Что такое электронная лампа и как она работает. Как работает радиолампа. Классы усиления С.А. Бажанов

Вычислительная техника является важнейшим компонентом процесса вычислений и обработки данных. За последние 50 лет произошла смена уже не одного поколения компьютеров. И если первые четыре поколения отличались друг от друга только элементной базой и архитектурой, то так и не созданные «компьютеры пятого поколения» должны были включать в себя функции искусственного интеллекта.

К первому поколению относятся компьютеры на основе электронных ламп и реле (40-е года XX века). Оперативная память выполнялась на триггерах, позднее на ферритовых сердечниках. Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы – 7 см, машины были огромных размеров. Каждые 7-8 минут одна из ламп выходила из строя, а так как в компьютере их было 15-20 тысяч, то для поиска и замены поврежденной лампы требовалось много времени. Быстродействие таких вычислительных систем: 5-30 тыс. арифметических операций в секунду. Данные заносились в память ЭВМ при помощи соединения нужного штекера с нужным гнездом. Такие компьютеры использовались в основном для научно-технических расчетов.

1 июля 1948 года фирма «Белл телефон лабораториз» разработала электронный прибор, способный заменить электронную лампу – транзистор. Это событие можно считать началом компьютеров второго поколения . Первые компьютеры на основе транзисторов появились в конце 50-х годов, а к середине 60-х годов были созданы более компактные внешние устройства, что позволило фирме «Digital Equipment» выпустить в 1965 г. первый мини-компьютер PDP-8 размером с холодильник и стоимостью всего 20 тыс. долларов.

Применение транзисторов в качестве основного элемента в ЭВМ привело к уменьшению размеров компьютеров в сотни раз и к повышению их надежности. Самым главным отличием транзистора является то, что он один заменяет 40 электронных ламп и при этом работает с большей скоростью, выделяет очень мало тепла и почти не потребляет электроэнергию.

Появление интегральных схем ознаменовало появление машин третьего поколения . Интегральная схема, представляет собой миниатюрную электронную схему площадью около 10 квадратных миллиметров. Интегральная схема способна заменить тысячи транзисторов, каждый из которых в свою очередь уже заменил 40 электронных ламп. Частью ЭВМ становятся операционные системы. Многие задачи управления памятью, устройствами ввода/вывода и другими ресурсами стали брать на себя ОС или же непосредственно аппаратная часть ЭВМ. Ко всем достоинствам ЭВМ третьего поколения добавилось еще и то, что их производство оказалось дешевле, чем производство машин второго поколения. Благодаря этому, многие организации смогли приобрести и освоить такие машины. Большинство созданных до этого ЭВМ являлись специализированными машинами, на которых можно было решать задачи какого-то одного типа.

Приход ЭВМ четвертого поколения связан с переходом интегральных схем на большие интегральные схемы и сверхбольшие интегральные схемы. Элементная база позволила достичь больших успехов в минимизации размеров, повышении надежности и производительности ЭВМ. Первым персональным компьютеров можно считать Altair-8800, созданным на базе Intel-8080, в 1974г. Лицо 4-го поколения в значительной мере определяется и созданием супер-ЭВМ, характеризующихся высокой производительностью. Супер-ЭВМ используются при решении задач математической физики, космологии и астрономии, моделировании сложных систем и др.

Термин компьютеры пятого поколения является ничем иным, как широкомасштабная правительственная программа в Японии по развитию компьютерной индустрии и искусственного интеллекта, предпринятая в 1980-е годы. Целью программы было создание «эпохального компьютера» с производительностью суперкомпьютера и мощными функциями искусственного интеллекта. Ожидалось добиться существенного прорыва в области решения прикладных задач искусственного интеллекта. В частности, должны были быть решены такие задачи как:

  • создание автоматического портативного переводчика с языка на язык (непосредственно с голоса);
  • автоматическое реферирование статей, поиск смысла и категоризация
  • задачи распознавания и др.

Идея саморазвития системы, по которой система сама должна менять свои внутренние правила и параметры, оказалась непродуктивной – система, переходя через определённую точку, скатывалась в состояние потери надёжности и утраты цельности, резко «глупела» и становилась неадекватной. За десять лет на разработки было истрачено более порядка 500 млн. долларов, программа завершилась, так и не достигнув цели. На сегодняшний день проект считается абсолютным провалом.

Электронная лампа - электровакуумный прибор (электровакуумные приборы - приборы для генерации, усиления и преобразования магнитной энергии, в которых рабочее пространство освобождено от воздуха и защищено от окружающей атмосферы жесткой газонепроницаемой оболочкой), действие которого основано на изменении потока электронов (отбираемых от катода и движущихся в вакууме) электрическим полем, формируемым с помощью электродов. в зависимости от значеня выходной мощности электронные лампы делятся на приемно-усилительные лампы (выходная мощность - не свыше 10 Вт) и генераторные лампы (свыше 10 Вт).

Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы - 7 см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15-20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Кроме того, они выделяли огромное количество тепла, и для эксплуатации "современного" компьютера того времени требовались специальные системы охлаждения.

Чтобы разобраться в запутанных схемах огромного компьютера, нужны были целые бригады инженеров. Устройств ввода в этих компьютерах не было, поэтому данные заносились в память при помощи соединения нужного штекера с нужным гнездом.

