Услуга hsdpa 3g что. HSDPA vs. WiMAX: сравнение характеристик и перспектив технологий передачи данных

Идея беспроводной мобильной связи зародилась в головах ученых еще в начале 20-го века. Работы по созданию системы радиотелефонной связи активно велись и в западных странах и в Советском Союзе, однако первая рабочая модель сотового телефона появилась в лишь в 1973 году, когда американская компания Motorola представила миру DynaTac - первый прототип портативного сотового телефона.
Сегодня жизнь человека практически невозможно представить без мобильных устройств, использующих технологии беспроводной связи. За последние 35 лет сменилось 4 поколения сотовой связи, и на смену четвертому приходит пятое поколение, внедрение которого ожидается к 2020 году. Об истории развития сотовой связи, поколениях и применяемых технологиях пойдет речь в данной статье.

Первое поколение - 1G

Все стандарты первого поколения были аналоговыми, в следствии чего имели массу недостатков. Проблемы были как с качеством сигнала, так и с совместимостью технологий.
Среди стандартов мобильной связи первого поколения, наибольшее распространение получили следующие:
AMPS (Advanced Mobile Phone Service – усовершенствованная подвижная телефонная служба). Использовался в США, Канаде, Австралии и странах Южной Америки;
TACS (Total Access Communications System - тотальная система доступа к связи) Использовался в европейских странах, таких как Англия, Италия, Испания, Австрия и ещё ряд стран;
NMT (Nordic Mobile Telephone – северный мобильный телефон). Применялся в скандинавских странах.
TZ-801 (TZ-802,TZ-803), разработанные в Японии.
Не смотря на имеющиеся проблемы с качеством и совместимостью стандартов, аналоговым сетям мобильной связи все же нашли коммерческое применение. Первыми это сделали японцы в 1979 году, затем в 1981 году аналоговая сеть была запущена в Дании, Финляндии, Норвегии и Швеции, и в 1983 году в США.

Второе поколение - 2G

В 1982 году Европейской конференцией почтовых и телекоммуникационных ведомств была сформирована рабочая группа, названная GSM (франц. Groupe Spécial Mobile - специальная группа по подвижной связи). Целью создания группы, как следует из названия, является изучение и разработка пан-Европейской наземной системы подвижной связи общего применения.
В 1989 году изучение и разработку второго поколения мобильной связи продолжил Европейский институт стандартов в телекоммуникации. Аббревиатура GSM тогда приобрела иное значение - Global System for Mobile Communications (глобальная система для подвижной связи).
В 1991 году появились первые коммерческие мобильные сети второго поколения. Главным отличием сетей второго поколения от первого является цифровой метод передачи данных. Технологии передачи данных в цифровом виде позволили внедрить сервис обмена текстовыми сообщениями (SMS), а позднее, с помощью протокола WAP (Wireless Application Protocol - беспроводной протокол передачи данных) стал возможен выход в Интернет с мобильных устройств. Скорость передачи данных в сетях второго поколения составляла не более 19,5 кбит/с.
Дальнейший рост потребности пользователей в мобильном интернете послужил толчком для разработки сетей следующих поколений. Промежуточными этапами между сетями 2G и 3G стали поколения, условно называемые 2,5G и 2,7G .
Поколением 2,5G обозначили технологию GPRS (General Packet Radio Service - пакетная радиосвязь общего пользования), которая позволила увеличить скорость передачи данных до 172 кбит/с в теории, и до 80 кбит/с в реальности.
Поколением 2,7G назвали технологию EDGE (EGPRS) (Enhanced Data rates for GSM Evolution), которая функционирует как надстройка над 2G и 2.5G. Скорость передачи данных в таких сетях теоретически может достигать 474 кбит/с, однако на практике редко доходит до 150 кБит/с.

Третье поколение - 3G

Работы по созданию технологий третьего поколения начались в 1990-х годах, а внедрение состоялось только в начале 2000-х (в 2002 году в России). Разработанные к тому времени стандарты основывались на технологии CDMA (Code Division Multiple Access - множественный доступ с кодовым разделением).
Третье поколение мобильной связи включает 5 стандартов: UMTS/WCDMA, CDMA2000/IMT-MC, TD-CDMA/TD-SCDMA, DECT и UWC-136. Наиболее распространенными из них являются стандарты UMTS/WCDMA и CDMA2000/IMT-MC. В России популярность получил стандарт UMTS/WCDMA. Далее предлагаем остановиться на основных технологиях 3G:

UMTS

UMTS (Universal Mobile Telecommunications System – универсальная сисема мобильной электросвязи) – технология сотовой связи разработанная для внедрения 3G в Европе. Используемый диапазон частот 2110-2200 МГц. (зачастую ширина канала 5 МГц). Скорость передачи данных в режиме UMTS составляет не более 2 Мбит/с (для неподвижного абонента), а при движении абонента, в зависимости от скорости движения, может опуститься до 144 Кбит/с.

HSDPA

HSDPA (High-Speed Downlink Packet Access - высокоскоростная пакетная передача данных от базовой станции к мобильному телефону) – первый из семейства протоколов сотовой связи HSPA (High Speed Packet Access - высокоскоростная пакетная передача данных), основанный на UMTS технологии. Данный протокол и последующие его версии позволили значительно увеличить скорость передачи данных в сетях 3G. В первой своей реализации протокол HSDPA имел максимальную скорость передачи данных 1,2 Мбит/с. Скорость передачи данных в следующей реализации протокола HSDPA составляла уже 3,6 Мбит/с. На этот момент 3G модемы получили большую популярность и у большинства пользователей были модемы поддерживающие именно этот стандарт, наиболее популярные модель Huawei E1550, ZTE mf180. Нужно сказать, что до сих пор можно встретить подобные экземпляры в использовании. В результате дальнейшего развития протокола HSDPA удалось увеличить скорость сначала до 7,2 Мбит/с (наиболее популяные модемы Huawei E173, ZTE MF112), а затем до 14,4 Мбит/с. (Huawei E1820, ZTE MF658) Вершиной технологии HSDPA стала технология DC-HSDPA скорость которой могла достигать 28.8 Мбит/с. DC-HSDPA по сути двухканальный вариант HSDPA.

