. (1.6 мкГн)

8 вит. (1.6 мкГн)

5 вит. (0.9 мкгн)

Индуктивность катушек указана приблизительно, Т.К. измерялась "показометром". При постройке усилителя не ставилась задача "выдавить" из него максимум возможного. По моему убеждению, если нужно мощнее, то лучше взять соответствующий усилительный прибор и строить на нём, придерживаясь режимов, а не "впиндюривать" что- то более хилое. Всякий форсаж приводит к экстримальным ситуациям и дополнительным, порой трудно разрешимым проблемам, которых и без того хватает. Здесь лампа работает в номинальном "паспортном" режиме, с некоторым завышением экранного напряжения. Инструментальных измерений не проводилось по причине отсутствия поверенных приборов. На вопрос, сколько мощности на выходе? Отвечаю - одна лошадиная сила, что недалеко от истины. Это любительская конструкция, однако, основные правила схемотехники всё же необходимо соблюдать, особенно правила монтажа высоковольтных и высокочастотных устройств.

Справедливости ради замечу, что при разработке схемы проводился обзор аналогичных устройств, по различным источникам. Поэтому, разглядевших здесь что- то "свое", прошу быть снисходительными. Экзотичность отдельных элементов, использованных
в усилителе, определялась только их наличием в распоряжении автора.

Конструкция и описание рассчитано на подготовленных радиолюбителей.


Схема УМ на ГУ-81

L1,C1-контур согласования между каскадами, на схеме изображён для согласования с транзисторным каскадом(50 Ом), для согласования с ламповым каскадом лучше подойдёт П-контур или Г-контур с отводами в сторону УМ. Данные контура и конденсатора зависят от раб. частоты УМ на ГУ-81.

V1 - цепочка любых стабилитронов на 200В.

Др1-ВЧ дросель 100мкГн, мотается на фарфоровом каркасе проводом расчитаным на соотвеоствующий ток потребления лампы.

Особенности монтажа усилителя мощности :
*Минимизировать длину выводов всех блокирующих конденсаторов.
*Точки заземления всех блокирующих конденсаторов и вх. контура связать широкими шинами из тонкой медной фольги со средним выводом катода. Фольгу эту не лудить припоем всю, только в месте припайки выводов.
*Защитную сетку заземлять только в подвале шасси, "рог" оставить свободным, никуда не присоединяя, его заземление вблизи выходных цепей чревато потерей устойчивости.

Схема УМ на ГУ-81 с заземленными сетками

Блок питания для УМ на двух лампах ГУ-81

Тр1-мощность не менее 5кВт, вторичная обмотка мотается проводом диам. от 1,2мм, на переменное напряжение около 2300в.
Д1-диодный мост, в плече 5шт Д248Б(600в,5а), итого 20шт, или любые другие на соответствующий ток и напряжение.
R1-ставится для постепенной разрядки конденсаторов после отключения источника питания.
Тр2-мощность не менее 160Вт, вторичная обмотка мотается проводом диам. 0,2мм, на переменное напряжение около 800в. Другая вторичка мотается проводом диам. 0,1мм, на переменное напряжение около 220в.
Д2-диодный мост, в плече 2шт 1N4007(1000в,1а), итого 8шт, или любые другие на соответствующий ток и напряжение.
С2-четыре электролитических конденсатора соединённых последовательно по 200мкФ 350в, или соответствующую "баночку".
VT1-высоковольтный транзистор (Uк-э не менее 400в, мощность >45Вт), крепится на радиаторе.
V1-КС650 5шт плюс Д814В 5шт,все соединяются последовательно, при необходимости крепятся на радиаторе.
R2-ставится для постепенной разрядки конденсаторов после отключения источника питания.
R3-с помощью его подбирается оптимальный режим работы стабилитронов.
Д3-диодный мост, Д226Б по одному в плечо, или любые другие на соответствующее напряжение и ток.
С3-электролитический конденсатор на 200мкФ 350в. При этом не забудьте изолировать его корпус от общей массы!
Тр3-мощность не менее 260Вт, вторичная обмотка мотается шиной или проводом расчитанным на ток 20А, напряжение 12...13в.

УМ на ГУ-81. Усилитель мощности КВ. Похожие материалы:

ВСЕМ СВОБОДНЫМ В ЭФИРЕ ЛИПЕЦК 3-ий район!
Автоанодная модуляция в АМ передатчиках!!!
ГРАЖДАНЕ - СССР, наверное, мало кто делал Автоанодную модуляцию (ААМ = Кпд 75%.), из-за сложности. Перечитав кучу литературы, я понял - она того стоит. Анодная модуляция отдыхает, а о сеточной вообще нет речи. Предлагаю на ваш выбор рабочие схемы ААМ.