Примерами машин I-го поколения могут служить Mark 1, ENIAC, EDSAC (Electronic Delay Storage Automatic Calculator), - первая машина с хранимой программой. UNIVAC (Universal Automatic Computer). Первый экземпляр Юнивака был передан в Бюро переписи населения США. Позднее было создано много разных моделей Юнивака, которые нашли применение в различных сферах деятельности. Таким образом, Юнивак стал первым серийным компьютером. Кроме того, это был первый компьютер, где вместо перфокарт использовалась магнитная лента.

Когда в СССР стало известно о создании в США машины ENIAC в АН Украины и в АН СССР была начата разработка первой, отечественной, действующей ЭВМ. Сведения о разработках на Западе поступали отрывочные, и, естественно, документация по первым ЭВМ была недоступна нашим специалистам. Руководителем разработки был назначен Сергей Александрович Лебедев. Разработка велась под Киевом, в секретной лаборатории в местечке Феофания. Малая электронная счетная машина (МЭСМ) - так называлось детище Лебедева и сотрудников его лаборатории - занимала целое крыло двухэтажного здания и состояла из 6 тысяч электронных ламп. Ее проектирование, монтаж и отладка были выполнены в рекордно быстрый срок - за 2 года, силами всего лишь 12 научных сотрудников и 15 техников. Несмотря на то, что МЭСМ по существу была лишь макетом действующей машины, она сразу нашла своих пользователей: к первой ЭВМ выстраивалась очередь киевских и московских математиков, задачи которых требовали использования быстродействующего вычислителя. В своей первой машине Лебедев реализовал основополагающие принципы построения компьютеров, такие как:

  • Ш наличие арифметических устройств, памяти, устройств ввода/вывода и управления;
  • Ш кодирование и хранение программы в памяти, подобно числам;
  • Ш двоичная система счисления для кодирования чисел и команд;
  • Ш автоматическое выполнение вычислений на основе хранимой программы;
  • Ш наличие как арифметических, так и логических операций;
  • Ш иерархический принцип построения памяти;
  • Ш использование численных методов для реализации вычислений.

После Малой электронной машины была создана и первая Большая - БЭСМ-1, над которой С.И. Лебедев работал уже в Москве, в ИТМ и ВТ АН СССР. Одновременно с ИТМ и ВТ и конкурируя с ним, разработкой ЭВМ занималось недавно сформированное СКБ-245 со своей ЭВМ "Стрела".

БЭСМ и "Стрела" составили парк созданного в 1955 году Вычислительного центра АН СССР, на который сразу легла очень большая нагрузка. Потребность в сверхбыстрых (по тем временам) расчетах испытывали математики, ученые-термоядерщики, первые разработчики ракетной техники и многие другие. Когда в 1954 году оперативная память БЭСМ была укомплектована усовершенствованной элементной базой, быстродействие машины (до 8 тысяч операций в секунду) оказалось на уровне лучших американских ЭВМ и самым высоким в Европе. Доклад Лебедева о БЭСМ в 1956 году на конференции в западногерманском городе Дармштадте произвел настоящий фурор, поскольку малоизвестная советская машина оказалась лучшей европейской ЭВМ. В 1958 году БЭСМ, теперь уже БЭСМ-2, в которой память на потенциалоскопах была заменена ЗУ на ферритовых сердечниках и расширен набор команд, была подготовлена к серийному производству на одном из заводов в Казани. Так начиналась история промышленного выпуска ЭВМ в Советском Союзе!

Элементная база первых вычислительных машин - электронные лампы - определяла их большие габариты, значительное энергопотребление, низкую надежность и, как следствие, небольшие объемы производства и узкий круг пользователей, главным образом, из мира науки. В таких машинах практически не было средств совмещения операций выполняемой программы и распараллеливания работы различных устройств; команды выполнялись одна за другой, АЛУ простаивало в процессе обмена данными с внешними устройствами, набор которых был очень ограниченным. Объем оперативной памяти БЭСМ-2, например, составлял 2048 39-разрядных слов, в качестве внешней памяти использовались магнитные барабаны и накопители на магнитной ленте. Очень трудоемким и малоэффективным был процесс общения человека с машиной первого поколения. Как правило, сам разработчик, написавший программу в машинных кодах, вводил ее в память ЭВМ с помощью перфокарт и затем вручную управлял ее выполнением. Электронный монстр на определенное время отдавался в безраздельное пользование программисту, и от уровня его мастерства, способности быстро находить и исправлять ошибки и умения ориентироваться за пультом ЭВМ во многом зависела эффективность решения вычислительной задачи. Ориентация на ручное управление определяла отсутствие каких бы то ни было возможностей буферизации программ.

Электронные лампы применяются для генерации, усиления, или преобразования электрических колебаний в самых разных областях науки и техники.

1.1.1.1. Принцип работы электронных ламп

Принцип действия всех радиоламп основан на явлении термоэлектронной эмиссии – это увеличение скоростей электронов до таких, что они вылетают из металла с отрицательным зарядом и могут направленно двигаться между электродами, создавая электрический ток. Для этого также необходимо, чтобы им не встречались на пути препятствия, такие как молекулы воздуха – именно поэтому в лампах создается высокий вакуум. Для получения термоэлектронной эмиссии металл надо нагреть примерно до 2000 о К. Удобнее всего нагревать металлическуюнить накала электрическим током (ток накала ), как и в осветительных лампах. Такую высокую температуру выдерживает не каждый металл, большинство плавится, из-за этого в первых образцах электронных ламп применялись чисто вольфрамовые нити накала, которые накаливались до белого свечения, откуда и произошло название «лампа». Но такая яркость обходится очень дорого – нужен сильный ток (в пол-ампера для приёмной лампы). Но скоро был найден путь уменьшения тока накала. Исследования показали, что если покрыть вольфрам некоторыми другими металлами или их окислами (бария, стронция и кальция), то выход электронов облегчается (снижается так называемая ”работа выхода”). Для выхода требуются меньшие энергии, а значит и меньшая температура. Современные оксидированные нити накала работают при температуре около 700-900 о С, в связи с этим удается снизить ток накала примерно в 10-20 раз.