HSPA+

HSPA+ – технология, базирующаяся на HSDPA, в которой реализованы более сложные методы модуляции сигнала (16QAM, 64QAM) и технология MIMO (Multiple Input Multiple Output – множественный вход множественный выход). Максимальная скорость 3G может достигать 21 Мбит/с. Подобную технологию уже относят к 3,5G .

DC-HSPA+

DC-HSPA+ технология с самым быстрым 3G Интернетом 42,2 Мбит/с. По сути это двухканальный HSPA+ с шириной канала 10 МГц. Часто это технологию называют 3.75G .

Все устройства, поддерживающие режим работы в сетях третьего поколения, поддерживают также стандарты предыдущих поколений. К примеру, уже устаревший на сегодняшний день USB-модем Huawei E173 для сетей 2G/3G поддерживает стандарты GSM, GPRS, EDGE (до 236,8 Кбит/c), UMTS (до 384 Кбит/c), HSDPA (до 7,2 Мбит/с), т.е. стандарты сетей как второго так и третьего поколений. Максимальная скорость с которой может работать данное устройство равна 7,2 Мбит/с. Более «продвинутая» модель Huawei E3131 для сетей 2G/3G поддерживает набор стандартов, включающий кроме вышеперечисленных еще и HSPA+. Максимальная достижимая скорость загрузки данных на этом устройстве значительно больше и составляет 21 Мбит/сек. Но следует учесть, что максимальная теоретическая и реальная скорости отличаются довольно сильно, например на модемах huawei E1550, zte mf180, где максимальная скорость 3.6 Мбит/с, на практике можно добиться скорости 1-2 Мит/с, на модемах Huawei E173, ZTE MF112 (максимальная скорость 7,2 Мбит/с) на практике 2-3,5 Мбит/с, это при условии хорошего уровня сигнала и низкой загруженности вышки мобильного оператора. Одним из факторов повышения скорости 3G Интернета является использования модема поддерживающего максимальную скорость 3G. Например, мы рекомендуем модем , он не только поддерживает максимальную скорость 3G Интернета (до 42,2 Мбит/с), но и 4G (до 150 Мбит/с), кто то может возразить и сказать что в его «дыре» 4G не будет никогда, однако не забывайте, что несколько лет назад вы и о 3G не мечтали. Технологии не стоят на месте и со временем покоряют даже удаленные села и поселки.

Четвертое поколение - 4G

На смену еще не исчерпавшему свои возможности 3G приходят новые технологии, технологии четвертого поколения (4G), в большей степени отвечающие запросам времени. Технологии поколения 4G обозначили совершенно новые требования к качеству сигнала связи и его стабильности.
Детищем совместных исследований компаний Hewlett-Packard и NTT DoCoMo в области разработки технологий передачи данных в беспроводных сетях четвертого поколения стали стандарты LTE и WiMax.
Стандарт WiMAX был разработан в 2001 году организацией WiMAX Forum, в состав которой входят такие производители, как Samsung, Huawei Technologies, Intel и другие известные компании. Концептуально WiMAX является продолжением беспроводного стандарта Wi-Fi. Версии стандарта WiMAX подразделяются на фиксированные, предназначенные для неподвижных абонентов, и мобильные, для движущихся абонентов со скоростью, не превышающей 115 км/час. Первая коммерческая WiMAX-сеть была запущена в эксплуатацию в Канаде в 2005 году.
Стандарт LTE (Long-Term Evolution - долговременное развитие) по сути является продолжением развития стандартов GSM/UMTS и первоначально не относился к четвёртому поколению мобильной связи. На сегодняшний день именно LTE является основным стандартом сетей четвертого поколения (4G). Впервые представленный вышеупомянутой компанией NTT DoCoMo, крупнейшим в мире японским оператором сотовой связи, стандарт LTE, в десятом его релизе LTE Advanced, был избран Международным союзом электросвязи в качестве стандарта, отвечающего требованиям беспроводной связи четвертого поколения. Первая коммерческая реализация LTE-сети была осуществлена в 2009 году в Швеции и Норвегии.
Максимальная теоретическая скорость передачи данных в LTE-сетях составляет 326.4 Мбит/с. На практике скорость передачи данных существенно зависит от используемой оператором ширины диапазона частот. Наибольшую ширину диапазона частот на сегодняшний день имеет сотовый оператор Мегафон (40 МГц), что является серьезным преимуществом перед другими отечественными операторами сотовой связи, которые используют ширину 10 МГц. Максимальная скорость передачи данных в LTE-сети при ширине диапазона 10 МГЦ равна 75 Мбит/с. Ну а предельная скорость передачи данных при использовании ширины диапазона 40 МГц может достигать 300 Мбит/с.

Пятое поколение - 5G

В настоящее время работы по разработке стандартов для сетей беспроводной передачи данных все еще ведутся, и в основном при спонсорской поддержке одного из крупнейших производителей сетевого оборудования китайской компании Huawei. Повсеместное внедрение технологий пятого поколения прогнозируется в 2020 году. Однозначных сведений относительно максимальных скоростей передачи данных в сетях 5G пока нет, однако известно, что в опытных испытаниях сетей 5G удавалось достичь скорости 25 Гбит/с, что в десятки раз превышает максимальные значения скорости передачи данных в сетях четвертого поколения.