Где Р - отдаваемая мощность;
Ра - предельная мощность, рассеиваемая анодом;
- к.п.д. усилителя.
Например, при Ра = 125вт. (ГК-71)
К.П.Д. = 25%.
При любой сеточной модуляции и при обычном (линейном) АМ сигнале, усилитель работает в недонапряженном режиме с низким к.п.д. (порядка 30%)!
Усилитель может отдать мощность:
Р=(125/(1-0,25))х0,25=42вт.
При ААМ к.п.д. = 75% (ГК-71)
Р=(125/(1-0,75))х0,75=375вт.
В обоих случаях на аноде рассеивается 125 вт.
Cледовательно, возростает К.П.Д. услителя от 25% до 75%, то есть в 3 раза. Увеличивается мощность, которую можно снять с усилителя, в 9 раз!

Принцип работы:
РИС.1
Основное отличие передатчика состоит в построения мощного оконечного каскада, где совмещаются функции усилителя радиочастотных колебаний и анодного модулятора, которое позволяет получить высокое КПД и мощность как при анодной модуляции класса В.
Для этого требуется:
а) оптимизация режима оконечного усилителя путем использования (скользящего) напряжения смещения сетки.
б) создание две ступени усиления модулированных колебаний с синфазной сеточной и анодной (питание анодной цепи предоконечного каскада от модуляционного дросселя).
в) в ведение отрицательной обратной связью по низкой частоте.
г) включение регулирующей лампы в оконечном каскаде (повышение линейной характеристики).
Схема:
На рис.3 схема ААМ с синфазной сеточной и анодной модуляцией в предоконечном каскаде: повышает вдвое КПД анодной цепи предоконечного каскада в режиме несущей, увеличивает пиковую мощность и амплитуду возбуждения.
В оконечном каскаде, при изменение амплитуды модулированного колебания UM, изменяется анодное напряжение, т.е. возникает дополнительная анодная модуляция, за счет анодного тока. Постоянная составляющая анодного напряжения изменяется в фазе с напряжением на сетке, (которая содержит переменную низкочастотную составляющую, создаваемая на модуляционном дросселе ТV2).
Применение «скользящего» напряжения смещения сетки, обеспечивает увеличение по абсолютной величине постоянное отрицательное напряжение смещения Ес.
В режиме несущей частоты, дополнительное положительное напряжение (включенное последовательно) смещения отсутствует. А при большой глубине модуляции, положительное напряжение смещения максимально и компенсирует дополнительно введенное напряжение отрицательного смещения (при увеличении амплитуды радиочастотного напряжения возбуждения), амплитуда радиочастотного напряжения выбирается таким образом, чтобы при всех значениях суммарного напряжения смещения, режим работы генератора сохранялся слабоперенапряженным.
Для улучшения линейности оконечного каскада и повышение динамической характеристики предложено:
- изменять напряжение на экранной сетке за счет изменения напряжения возбуждения. Включение регулирующей лампы, подаваемое напряжение на экранную сетку, в момент подачи напряжения возбуждения. Это производит приращение анодного тока пропорционально приращению напряжению возбуждения, т.е. повышается линейная характеристика. В отсутствие напряжения возбуждения, анодный ток Л-3 близок к нулю.
- отрицательная обратная связь по огибающей колебательного напряжения, путем сравнение с напряжением на модуляционном дросселе по цепи С19, R12-R11 подается на модулятор (при этом нелинейные искажения уменьшаются в три раза, повышается динамическая характеристика модулятора).
Кривые изменения напряжения смещения и напряжения возбуждения модулирующего напряжения к амплитуде Uзч.
Расчет: для ГК-71
Задана мощность в режиме несущей P1=120 ВТ. Выберем ГК-71. Её данные следующие: Ea=1800 в; Eэ=400 в; Eз=50 в; E с = -60 в; S = 4.2ma/v = 0,0042 a/v; Рном.=250 вт. и Ра доп.=125вт. Примем Еа нес.=1800 в.
Расчет начнем с режима максимальной мощности, при пиковым значении модулирующего напряжения и коэффициенте модуляции т =100%. В пиковой точке.
Из графика на рис.3 находим
и Eпик.=0.95
Определяем колебательную мощность в пиковой точке:
Р1пик. = 4Р1нес.= 4х120=480вт.
Анодное напряжение:
Еа пик.= 2 х Еа нес.=2х1800=3600в.
рис.2
Амплитуду колебательного напряжения на контуре:
0.95х3600= 3420в.
Амплитуду первой гармоники анодного тока:
480/3420= 0,141 а (141ма)
Требуемое эквивалентное сопротивление колебательного контура: 3420/0,141=24256ом
Постоянную составляющую анодного тока:
0,141/1.65= 86ма
Амплитуду напряжения возбуждения:
0.141/0,0042х 0.4= 84в.
Напряжение смещения:
-60-84х0.17=-74,2в.
Переходим к расчету режима в мгновенной телефонной точке, (устанавливается только при наличии модулирующего напряжения) т.е. режима в средней точке модуляционной характеристики при глубине модуляции т =100%. В этом случае постоянная составляющая анодного тока Iа0Т должна иметь ту же величину, что и в пиковой точке, т.е.
Что касается первой гармоники анодного тока Iа1Т, то она должна быть в два раза меньше,чем в пиковой точке,следовательно, будем иметь:

Полученный результат говорит о том,что в мгновенной телефонной точке выходная ступень передатчика работает в режиме колебаний первого рода,т.е. без отсечки анодного тока. В этом случае:

Как видим, напряжение возбуждения в мгновенной телефонной точке должно быть в 5 раз меньше, чем в пиковой, а отрицательное смещение уменьшается с - 77,7 до - 21в.