Надо заметить, что управление всеми потоками электронов в лампе осуществляется посредством электрических полей, образующихся вокруг электродов с разными зарядами.

1.1.1.2. Виды электронных ламп

Диод – вакуумный прибор, пропускающий электрический ток только в одном направлении (Рис.1а) и имеющий два вывода для включения в электрическую цепь (плюс вывод накала, конечно), двухэлектродная лампа была изобретена в 1904 г. физиком Дж. Флемингом. Такая электронная лампа представляет собой стеклянный или металлический баллон, из которого выкачан воздух, и двух металлических электродов: накаливаемого катода (-) и холодного анода(+). Катод бывает двух типов:прямого накала икосвенного накала . В первом случае катод представляет собой вольфрамовую нить (чаще покрытую оксидом), по которой проходит накаливающий её ток, а во втором – покрытый слоем металла с малой работой выхода цилиндр, внутри которого находится нить накала, электрически изолированная от катода. Действие катода как источника электронов основано натермоэлектронной эмиссии . На рисунке 1а показано устройство вакуумного диода с катодом прямого накала. Недостатком катодов прямого накала является то, что они не пригодны для питания их переменным током, так как при изменениях тока температура нити успевает измениться, и поток излучаемых электронов пульсирует с частотой питающего тока, поэтому сейчас применяются катоды косвенного накала.

Вольт-амперная характеристика диода (рис. 1е) имеет нелинейный характер – это объясняется накоплением электронов у катода в “облачко”. При отсутствии анодного напряжения электроны к нему не притягиваются, и анодный ток равен нулю. Анодный ток возникает при подаче положительного напряжения на анод, по мере увеличения напряжения анодный ток будет возрастать (на кривой А-Б – быстрее). При большом напряжении (в точке В) сила тока достигает наибольшей величины – это ток насыщения. У диода с активированным (оксидным) катодом не наблюдается замедления роста анодного тока, но при анодном токе выше некоторой предельной величины катод разрушается. Свойства диода оцениваются крутизной характеристики и внутренним сопротивлением лампы.

Если вывод сетки присоединить к катоду, то между сеткой и катодом не будет электрического поля, и витки сетки окажут очень слабое действие на летящие к аноду электроны – в анодной цепи установится ток покоя . Если включить между катодом и сеткой батарею так, что сетка зарядится отрицательно, то последняя начнёт отталкивать электроны обратно к катоду, а анодный ток уменьшится. При значительном отрицательном потенциале сетки даже самые быстрые электроны не смогут преодолеть её отталкивающее действие, и анодный ток прекратится, т.е. лампа будет заперта. Если сеточную батарею присоединить так, чтобы сетка была положительно заряжена относительно катода, то возникшее электрическое поле станет ускорять движение электронов. В этом случае измерительный прибор в цепи анода покажет увеличение тока.

Чем выше потенциал сетки, тем больше становится анодный ток. При этом некоторая часть электронов притягивается и к сетке, создавая сеточный ток , но при правильной конструкции лампы количество этих электронов невелико. Только те электроны, которые окажутся в непосредственной близости от витков сетки, будут притянуты к ней и создадут ток в сеточной цепи – он будет незначителен.

Коэффициент усиления и мощности у триодов различны. При большом анодном токе аноды подвергаются сильной электронной бомбардировке, что приводит к их значительному нагреванию и даже разрушению, поэтому аноды делают массивными, чернят, приваривают специальные охлаждающие ребра или применяют водное охлаждение, о котором рассказано ниже. Водное охлаждение применено и в импульсном генераторном триоде ГИ-11 (БМ), не так давно разработанном петербургскими учеными.

Экранированные лампы могут хорошо работать с небольшими сеточными напряжениями, но иногда при работе тетродов вторичные электроны, выбитые из анода, долетают до экранной сетки, создавая ток и сильные искажения сигнала – это явление называют динатронным эффектом . Пентоды являются решением этой проблемы.

Способ устранения неприятных последствий динатронного эффекта очевиден: надо не пускать вторичные электроны к экранирующей сетке. Это можно сделать введением в лампу еще одной сетки – третьей по счету, которая будет защитной , так получились пентоды – от греческого слова «пента» - пять (рис. 1г). Третья сетка располагается между анодом и экранирующей сеткой и соединяется с катодом, следовательно, оказывается заряженной отрицательно относительно катода. Поэтому вторичные электроны будут отталкиваться этой сеткой обратно к аноду, но в то же время, будучи достаточно редкой, эта защитная сетка не препятствует электронам основного анодного тока. У современных (на 1972 год) высокочастотных пентодов коэффициент усиления доходит до нескольких тысяч, а емкость сетка – анод измеряется тысячными долями пикофарады. Благодаря этому пентод является прекрасной лампой для усиления колебаний высокой частоты. Но пентоды с большим успехом применяются и для усиления низкой (звуковой) частоты, в частности в оконечных каскадах.