HSDPA vs. WiMAX: сравнение характеристик и перспектив технологий передачи данных

Мы продолжаем цикл публикаций, направленных на популярное изложение теоретических основ современных технологий беспроводной связи. Изначально планировалось, что эта статья будет посвящена технологии WiMAX (Worldwide interoperability for Microwave Access), мировое признание которой в ближайшем будущем неминуемо, и которая уже год как эксплуатируется в некоторых российских регионах (в частности, в Москве доступ в Интернет по WiMAX предоставляется компанией «Синтерра »). Однако 24 октября произошло знаковое событие — заседание Государственной комиссии по радиочастотам (ГКРЧ) Минсвязи РФ, на котором наконец-то было принято долгожданное решение о выделении частотных диапазонов 900, 1800 и 1900 МГц для развертывания сетей третьего поколения UMTS (Universal Mobile Telephone System). А это означает, что технология HSDPA (High-Speed Downlink Packet Access), доступная в ряде стран Европы, Северной Америки и Юго-Восточной Азии, где развернуты сети WCDMA, будет, скорее всего, доступна и у нас. HSDPA, которая во всем мире, кроме Российской Федерации, стала доступна раньше WiMAX, многими наблюдателями называется главным конкурентом последней, и тому есть немало причин.

Следующий раздел будет посвящен краткому изложению истории вопроса. Если вы хорошо знакомы с историей развития стандартов второго и второго с половиной поколений, вы можете пропустить этот раздел.

Конвергенция или война миров?

Как вы уже знаете из наших предыдущих публикаций, почти за тридцать лет развития мобильной связи лежащие в её основе технологии претерпели несколько качественных изменений, приведших к делению технологий на «поколения»: 1G, 2G и 3G. Стандарты первого поколения (1G) были аналоговыми, и первый революционный скачок был совершен при переходе на цифровые стандарты второго поколения, среди которых следует выделить два главных направления — TDMA и . К числу первых принадлежит наиболее распространенный на сегодня стандарт GSM (читайте подробнее в наших ), и которому, по прогнозам аналитиков, суждено играть главную роль в мире еще несколько грядущих лет. Этот стандарт изначально проектировался для обеспечения качественной передачи голоса, и с этой задачей до сих пор справляется на «отлично». Однако когда возник глобальный спрос на доступ в Интернет с портативных ПК, а позднее, с развитием этих устройств - с КПК или смартфонов и мобильных телефонов (по WAP); оказалось, что стандарт GSM в чистом виде этот доступ обеспечивает не очень хорошо (максимальная пропускная способность - 9600 бит/с). Тогда для стандарта, число абонентов которого (в сумме с абонентами UMTS) приближается к двум миллиардам (из 2,41 млрд.) человек, были придуманы технологии передачи данных GPRS и EDGE, иногда называемые технологиями второго с половиной поколения. Стандарт CDMA оказался более приспособлен для передачи данных, однако, чтобы это не происходило в ущерб качеству передачи голоса, были придуманы технологии 1x RTT, EV-DO и EV-DV. Вариант CDMA2000 в своем базовом варианте относится к семейству стандартов третьего поколения, так как, в соответствии со спецификациями IMT-2000, обеспечивает пропускную способность передачи данных не менее 384 Кбит/с, чего достаточно для двусторонней видеосвязи в разрешении 320х240.

Разветвившись на этапе второго поколения, технологии сотовой связи пришли к единому знаменателю в виде WCDMA - стандарта третьего поколения, лежащего в основе сетей UMTS. И это не удивительно, так как для обеспечения большой скорости передачи данных рано или поздно приходится использовать одни и те же технологии. Поэтому в «древе» GSM-GPRS-EDGE-UMTS на последних «ветвях» добавляется кодирование и мультиплексирование каналов, а в «древе» AMPS-CDMA-CDMA2000-WCDMA - разделение на поддиапазоны и OFDM (orthogonal frequency division multiplexing, мультиплексирование по ортогональным несущим).

В то же время, технологии беспроводных сетей, с самого начала создававшиеся исключительно для обмена данными, используют кодовое деление каналов и OFDM, что, как уже было сказано выше, неизбежно. Однако если на предыдущем этапе, когда на рынке доминировали стандарты второго и второго с половиной поколения, технологии передачи данных в сетях сотовой связи и беспроводные сети друг с другом конкурировать не могли, органично дополняя друг друга; то сейчас, с увеличением скорости доступа в Интернет в сетях сотовой связи, с одной стороны, и с увеличением охвата беспроводными сетями - с другой, разные «миры» вошли в конкурентный контакт друг с другом.

У нас есть уникальная возможность пронаблюдать, какой из подходов окажется более приспособленным к жизни и востребован рынком: нацеленные на обеспечение голосовой связи сети сотовой связи, предоставляющие широкополосный доступ к цифровым сетям (в частности, к интернету); или предназначенные для передачи данных беспроводные сети, успешно освоившие технологии VoIP (Voice-over-IP).

По всей видимости, именно поэтому разработчики не спешат со спецификациями стандартов четвертого поколения (4G), хотя, конечно, некоторые детали в прессу всё же просачиваются. Есть мнение, и небезосновательное, что к моменту «созревания» стандартов 4G, в них будут объединены технические решения, используемые сегодня как в беспроводных сетях, так и в сетях сотовой связи.