Наконец в самой нижней точке модуляционной характеристики Uв=0, Ес = -21в. Сеточный ток в этой точке = 0
Переходим к расчёту режима молчания. Напряжение на экранной сетке должно снижается и поэтому принимаем. Ес = - 50 в.
Для того что бы выходная ступень в режиме молчания (в режиме несущей) имела высокий коэфициентполезного действия по анодной анодной цепи примем: ; По графику рис.2 находим; ;
Амплитуда тока первой гармоники в режиме молчания будет равна:
2x120/0,95х1800 =0.141а (141ма)
Постоянная составляющая анодного тока:
0.141/1.65=0,086а (86ма)
Амплитуда возбуждающего напряжения:
0.141/0.0042х0,35=96в
И напряжение смещения:
-50 - 96 х 0,26 = - 75 в.

Рис.3 Схема передатчика с автоанодной модуляцией (700 вт.)
Индуктивность: L3= ТV2 (0,05…0,15)=17,7х0.15= 2,655гн.
ТV2 = (1.5…2) Rк.=8850х2=17,7гн
R1= ; R2 = ; R3=39ком. ;R4= ;R5= ;R6= ;R7= ;R8= ;R9=20ком. ;R10=200 ом 1вт. R11=100ком. ;R12=110ком. ;R13= ;R14=; R15=; R16=; R17=; R18=ком.; R19= ;R20= R21= ;R22= ;R23=100ком.; R24=20ком. ; R25=39ком
C1=; C2 =;C3= ;C4= ; C6= ;C7= ;C8= ;C9=1000пф.; C10=; C11=; C12= ;C13=; C14=; C15=; C16 =2мкфх600в.;C17= ;C18= ;C19=0,25х4000в. ;C20= ;C21=0,05мкф. C22=480пф. ;C23=1000пф. ;C24= ;C25= ;C26= ;C27= ;C28=; C29=; C30=0,05мкф
L1= ;L2= ;L3=17700 ;L4= ;L5= ;L6= ;L7= ;L8= ;L9= ;L10= ;L11= ;L12= ;L13= ;L14= L15=; L16=;

Рабочая схема передатчика на ААМ - 135 вт..

Рис.3
Р=(45/(1-0,75))х0,75=135 вт.
Передатчик состоит из трех каскадов, возбудитель на 6ф1п (пентодная часть), а триодная в режиме удвоителя.
Предоконечный каскад на пентоде 6п15п. Модуляция осуществляется на защитную сетку 6п15п.
На ГУ-50,через С8 снимается промодулированное напряжение возбуждения, амплитуда которого при молчании не должна превышать 30-35в. Изменяющие напряжение возбуждения Uc вызывает почти линейно изменяющую тока управляющей сетки,который, протекая через R1, вызывает на нем противофазное огибающей напряжения Uс напряжения смещения Ес=12в.
R1 не больше 3ком.
Такие параметры сеточной цепи позволяют получить необходимый угол отсечки модуляционной характеристики (при больших значения R1 и напряжения Uс повышает КПД,но при этом падает средняя полезная мощность).
В цепь экранирующей сетки ГУ-50 на R2 при модуляции возникает переменное напряжение модулирующей частоты. Чтобы избежать искажений,экранная сетка должна быть заблокирована по высокой частоте С6= (500-1000пф).
Для улучшения КПД при молчании (применен метод скользящего смещения). К одной из обмотки модуляционного дросселя подключен диодный мост (германиевый диод ДГЦ-22) величину выпрямленного напряжения регулируется R18. При модуляции возникает пропорциональное глубине модуляции положительное напряжение ЕС, которое компенсирует отрицательное внешнее смещения-45в. при молчания. А на мостике диодов +25в.(получается малые не линейные искажения и высокий КПД, при Др.1=20 гн).
Качество модуляции значительно улучшается при охвате отрицательной обратной связью, то огибающая колебательного напряжения при большом индуктивном сопротивлении дросселя совпадает с напряжением модуляционном дросселе. В таком случае напряжение обратной связи можно снять с модуляционного дросселя на С4 и на делитель R16-. R17 и на сетку лампы модулятора. нелинейные искажения в три раза. Тогда увеличить возбуждение до 45в.и постоянное смещение до -55в. соответственно повышается КПД при молчание до 75% ,а полезная мощность до 50вт.
Индуктивность: Rэкв.= Ua пик./ Iпик.
Др.3 = Др.1 (0,05…0,15) гн.
Др.1 = (1.5…2) Rк.= гн