Конструктивно низкочастотные пентоды несколько отличаются от высоко- частотных. Для усиления НЧ не нужно иметь слишком большие коэффициенты усиления, но зато необходимо иметь большой прямолинейный участок характеристики, так как приходится усиливать большие напряжения, поэтому делают сравнительно редкие экранирующие сетки. При этом коэффициент усиления не получается очень большим, а вся характеристика сдвигается влево, поэтому больший её участок становится пригодным для использования. Низкочастотные пентоды должны отдавать большую мощность, следовательно, делаются массивными и их аноды нуждаются в охлаждении.

Существуют также и Лучевые тетроды – мощные низкочастотные лампы без защитных сеток, в которых витки экранирующих сеток расположены точно за витками управляющих сеток. При этом поток электронов рассекается на отдельные пучки (лучи), летящие прямо к аноду, а он отнесен несколько дальше и выбитые из него вторичные электроны не могут долететь до экранирующей сетки, а притягиваются анодом обратно, не нарушая нормальной работы лампы. Коэффициент усиления у таких ламп в несколько раз выше, чем у обычных тетродов, т.к. электроны от катода летят прямыми лучами между витками сеток и не разлетаются, а направляются к аноду полем экранирующих пластин, расположенных на путях возможной утечки около анода лампы, которые подключены к минусу источника питания через катод. У лучевых ламп удается создать очень выгодную форму характеристики, позволяющую получить большую выходную мощность при небольшом напряжении сигнала на сетке.

Явление термоэлектронной эмиссии и обусловленный им электронный ток через вакуум лежат в основе устройства очень большого числа разнообразных электронных приборов, нашедших себе чрезвычайно важные применения в технике и в быту. Мы остановимся только на двух наиболее важных типах этих приборов: электронной лампе (радиолампе) и электроннолучевой трубке.

Устройство простейшей электронной лампы показано на рис. 176. В ней имеется раскаленная вольфрамовая нить 1, являющаяся источником электронов (катод), и металлический цилиндр 2 (анод), окружающий катод. Оба электрода помещены в стеклянный или металлический баллон 3, воздух из которого тщательно откачан. Такая двухэлектродная лампа называется вакуумным диодом.

Рис. 176. а) Двухэлектродная лампа (диод): 1 – катод (накаленная нить), 2 – анод (цилиндр), 3 – стеклянный баллон. б) Условное изображение диода

Если мы включим эту лампу в цепь батареи или другого источника тока так, чтобы анод ее был соединен с положительным полюсом источника, а катод – с отрицательным (рис. 177,а), и накалим катод при помощи вспомогательного источника (батареи накала Бн), то испаряющиеся из нити электроны будут лететь к аноду, и через цепь пойдет ток. Если же мы переключим провода так, чтобы минус источника был соединен с анодом лампы, а плюс – с ее катодом (рис. 177,б), то испаряющиеся из катода электроны будут отбрасываться полем обратно на катод, и тока в цепи не будет. Таким образом, диод обладает тем свойством, что он пропускает ток в одном направлении и не пропускает его в обратном направлении. Такого рода устройства, пропускающие ток только в одном направлении, называются электрическими вентилями. Они широко применяются для выпрямления переменного тока, т. е. для превращения его в постоянный ток (§ 166). Вакуумные диоды, специально приспособленные для этой цели, называются в технике кенотронами.

Рис. 177. а) Ток проходит через диод, когда анод соединен с положительным полюсом батареи Ба, а катод – с отрицательным. б) Ток не проходит через диод, когда его анод соединен с отрицательным полюсом батареи, а катод – с положительным. Бн – батарея накала нити

Электронные лампы более сложного типа, нашедшие себе широкое применение в радиотехнике, автоматике и ряде других отраслей техники, содержат, помимо накаленного катода (источника электронов) и собирающего эти электроны анода, еще третий дополнительный электрод в виде сетки, помещаемой между катодом и анодом. Обычно сетка бывает с очень крупными ячейками; например, ее делают в виде редкой спирали (рис. 178).

Рис. 178. а) Трехэлектродная лампа: 1 – катод (накаленная нить), 2 – анод (цилиндр), 3 – сетка (редкая спираль). б) Условное изображение триода

Основная идея, на которой основано применение таких ламп, заключается в следующем. Включим лампу в цепь батареи Ба, как показано на рис. 179, и будем накаливать катод с помощью вспомогательной батареи Бн (батареи накала). Включенный в цепь измерительный прибор покажет, что в цепи идет анодный ток . Подключим теперь к катоду лампы и сетке еще одну батарею Бс, напряжение которой можем произвольно менять, и будем с ее помощью изменять разность потенциалов между катодом и сеткой. Мы увидим, что при этом изменяется и сила анодного тока. Таким образом, мы получаем возможность управлять током в анодной цепи лампы, изменяя разность потенциалов между ее катодом и сеткой. В этом и заключается важнейшая особенность электронных ламп.

Кривая, изображающая зависимость анодного тока лампы от ее сеточного напряжения , носит название вольтамперной характеристики лампы. Типичная характеристика трехэлектродной лампы показана на рис. 180. Как видно из этого рисунка, когда сетка находится при положительном потенциале по отношению к катоду, т. е. соединена с положительным полюсом батареи, то увеличение сеточного напряжения приводит к увеличению анодного тока до тех пор, пока этот ток не достигнет насыщения. Если же мы сделаем сетку отрицательной по отношению к катоду, то при увеличении абсолютного значения сеточного напряжения анодный ток будет падать, пока при некотором отрицательном потенциале на сетке лампа не окажется запертой, т. е. ток в анодной цепи не обратится в нуль.