HSDPA — High Speed Downlink Packet Access

Эта технология, как следует из её названия, принадлежит к семейству решений, использующих пакетную передачу данных. К этому семейству принадлежат и уже описанные нами и . Физически, HSDPA является «надстройкой» к сетям WCDMA/UMTS, поэтому нередко её называют «третьим с половиной» поколением или 3,5G. «Половинка» в этом неформальном названии обоснована ещё и тем, что пропускная способность HSDPA в стартовом варианте составила 1,8 Мбит/с, а теоретический максимум составит 14,4 Мбит/с. Правда, до теоретического максимума пока ещё очень далеко — за два года внедрения технология пока преодолела лишь планку в 3,6 Мбит/с, впрочем, принятая на вооружение многими поставщиками оборудования (в частности, Option) стратегия заключается в том, что вендоры поставляют готовые устройства, заранее поддерживающие более высокую пропускную способность, нежели сегодня способен обеспечить оператор. Им остается только дождаться того светлого дня, когда оператор модернизирует свои базовые станции (а операторам так или иначе приходится периодически менять инфраструктурное оборудование) — и voila - можно загружать из интернета файлы со скоростью 7,2 Мбит/с.

Несомненным плюсом этой технологии является то, что дальность связи практически равна дальности охвата сигналом базовой станции (с некоторыми оговорками, о которых мы упомянем в самом конце), а минусом — то, что высокая скорость доступна только для получения (downlink) данных, а для отправки придется довольствоваться базовым для WCDMA значением — 384 Кбит/с. Этот недостаток, как ожидается, будет устранен с появлением технологии HSUPA (High-Speed Uplink Packet Access), а связка HSDPA+HSUPA будет называться просто HSPA (High-Speed Packet Access).




Рис. 2. Структура и взаимодействие сетей UMTS.

Как было видно на первом рисунке, еще не исчерпан весь резерв развития технологий GPRS/EDGE, о которых мы уже подробно рассказывали. Для улучшения скорости передачи данных возможно использование методик оптимизации загрузки частотных диапазонов, одновременной передачи и приема сигналов, новых модуляционных схем — это то, что уже придумано, и наверняка найдутся и другие подходы, способные продлить жизненный цикл этих технологий. Однако, являясь надстройками над TDMA, они не дадут качественного рывка вперед — для этого необходим переход на иной физический уровень, каковым является UMTS. UMTS (Universal Mobile Telecommunications System) использует в качестве физического уровня стандарт WCDMA, но в то же время, и унаследованная от прежних поколений инфраструктура будет также включена в систему мобильной связи — не зря же её назвали универсальной.

Как видно на втором рисунке, основу ядра UMTS составляют контроллеры базовой станции (BSC, Base Stantion Controller), центр коммутации мобильных телефонов (MSC, Mobile Switching Center), регистр домашних пользователей (HLR, Home Location Register), сервер коммутации пакетов (SGSN, Serving GPRS Support Node) и маршрутизатор доступа в интернет (GGSN, Gateway GPRS Support Node). Все эти узлы унаследованы UMTS от GSM/EDGE, более того, как видим, интеграция с WLAN возможна уже на этом этапе.

Если пользователю одновременно доступны и сеть GSM, и WCDMA, ядро UMTS будет перераспределять их в зависимости от нагрузки сетей. В тех случаях, когда одна из сетей недоступна - наиболее распространенной ситуацией является та, при которой есть сигнал GSM, но нет покрытия WCDMA, используется физический уровень GSM. Главным отличием WCDMA от GSM является то, что стандарт использует широкие поддиапазоны, в которых передается шумоподобный код (см. статью о CDMA), содержащий данные для всех абонентов. Модифицируя код, WCDMA Release 99 определяет количество трафика, выделенного под голосовую связь и данные, для разных абонентов, каждые 10 мс. С внедрением HSPA это время сокращено до 2 мс. Помимо деления на поддиапазоны, отличающее WCDMA от CDMA, в UMTS, как более высокоуровневом стандарте, предусмотрена QoS (Quality of Service) с несколькими приоритетами:

  • 1. Разговорный — интерактивные данные с минимальной задержкой и контролируемой полосой пропускания, такие как для VoIP и видеосвязи
  • 2. Потоковый — поток данных с контролируемой полосой пропускания и некоторыми допустимыми задержками
  • 3. Интерактивный — данные, передаваемые и принимаемые терминалом при «общении» с web-серверами без контроля полосы пропускания и с некоторыми задержками
  • 4. Фоновый — низкоприоритетные данные, например, загружаемые файлы

Пропускная способность каналов связи UMTS Release 99 зависит от фактора распределения (spreading factor, определяет количество каналов связи, закодированных в один поддиапазон) и может достигать 768 Кбит/с (фактор распределения равен четырем). Теоретически, стандарт позволяет назначить три таких «нисходящих» (то есть, направленных от базовой станции к мобильному терминалу) канала для одного абонента, что позволяет достичь пропускной способности в 2 Мбит/с, однако, на практике (не стоит забывать, что чем больше число пользователей, тем выше фактор распределения) фактор распределения в нисходящих каналах фиксируется на уровне восьми, что соответствует 384 Кбит/с. Кроме того, многие операторы намеренно не предоставляют большей пропускной способности, стимулируя абонентов переходить на HSDPA. Для, сравнения, при голосовой связи фактор распределения составляет от 128 до 256.

Спецификации технологии HSDPA были опубликованы в 3GPP Release 5. Технология полностью обратно совместима с UMTS Release 99 и позволяет одновременно предоставлять сервисы голосовой связи и передачи данных UMTS и HSDPA. При этом максимальная теоретическая пропускная способность технологии составляет 14,4 Мбит/с. Для достижения столь высокой спектральной эффективности, потребовалось реорганизовать структуру каналов, использовать как кодовое, так и временное разделение каналов, увеличить уровень модуляционной схемы, а также использовать более быстрые алгоритмы пересылки пакетов и повторной трансляции в случае ошибок. В HSDPA используются каналы HS-PDSCH (High-Speed Physical Downlink Shared Channels). В одном 5-МГц поддиапазоне WCDMA возможна организация до 15 таких каналов с фактором распределения 16. Выделение каналов под нужды разных пользователей изменяется каждые 2 мс:




Рис. 3. Распределение спектра между абонентами.