Рис. 180. Вольтамперная характеристика трехэлектродной лампы

Нетрудно понять причину этих явлений. Когда сетка заряжена положительно относительно катода, она притягивает к себе электроны из облака объемного заряда вблизи катода; при этом значительная часть электронов пролетает между витками сетки и попадает на анод, усиливая анодный ток. Таким образом, способствуя рассасыванию объемного заряда, положительно заряженная сетка увеличивает анодный ток. Наоборот, отрицательно заряженная сетка уменьшает анодный ток, потому что отбрасывает назад электроны, т. е. увеличивает объемный заряд вблизи катода. Так как сетка расположена гораздо ближе к катоду, чем анод, то уже малые изменения разности потенциалов между ней и катодом очень сильно отражаются на объемном заряде и сильно влияют на силу анодного тока. В обычных электронных лампах изменение сеточного напряжения на 1 В меняет анодный ток на несколько миллиампер. Для того чтобы достичь такого же изменения тока путем изменения анодного напряжения, это напряжение нужно было бы изменить гораздо больше – на несколько десятков вольт.

Одним из важнейших применений электронных ламп является применение их в качестве усилителей слабых токов и напряжений. Поясним на простом примере, как это осуществляется. Представим себе, что между сеткой и катодом лампы включен резистор с очень большим сопротивлением , скажем 1 МОм (рис. 181). Проходящий через это сопротивление очень слабый ток , скажем 1 мкА, создаст на этом сопротивлении по закону Ома напряжение . В нашем примере это напряжение равно 1 В. Но при таком изменении сеточного напряжения анодный ток меняется на 2-3 мА. Стало быть, изменение тока через сеточное сопротивление на 1 мкА вызывает изменение анодного тока, в несколько тысяч раз большее. Мы усиливаем, таким образом, первоначальный очень слабый ток в несколько тысяч раз, доставляя необходимую энергию за счет анодной батареи.

Рис. 181. Схема включения трехэлектродной лампы как усилителя тока и напряжения

Если в анодную цепь мы включим некоторое «нагрузочное» сопротивление , скажем 10 кОм, то изменение анодного тока на 2-3 мА вызовет приращение напряжения на этом сопротивлении 20-30 В. Иными словами, изменение сеточного напряжения на 1 В изменяет напряжение между точками и «нагрузочного» сопротивления на 20-30 В. Мы осуществили таким образом усиление первоначального очень малого напряжения.

Лампы с тремя электродами – катодом, анодом и сеткой, – подобные изображенной на рис. 178, носят название триодов. В современной технике широко применяются и более сложные лампы с двумя, тремя и большим числом сеток. Промышленность выпускает в настоящее время для разных целей много десятков типов ламп самых разных размеров, начиная от так называемых «пальчиковых» ламп толщиной с мизинец и длиной несколько сантиметров и кончая лампами выше человеческого роста. В малых лампах, употребляющихся, например, в радиоприемниках, анодный ток равен нескольким миллиамперам, в мощных лампах он достигает многих десятков ампер.

106.1. Почему катод электронной лампы быстро разрушается, если лампа плохо откачана и в ней есть небольшое количество газа?

Существенным преимуществом ламповых усилителей является: отличные звуковые эффекты, детальный, красивый, и очень естественный звук. Ламповый усилитель звучит нежно, сладко, и раскрывается перед вами как очаровательная роза, такой усилитель подходит для воспроизведения идиллической простоты блюза, импровизаций джаза и элегантности классической музыки. Такой усилитель является отличным выбором для людей, которые хотят услышать оригинальный настоящий звук.

Ламповый усилитель унесет тебя в совершенно другой музыкальный мир, приводя ваши чувства в истинное удовольствие, вернет вас в истинный звук.

Хотите наслаждаться более естественным звуком? Вас достал звук транзисторного, или на микросхемах усилителя? Вы хотите купить ламповый усилитель, тогда не упустите этот шанс, читайте статью!

История радиолампы

Еще в 1904 году, британский ученый Джон Амброз Флеминг впервые показал свое устройство для преобразования переменного сигнала тока в постоянный ток. Этот диод по существу состоял из ламп накаливания с дополнительным электродом внутри. Когда нить нагревается до белого накала, электроны отталкиваются от его поверхности в вакууме внутри лампы. А поскольку дополнительный электрод холодный и нить горячая, этот ток может течь только из нити к электроду, а не в другую сторону. Таким образом, сигналы переменного тока могут быть преобразованы в DC. Диод Флеминга был впервые использован в качестве чувствительного детектора слабых сигналов, нового телеграфа. Позже (и по сей день), диод вакуумная радиолампа была использована для преобразовывания тока переменного в постоянный ток в источниках питания для электронного оборудования, например, ламповый усилитель.

Многие другие изобретатели пытались улучшить диод Флеминга, но безуспешно. Единственный, кто преуспел был изобретатель Ли де Форест. В 1907 году он запатентовал радиолампу с тем же содержанием, диода Флеминга, но для дополнительного электрода. Это «сетка» был согнута проводом между пластиной и нитью. Форест обнаружил, что, если он применяет сигнал от беспроводной телеграфной антенны к сетке вместо нити, он мог бы получить гораздо более чувствительный детектор сигнала. В самом деле, сетка меняется («модулирует») ток, протекающий от нити к пластине. Это устройство, названо «ламповый усилитель» было первым успешным электронным усилителем.