Заметное «неравноправие», хорошо видное на рисунке, связано с тем, что приоритет предоставления каналов отдается тем пользователям, у которых наилучшее качество сигнала. Таким образом, «быстрые» пользователи «получают» кусочек трафика и «переваривают» его в то время, пока уровень сигнала невысок, в ожидании «лучших времен». За уровнем сигнала, напомним, система следит с интервалом в 2 мс.




Рис. 4. Распределение спектра между абонентами в зависимости от условий приема.

В HSDPA применяются модуляционные схемы WCDMA QPSK (Quadrature Phase-Shifting Keying) и 16-QAM (Quadrature Amplitude Modulation). Об этих модуляционных схемах мы также упоминали в статье, посвященной EDGE. В первой модуляционной схеме в одном символе передается два бита данных, во второй - четыре. Однако последняя модуляционная схема может быть задействована лишь в том случае, если этого позволяет уровень сигнала, а точнее - соотношение сигнал/шум. Вне зависимости от того, какая модуляционная схема используется в текущий момент, данные передаются в виде избыточного кода, содержащего собственно данные и дополнительные биты (простейший пример избыточного кода - число плюс контрольная сумма, состоящая из одного бита), количество которых может достигать до четверти от длины пакета.

Что касается усовершенствований в области алгоритмов повторной отправки пакетов в случае их некорректного приема, то в новой технологии Fast Hybrid ARQ (Fast Hybrid Automatic Repeat Request), в отличие от GPRS/EDGE, корректность приема пакетов отслеживается как базовой станцией, так и терминалом (телефоном), а повторно передаваемые пакеты чередуются с успешно передаваемыми («гибридность» алгоритма, по замыслу разработчиков, увеличивает вероятность успешного приема благодаря «схожести» таких групп пакетов).


Таблица 1. Варианты реализации HSDPA.
Категория HS-DSCH Максимальное количество кодов HS-DSCH Пиковая пропускная способность, Мбит/с Мод. схема (QPSK/16QAM) Кол-во программных бит на канал
1 5 1,2 Обе 19200
2 5 1,2 Обе 28800
3 5 1,8 Обе 28800
4 5 1,8 Обе 38400
5 5 3,6 Обе 57600
6 5 3,6 Обе 67200
7 10 7,2 Обе 115200
8 10 7,2 Обе 134400
9 15 10,2 Обе 172800
10 15 14,4 Обе 172800
11 5 0,9 QPSK 14400
12 5 1,8 QPSK 28800

К настоящему моменту ряд европейских операторов уже предоставляет сервис HSDPA с пропускной способностью 3,6 Мбит/с (категории 5 и 6). Как ожидается, в будущем году будет преодолен еще один барьер и скорость получения данных с использованием технологии достигнет 7,2 Мбит/с. Полоса частот, которая будет выделена в нашей стране, предположительно позволит задействовать по два частотных диапазона шириной 75 МГц (в полосе 1800 МГц) или 35 МГц (в полосе 900 МГц) — в полной аналогии с Европой. Остается надеяться, что и сервис HSDPA будет доступен нашим абонентам также достаточно скоро.

WiMAX - Worldwide interoperability for Microwave Access

Своим названием, которое можно перевести как «всемирное взаимодействие сетей для беспроводного доступа в микроволновом диапазоне», технология обязана, во-первых, своей направленности на реализацию так называемой связи «последней мили» (отсюда «взаимодействие сетей»), а, во-вторых, тому, что изначально (в июне 2004 года, когда разрабатывался стандарт 802.16) планировалось использовать частотный диапазон от 10 до 66 ГГц (отсюда - «микроволновый диапазон»). Однако впоследствии частотный диапазон был изменен на 2-11 ГГц (802.16d), и теперь частоты WiMAX перекрываются с частотами Wi-Fi (2,4 и 5,4 ГГц) и UWB, что, впрочем, не мешает им мирно сосуществовать в эфире, так как в каждой из этих технологий используются разные подходы к кодированию и передаче данных. Хотя, конечно, технология WiMAX во многом схожа с технологией Wi-Fi, впрочем, это объясняется тем, что подходов к увеличению пропускной способности при беспроводной передаче данных не так уж и много. Так что у инженеров, продвигающих технический прогресс вперед, имеется достаточно ограниченный набор инструментов, из которых, тем не менее, удается каждый раз сделать что-то новое.

В то же время, WiMAX не должна будет стать прямым конкурентом Wi-Fi-сетей, скорее, эта технология претендует на роль сильного конкурента технологиям передачи данных в сетях мобильной связи. Мобильная связь сегодня достигла планетарных масштабов - по некоторым оценкам, покрытие сетей сотовой связи достигает 70% поверхности земной суши, а количество пользователей мобильной связи приближается к двум миллиардам абонентов, что соответствует примерно трети всего населения Земли. При рассмотрении в таком ракурсе, очевидно, что у Wi-Fi-сетей мало шансов стать повсеместными, так как на обеспечение широкого покрытия понадобится слишком много узлов доступа, а это дорого и нецелесообразно. Но это вовсе не означает, что технология Wi-Fi является «ущербной» - её ниша еще совершенно не исчерпана, а спрос на высокую пропускную способность, предела роста которой пока не видно: уже доступная сейчас и обязательная в черновых спецификациях 802.11n технология MIMO позволяет достичь более 100 Мбит/с (в сетях 802.11g), а значит, Wi-Fi должна будет в обозримом будущем стать реальной альтернативой проводных локальных цифровых сетей.




Рис. 5. Доступные и планируемые частотные диапазоны для WiMAX.