Между 1907 и 1960, было разработано много различных семейств радиоламп и ламповых усилителей. За некоторыми исключениями, большинство типов ламп, используемых сегодня, были разработаны в 1950-х или 1960-х годов. Одним из очевидных исключений является триод 300B, который был впервые введен Western Electric в 1935 году. SV300B у версии «Светлана», а также многие другие бренды, по-прежнему очень популярны среди меломанов и аудиофилов по всему миру. Различные лампы были разработаны для радио, телевидения, усилителей мощности, радаров, компьютеров и специализированных компьютеров. Подавляющее большинство этих ламп были заменены на полупроводники, оставив лишь несколько типов радиоламп в основное производство и использование. Прежде чем мы обсудим эти устройства, давайте поговорим о структуре современных ламп.

Внутри радиолампы

Каждая радиолампа представляет в основном стеклянный сосуд, (хотя бывают стальные и даже керамические)внутри нее закреплены электроды . Причем, воздух в таком сосуде очень сильно разряжен. Между прочим, сильное разряжение атмосферы внутри данного сосуда, непременное условие для работы лампы. В
любой радиолампе есть также катод — некий отрицательный электрод, который выступает в качестве источника электронов в радиолампе, и положительный анод электрод. Кстати, катодом может быть также вольфрамовая(тонкая) проволока аналогично нити накала электрической лампочки, или цилиндр из металла, разогреваемый нитью накала, а анодом пластина из металла или коробка, которая имеет цилиндрическую форму. Вольфрамовая нитка, которая выполняет роль катода ее называют просто — нитью накала.

Полезно знать . На всех схемах баллон радиолампы обозначаются в виде некой окружности, катод - дугой, вписанной в данную окружность, а вот анод - небольшой жирной чертой, размещенной над катодом, а их выводы - мелкие линия, которые выходят за пределы этой окружности. Лампы, содержащие эти 2 электрода — анод и катод, называются диодами. Кстати, у большинства ламп между катодом и анодом есть некая спираль из очень тонкой проволоки, которая называется сеткой. Она окружает катод и не соприкасается, расположены сетки на различных расстояниях от него. Подобные лампы называются триоды. Число сеток в лампе может быть от 1 до 5.

По числу таких электродов различают радиолампы трёхэлектродные, 4-х электродные, пятиэлектродные и т. п. Подобные радиолампы называют триоды (с 1ой сеткой), тетроды (с 2мя сетками), пентоды (с 3мя сетками). На всех схемах данные сетки обозначают жирной пунктирной линией, расположенной между анодом и катодом.

Тетродами, триодами, и пентодами называют универсальными радиолампами. Их используют для увеличения постоянного и переменного и тока и напряжения, в качестве детектора и в то же время с усилителем, и многих иных целей.

Принцип действия радиолампы

Работа радиолампы создана на потоках электронов между анодом и катодом (движения электронов). «Поставщик» данных электронов внутри радиолампы будет являться катод, причем уже нагретый до мощной температуры от 800 до 2 000° С. Между прочим, электроны оставляют катод, делая вокруг него некое электронное «облако». Данное явление излучения или испускания катодом этих электронов именуют термоэлектронной эмиссией. Чем больше раскален данный катод, тем все больше электронов он излучает, тем «плотнее» это электронное «облако».

Тем не менее, для того чтобы электроны смогли вырываться из подобного катода, необходимо не только сильно нагреть его, но и высвободить охватывающее пространство от данного воздуха. Если подобного не произвести, электроны, которые вылетают, будут увязать в этих молекулах воздуха. Аудиофилы говорят, «лампа утратила эмиссию», это означает, что с поверхности данного катода все незанятые электроны по какой-нибудь причине больше не могут вылетать. Радиолампа с утраченной эмиссией работать больше не будет. Впрочем, если катод соединить с минусом на источнике питания, а на анод подать +, внутри диода появится ток (анод примется притягивать к себе из облака электроны). Хотя если на анод подавать минус, а плюс на катод, то ток в цепи прервется. Это означает, в 2х электродной лампе диода ток сможет идти лишь в одну сторону, то есть диоды обладают только односторонней проводимостью данного тока.
Впрочем, работа триода, как и любой радиолампы, создана на существовании подобного потока электронов между анодом и катодом. Сетка - 3-й электрод - имеет вид спирали проволочной. Она находится возле катода, чем к аноду. Если же на сетку подавать незначительное отрицательное напряжение, тогда она будет сразу отталкивать часть электронов, которые несутся от катода к аноду, причем, сила анодного тока сразу уменьшится. При высоком отрицательном напряжении сетка станет барьером для электронов. Они будут задерживаться в пространстве между сеткой и катодом. При положительных напряжениях на сетке она будет увеличивать анодный ток. Следовательно, если подавать разнообразное напряжение на сетку, можно распоряжаться силой анодного тока радиолампы.

Срок службы радиолампы

Срок службы лампы определяется временем жизни ее эмиссии катода. Жизнь катода зависит от температуры катода, степень вакуума в радиолампе, и чистоты материалов в катоде.

Срок службы радиолампы также зависит от температуры, это означает, что она зависит от нити или рабочего напряжения нагревателя. Управляйте нагревателем/нити, чтобы снизить слишком большой нагрев, и лампа проживет дольше. Срок службы радиолампы может быть сокращен (особенно в торированных нитях, которые зависят от пополнения тория путем диффузии изнутри проволоки накаливания). Несколько исследователей наблюдали, что время жизни оксида-катода может быть значительно увеличен если нагревать радиолампу на 20% ниже номинального напряжения . Как правило, это имеет очень слабое влияние на электронную эмиссии катода, а может быть, хотя стоит экспериментировать, конечно если пользователь желает увеличить время жизни слабой лампы.