Как и UMTS, WiMAX представляет собой целое семейство стандартов с шириной канала от 1,5 до 20 МГц. Согласно спецификациям IEEE 802.16d, принятым в июне 2004 года, предусмотрено три разных физических уровня (PHY): первый из них, 256-точечный FFT (FFT — Fast Fourier Transform, быстрое преобразование Фурье) OFDM, является обязательным. Также в семействе WiMAX представлены два необязательных стандарта: SC (Single-Carrier, одна несущая, что роднит этот стандарт с CDMA) и 2048 OFDMA (Orthogonal Frequency Division Multiple Access). OFDMA, к слову, представляет собой еще один, новый подход к мультиплексированию каналов связи и является развитием FDMA (Frequency Division Multiple Access), использовавшегося вместе с временным уплотнением (TDMA) в GSM.

Помимо мультиплексирования по ортогональным несущим (OFDM), в WiMAX заложена поддержка большего количества модуляционных схем - BPSK, QPSK, QAM16 и QAM64. В теоретическом случае максимального уровня сигнала, позволяющего использовать квадратурную модуляционную схему QAM64 и присутствия в системе только одного пользователя, которому будут предоставлены все 192 несущих шириной по 20 МГц каждая, пропускная способность связи такого пользователя с базовой станцией составит 75 Мбит/с. Однако в реальности, конечно, так не бывает - в первую очередь, пользователю никогда не будет доступно такое количество свободных частотных диапазонов (192*20=3840 МГц). О дальности связи разговор будет особый - об этом аспекте я упомяну далее, когда мы будем сравнивать WiMAX и HSDPA. Наиболее распространенным на сегодняшний день является диапазон 3,5 ГГц (3,3-3,6 ГГц), максимальная пропускная способность в котором, как нетрудно подсчитать, достигает 5,86 Мбит/с.

Еще одним важным отличием WiMAX от Wi-Fi, да и, в общем-то, от HSDPA, является возможность осуществления связи между терминалами, не находящимися на линии видимости друг друга. Это достигается путем использования огибания и отражения сигнала от препятствий, а также ретрансляции данных, направленных одному терминалу, на несколько других терминалов, из которых один или несколько находятся на линии видимости с адресатом. В чем-то этот подход схож с mesh-сетями, однако, в случае с WiMAX есть ограничения в виде необходимости связи определенных терминалов (узлов доступа или маршрутизаторов) с глобальной сетью (WAN), в то время как mesh-сети, как предполагается, будут самодостаточны. Пока, впрочем, существующие mesh-технологии являются закрытыми, но есть надежда, что к 2008 году в IEEE появится первый стандарт mesh-сетей.

Как и в последних вариантах сетей сотовой связи, в беспроводных цифровых сетях уделено большое внимание QoS, позволяющей приоритетизировать трафик. QoS WiMAX несколько отличается от QoS HSDPA: главным отличием первой от последней является механизм запросов и разрешений. В каждой группе пакетов предусмотрена пауза (contention slot), предназначенная для установления нового сеанса связи клиентским терминалом. Также частью QoS является алгоритм назначения модуляционной схемы для каждого абонента, причем восходящему и нисходящему трафику могут быть присвоены разные модуляционные схемы.

Кроме того, в WiMAX предусмотрены криптографические алгоритмы (позволю себе напомнить, что к Wi-Fi в области криптографии было очень много нареканий):

  • Режим CBC: DES с 56-разрядным ключом, без аутентификации данных и 3-DES, 128
  • Режим CBC: DES с 56-разрядным ключом, без аутентификации данных и RSA, 1024
  • Режим CCM: без аутентификации данных и AES, 128

Pro & Contra

Дальность связи

Я намеренно перенес обсуждение дальности связи в завершающую часть статьи. Природа - штука упрямая, и, несмотря на все ухищрения, есть определенные вещи, которых добиться, прямо скажем, невозможно. Теоретически, дальность связи WiMAX может достигать 30 км (что сравнимо с коммерческим радиусом соты в стандарте GSM), а пропускная способность - 75 Мбит/с. Учитывая, что реальная полоса пропускания на порядки ниже, чем теоретическая, будем ориентироваться на приведенную выше оценку в 5,86 Мбит/с. Однако ни в коем случае не следует думать, будто на удалении в 30 км пропускная способность связи составит те же 5,86 Мбит/с, что составляли бы, скажем, на удалении в пятьсот метров. Чем дальше находится терминал от базовой станции, тем слабее сигнал (хуже соотношение сигнал/шум), значит, понижается уровень модуляционной схемы, уменьшается количество передаваемых в одном символе бит. Нельзя не учесть и того обстоятельства, что более высокочастотный сигнал поглощается воздухом сильнее, а значит, соотношение сигнал/шум у WiMAX на частоте 3,5 ГГц будет убывать с расстоянием быстрее, чем у GSM, с которым мы только что её сравнивали. Не лучше обстоят дела и у HSDPA, для которой, по некоторым оценкам, максимальная пропускная способность в 14,4 Мбит/с достигается на удалении менее одного километра от базовой станции, а на дистанции в 6 км скорость передачи данных падает до менее 1 Мбит/с. Принципиальное отличие HSDPA заключается в том, что в тех областях, где пользователю недоступна самая высокая пропускная способность, технология по-прежнему позволяет пользоваться сервисами передачи данных, но уже с меньшей пропускной способностью (на уровне WCDMA или GPRS/EDGE) - десятки килобит в секунду. Таким образом, нельзя сказать, что дальность связи является сильной стороной той или иной технологии, впрочем, стоит отметить возможность связи по WiMAX между станциями, не находящимися на линии прямой видимости друг с другом.