Но низкое напряжение не всегда рекомендуется для радиоламп, потому как она не сможет дать номинальную выходную мощность. Я рекомендую использовать номинальный нагрев или напряжение накала, но эксперименты не рекомендую, если вы не являетесь опытным специалистом .

Оксидные катоды как правило, дают более короткие сроки службы радиолампы. Чистота материалов является большой проблемой в создании долгоживущих оксидов катода — некоторые примеси, такие как никелевая трубка, вызывает в катоде потерю преждевременной эмиссии и «состаривание». Дешевые радиолампы низкого качества часто изнашивается быстрее, чем более высокого качества лампы того же типа, из-за нечистых катодов.

Радиолампы со слабым сигналом почти всегда используют оксидные катоды. Высококачественные лампы этого типа, если они работают в правильном напряжении нагревателя, то срок службы может продлиться 100000 и более часов.

Мировой рекорд в жизни радиолампы

Такая радиолампа была на вооружении в передатчике радиостанции Лос-Анджелеса в течение 10 лет, и проработала в общей сложности более 80 000 часов. Когда, наконец ее не списали из эксплуатации, но радиолампа по-прежнему функционирует, причем нормально. Станция сохраняет лампу как запасную. Для сравнения, типичный оксид-катоде в стекле мощной лампы, например, EL34, будет работать около 1500-2000 часов; и радиолампа с нитью с покрытая из оксида, такого как SV 300B, будет работать около 4000-10 000 часов. Срок службы радиолампы зависит от всех перечисленных выше факторов.

Анод

Анод, является электродом, который проявляется на выходном сигнале. Причем, анод умеет принимать электронный поток, может стать горячим. Особенно в силовых радиолампах. Так что специально разработали для охлаждения такой лампы радиатор, которая излучает тепло через стеклянную колбу (если это стеклянная), жидкостное охлаждение (в больших металлокерамических лампах). Некоторые радиолампы используют пластины из графита, так как она выдерживает высокие температуры и потому излучает очень мало вторичных электронов, которые могут перегреваться на сетке лампы и вызывают сбой.

Сетка

Почти все стеклянные аудиофильские лампы, управляются сеткой, которая является частью металлической проволоки, намотанной на двух мягких металлах. В некоторых радиолампах есть покрытие, как правило, позолоченное или золотое, и есть два вывода, сделанные из мягкой меди. Сетки в больших радиолампах (электростанций) должны выдерживать много тепла, поэтому они часто делаются их из вольфрама или молибденовой проволоки в форме корзины. Некоторые крупные в питании используют корзино-образные сетки из графита.

Наиболее широко используется небольшой триод, 12AX7, который является двойным триодом, который стал стандартом в простых ламповых усилителях или в гитарных усилителях. Другие небольшие стеклянные триоды, используются в аудио оборудования такие лампы 6Н1П, 6DJ8/6922, 12AT7, 12AU7, 6CG7, 12BH7, 6SN7 и 6SL7.

Много и стеклянных электрических триодов, которых в настоящее время на рынке, большинство причем, некоторые направлены на любительскую радиосвязь или высокое качество аудио использования: например, « » ламповый усилитель. Типичными примерами являются Светлана , SV811/572 серии, и лампа 572B. Кстати, лампа имеет очень низкий уровень искажений и используется в очень дорогих ламповых усилителях, также ее используют в радиопередатчиках и больших мощных усилителях звуковой частоты.

Большие металлокерамические электрические триоды часто используются в радиопередатчиках и генерируют радио энергию для использования в промышленных целях . Специализированные триоды многих видов сделаны для особых нужд, таких как радары.

Тетрод

Добавление еще одной сетки триода, между управляющей сеткой и пластиной, превращает его в Тетрод. Это «окно» сетка помогает экрану изолировать, управляющую сетку от пластины. На экране появляется эффект электронного ускорения, увеличивая резко усиление. Экранная сетка в а радиолампе несет в себе определенный ток, который заставляет её нагреваться. По этой причине, экранные сетки обычно покрывают графитом, чтобы уменьшить вторичную эмиссию, который помогает сохранять управляющую сетку холодной.

Многие крупные радиостанции и телеканалы используют гигантские металлокерамические тетроды , которые способны с высокой эффективностью использоваться в качестве ВЧ усилителей мощности. Силовые тетроды также иногда используются в любительском радио и промышленном применении.

Большие керамические тетроды часто называют «лучевые тетроды», потому что их электронно-лучевые формы выбросов дискообразные.

Пентод

Добавив третью сетку к тетроду, мы получаем Пентод. Третья сетка называется супрессор-сетка и вставляется между пластиной и экранном сетки. Она имеет очень мало витков, так как её единственная работа заключается в сборе бродячих электроны от вторичной эмиссии, которые отражаются от пластины, и тем самым устраняют » излом Тетрода». Это обычно работает при том же напряжении в качестве катода. Тетроды и Пентоды, как правило, имеют более высокий уровень искажений, чем триоды, если специальные не используются .