Количество пользователей

К действительно сильной стороне HSDPA следует отнести то обстоятельство, что технология изначально рассчитана на большое количество одновременных пользователей, в то время как WiMAX ограничивается рассмотрением десятков, в лучшем случае - сотен терминалов. Более того, эксперты предрекают WiMAX серьезные проблемы при наращивании количества пользователей в корпоративных сетях. Нельзя сказать, что HSDPA полностью лишена этих проблем. Если все абоненты вдруг решат одновременно закачать из Интернета по какому-нибудь большому файлу, это не может не отразиться на скорости закачки. Однако с использованием HSDPA (эту особенность технология унаследовала от CDMA) все пользователи просто испытают снижение скорости связи, в то время как в WiMAX в аналогичной ситуации нагрузка на маршрутизатор резко возрастает, и он может с ней не справиться.

Пропускная способность

Выигрыш в пропускной способности WiMAX у HSDPA на равном расстоянии от базовой станции пока не так очевиден. Это связано в первую очередь с тем, что для WiMAX доступно пока не так много частотных диапазонов. Однако если HSDPA, являясь эволюционным шагом в развитии WCDMA, приближается к порогу спектральной эффективности, то у WiMAX возможных путей развития значительно больше - это и новые частотные диапазоны (от 10 до 66 ГГц, помните?), и новые модуляционные схемы (а также комбинации с предыдущими), и MIMO (multiple-input-multiple output).

Мультимедиа

Способности обеих технологий передавать мультимедийные данные практически одинаковы. И в WiMAX, и в HSDPA есть QoS и приоритетизация трафика. А что предпочесть - голосовую связь в WCDMA/HSDPA или VoIP/WiMAX, с технической точки зрения, - дело вкуса. Но не с экономической - VoIP-трафик обойдется в сущие копейки по сравнению с трафиком WCDMA, который по-прежнему довольно дорог.

Безопасность

В HSDPA не предусмотрено дополнительных функций безопасности. Аутентификация пользователя производится по SIM (или R-UIM)-карте, а кодирование данных для разных пользователей, характерное для всех стандартов семейства CDMA, работает лучше любого криптографического алгоритма, но не в том случае, если желающий просмотреть конфиденциальные данные находится на базовой станции или каким-то образом получает от неё канальный код (чем вполне могут воспользоваться сотрудники правоохранительных органов). В WiMAX предусмотрена поддержка современных криптографических алгоритмов (AES с 1024-разрядным ключом, например), а это наверняка придется по вкусу корпоративным пользователям, которые хотят хранить свои данные в секрете от всех. Хотя, секретность эта, как известно, - до поры, до времени, ибо невзламываемых защит не бывает.

Заключение

Выделить среди двух рассмотренных здесь технологий однозначного фаворита - невозможно. И та, и другая обладают как сильными сторонами, так и недостатками. Можно отметить только то, что во всем мире HSDPA начала эксплуатироваться раньше WiMAX и уже, можно сказать, прижилась, в то время как в России - наоборот, WiMAX уже есть и используется, а когда появятся первые WCDMA-сети, не говоря о самой HSDPA, - сказать пока трудно.

Однако наличие на рынке двух конкурирующих технологий - это всегда хорошо, потому что, с одной стороны, стимулирует технический прогресс, а с другой - всегда ведет к снижению цен для потребителей, что, согласитесь, приятно.

Смотрите в этой статье

Нашел отличный способ увеличить скорость соединения usb 3g модема, переключением режима стандарта сети hsdpa, hspa или wcdma без использования программы hspa locker.

Прочитав эту страницу, можно понять как переключать модем между режимами WCDMA и HSPA

Не буду утверждать что способ действует всегда. Скажу лишь, что в моем случае, данные действия сделали соединение 3G модема Huawei e173 с сетью гораздо более скоростным и что самое главное — стабильным.

Что лучше hspa, hsdpa или wcdma?

История такова. У меня есть 3Ж модем e173, с sim картой от Мегафона. После покупки, я был очень доволен работой модема, хоть интернет и работал только в сети 3G и был практически непригоден для использования с обычным edge, тем не менее мне этого было более чем достаточно. 3G соединение было довольно стабильно, огонёк светодиода лишь периодически менялся цветом с голубого на синий, на работу интернета это ни как не влияло.

Но счастье длилось не очень то и долго, примерно через год, интернет стал работать очень плохо. Точнее говоря, он работал периодически. Как было замечено, скорость хорошо поднималась когда светодиод загорался голубым, а как только цвет менялся на синий, так сеть практически не работала. Как я узнал позже, изменение цвета говорит об переключении режимов с hsdpa, hspa на wcdma.

Как отключить wcdma и включить режим только hsdpa и hspa

Как я понял, на ближайшей базовой станции полоса в стандарте wcdma у мегафона просто перегружена, в отличии от hsdpa. Соответственно, мне нужно отключить wcdma, чтобы соединение с сетью было только в режиме hsdpa.

Сразу скажу, что в доступных настройках модема не было такой опции, можно лишь выбрать между 2g и 3g. Тут я вспомнил — что то подобное я видел среди АТ команд, когда переключал e173 в режим «только модем». Huawei поддерживает следующие команды:

Включение / отключение режимов 2G и 3G:

  • AT^SYSCFG=13,1,3fffffff,0,0 – режим только 2G
  • AT^SYSCFG=2,1,3fffffff,0,0 – режим предпочтительно 2G
  • AT^SYSCFG=14,2,3fffffff,0,1 – режим только 3G
  • AT^SYSCFG=2,2,3fffffff,0,1 – режим предпочтительно 3G
  • AT^SYSCFG=2,2,3fffff ff,0,2 – режим включение 2G и 3G

Включение / отключение режимов WCDMA, HSDPA, HSPA+, HSPA:

  • AT^HSDPA=1 – режим HSDPA включен
  • AT^HSDPA=0 – режим HSDPA выключен
  • AT^HSUPA=1 – режим HSUPA включен
  • AT^HSUPA=0 – режим HSUPA выключен
  • AT^HSPA=0 – режим WCDMA
  • AT^HSPA=1 – режим HSDPA
  • AT^HSPA=2 – режим HSPA
  • AT^HSPA=3 – режим HSPA+
  • AT^SYSCFG=13,1,3FFFFFFF,2,4 – режим только GPRS/EDGE
  • AT^SYSCFG=14,2,3FFFFFFF,2,4 – режим только 3G/WCDMA
  • AT^SYSCFG=2,1,3FFFFFFF,2,4 – режим предпочтительно GPRS/EDGE
  • AT^SYSCFG=2,2,3FFFFFFF,2,4 – режим предпочтительно 3G/WCDMA
  • AT^HSPA=1 и AT^HSUPA=0 – команды улучшения стабильности связи

Данные команды можно использовать с помощью программы Hyper Terminal, если нужно рассказать подробнее то пишите в комментах — напишу специально инструкцию по использованию. Но проблема оказалась в том, что данные команды способны отключить hsdpa, оставив только режим wcdma, но не наоборот. Пришлось продолжить искать альтернативные способы. Нашел рекомендацию использовать hspa locker , которая мне не помогла.

Было выяснено, что при постоянных запросах (например закачка), hsdpa соединение не отключается и огонек на модеме постоянно горит голубым, как запросы останавливаются, так модем переключается и светодиод загорается синим. Ну а теперь способ постоянного поддержания режима сети hspa. Для того чтобы режим не переключился, достаточно постоянно пинговать какой нибудь сервер. Делается это довольно просто. В windows 7 в папке C:\Windows\SysWOW64\ есть программа PING.exe . Создайте ярлык для этой программы, например поместив его на рабочий стол. Затем откройте свойства ярлыка и в поле объект допишите: google.com -l 0 -t

Для наглядности прилагаю скриншот:

Все, жмем «ОК», теперь переподключаем соединение модема, и как только светодиод загорится голубым цветом, так запускаем приложение PING.exe с созданного нами ярлыка.

Появится следующее окошко:

Это окошко не закрываем, ведь пока программа работает — режим HSPA будет поддерживаться. Есть конечно определенные неудобства, например в случае когда модем работает в паре с wi-fi роутером и компьютер выключен, режимы опять начинают переключаться, когда пользуюсь . Пытался осуществлять пинг непосредственно через роутер, (через cron) почему то не сработало. Но все же это лучше чем ничего, сейчас интернет работает гораздо стабильнее и скорость приемлемая.

03.10.2015

Сотовые беспроводные сети стали использоваться операторами для выхода Интернет достаточно давно. Сначала скорости передачи данных не поражали воображение, иными словами "интернет был медленным ". В сетях первого поколения 1G скорость не превышала 9600 Бит/с, т.е. меньше 10 Кбит/с. Однако, рынок рос, сетевые услуги становилось всё более и более востребованными, соответственно расли и объёмы информации, требовались более высокие скорости. В сетях второго поколения 2G было реализовано несколько стандартнов, некоторые из которых используются до сих пор: GPRS (до 171,2 Кбит/с) и EDGE (до 384 Кбит/с). В современных реалиях такие скорости конечно уже не могут отвечать возросшим потребностям пользователей. Наиболее растространёнными сетями в России сейчас являются сотовые сети стандарта 3G.

Однако, 3G тоже бывает разный. Рассмотрим все популярные стандарты в сетях 3G.

UMTS

Основной несущей частотой в стандарте 3G является 2100 МГц, а точнее диапазон 2110-2200 МГц. Для UMTS характерная ширина канала 5 МГц. Скорость доступа в Интернет в режиме UMTS не превышает 2 Мбит/с.

HSDPA

Этот стандарт так же можно отнести к первому поколенияю сетей 3G, но он уже значительно быстрее UMTS. Пропускная способность в начальной версии HSDPA (High- SpeedDownlinkPacketAccess ) составила 1,8 Мбит/с, но наибольшее распространение, в том числе и в нашей стране, получила вторая версия HSDPA со скоростью до 3,6 Мбит/с. Было выпущено достаточно много 3G модемов именно с такими скоростными характеристиками. Многие из этих "динозавров" используются до сих пор. Следующим развитием стандартна HSDPA стало достижение скорости 7,2 Мбит/с, а затем 14,4 Мбит/с. Это уже вполне неплохие скорости, но следует понимать, что это теоритический пропускной канал, реальные скорости обычно значительно меньше. Апогеем эволюции HSDPA стал его двухканальный вариант, называемый также DC-HSDPA, скорость достигла 28,8 Мбит/с. Сети 3G HSDPA/DC-HSDPA активно используются и сейчас во многих регионах России, однако при модернизации уступают своё место или HSPA+, или уже сразу 4G LTE.

HSPA+

Технология базируется на предшествующем стандарте HSDPA, однако позволяет получить значительно большую скорость. Уже в стартовом варианте HSPA+ (High Speed Packet Access) даёт скорость до 21,6 Мбит/с. Именно такой вариант сейчас в основном используется в сетях 3G. Ширина канала также составлят 5 МГц, и все современные поддерживают данный режим работы. Многие относят сети HSPA+ к так называемому переходному поколению 3.5G .

DC-HSPA+

Самый быстрый из используемых стандартов сетей 3G. По сути это двухканальный HSPA+ с шириной канала 10 МГц. Соответственно и максимальная скорость в 2 раза выше - 42,2 Мбит/с. Такие сети часто называют даже 3.75G , т.е. уже почти 4G. И действительно, в сетях DC-HSPA+ реальная скорост доступа в Интернет часто сопоставима с средними показателями 4G.

Всё современное , представленное на нашем сайте, поддерживает все режимы работы в сетях 3G: UMTS, HSDPA, HSPA+, DC-HSPA+. Всё зависит от конкретной сети конкретного оператора в Вашем конкретном месте. Чтобы подобрать оптимальное решение для 3G интернета, обратитесь к нашим специалистам.