EL34, EL84, SV83 и EF86 это истинные Пентоды. EL34 широко используется в гитарных и высокого класса ламповых усилителях на выходную мощность. Кстати, EL84 ставят в более дешевых гитарных усилителях. SV83 используют в высоком классе в ламповых усилителях и гитарных усилителях, в то время как EF86 используется в качестве малошумящего предусилителя в гитарных усилителях и профессиональном звуковом оборудовании. Один из немногих крупных и мощных пентодов является 5CX1500B, часто используют в радиопередатчиках.

Есть также радиолампы с более тремя сетками. Пентагрид , которая была с пятью сетками, широко используются в качестве преобразователя частоты переднего плана в радиоприемниках. Но такие радиолампы больше не находятся в производстве, будучи полностью заменены полупроводниками.

Лучевой Тетрод

Это особый вид пучка тетрода, с парой «пучков пластин», чтобы ограничить электронный пучек в узкую ленту на каждую сторону катода. В отличие от керамических тетродов, сетки находятся на критическом расстоянии от катода, производя эффект «виртуального катода». Все это приводит к повышению эффективности и меньшим искажениями, чем обычный тетрод или пентод. Первые популярные лучевые тетроды были RCA 6L6, в 1936 году SV6L6GC и SV6550C; также являются самыми популярными в гитарных усилителях, в то время как последний является наиболее распространенной радиолампой питания в современном высококачественном ламповом усилителе звуковой частоты для аудиофилов.

Нагреватель внутри катода

С покрытием из оксида, катод не может нагреть себя, но он должен быть горячим, чтобы испускать электроны. Причем, нагреватель должен быть покрыт электрической изоляцией, который не сгорает при высоких температурах, так что он покрыт порошкообразной окисью алюминия. Это иногда может причиной отказа в таких радиолампах; покрытие стирается или появляются трещины, или нагреватель может коснуться катода. Это может помешать нормальной работе лампы . Высококачественные радиолампы имеют очень прочный и надежный нагреватель из покрытия.

Геттерный

Нам нужно, чтобы был хороший, твердый вакуум внутри лампы, или он не будет работать должным образом. Мы хотим, что вакуум оставался, так долго, насколько это возможно. Иногда, очень небольшие утечки могут появляться в лампе (часто вокруг электрических соединений в нижней части).

Геттерный в большинстве стеклянных радиоламп является маленькой чашкой или держателем, содержащий немного металла, который реагирует с кислородом и поглощает его сильно. (В большинстве современных стеклянных радиоламп, газопоглотитель из металл бария, который окисляет ОЧЕНЬ легко.) Когда лампу откачивают и опечатывают, последний шаг в обработке является «огонь» газопоглотителя, который производит «геттерную вспышку «внутри лампы оболочки. Это серебристый цвет, который вы видите на внутренней стеклянной трубки. Это гарантия того, что радиолампа имеет хороший вакуум. Если такое не удается сделать, то он станет белым (потому что это превращается в оксид бария).

Существуют слухи, что темные пятна указывают на то что лампа использованная. Это не соответствует действительности. Иногда, газопоглотительная вспышка не идеально однородна, и обесцвеченные или ясные пятна могут проявится на лампе . Единственный надежный способ определить здоровая радиолампа или нет, проверить его ЭЛЕКТРИЧЕСКИ.

Также они используют металл, обычно покрытый цирконием или титаном, который был очищен, чтобы окислить. Светлана 812A и SV811 использует такие методы.

Наиболее мощные стеклянные трубки имеют графитовые пластины. Графит термостойкий (на самом деле, он может работать долго в течение длительного времени без сбоев). Графит не склонен к вторичной эмиссии, как отмечалось выше. И, горячая пластина графита будет вступать в реакцию и поглощать, любой свободный кислород в лампе. Серия Светлана SV572 и 572B использует графитовые пластины, покрытые очищены титаном, комбинации, которая дает превосходное действие газопоглощения. Графитовая пластина гораздо дороже в производстве, чем металлическая пластина того же размера , поэтому как максимальной допустимой мощности не требуется. Большие керамические используют цирконий. Поскольку вы не можете видеть «вспышку» с таких ламп, состояние вакуума лампы должна быть определена с помощью электрических устройств.

Сборка радиолампы

Обычная стеклянная аудио радиолампа выполнена на конвейере людьми владеющими пинцетом и малой электрической сваркой. Они собирают катод, анод, сетки и другие детали внутри набора слюды или керамических прокладок, в обжимной узел вместе. Электрические соединения затем приваривают точечной сваркой к базовой проводке радиолампы. Эта работа должна быть сделана в довольно чистых условиях, хотя и не столь крайних, как «стерильная комната», которая используется, чтобы сделать полупроводники. Здесь носят халаты и шапки, и каждая рабочая станция оснащена постоянным источником фильтрованной воздушного потока, чтобы не попала пыль на части радиолампы.

После того, как закончена сборка комплектующих, потом прикрепляют к основанию стекло и запаивают к базовому диску. Сборка радиоламп продолжается, в выхлопном трубопроводе, который проходит в многоступенчатом ​​высоко-мощном вакуумном насосе.

Сначала идет вакуумная откачка; когда насос работает, индукционная катушка ВЧ находится над узлом лампы и все металлические части подогреваются. Это помогает удалить все газы, а также активизировать катодное покрытие.

Через 30 минут или более (в зависимости от типа радиолампы и вакуума), труба автоматически поднимается вверх и небольшое пламя герметизирует его.

Вращается поднос, когда в лампу вводится серия оперативных напряжений, более высоких, чем номинальное напряжение нагревателя.

Наконец остальная часть радиолампы будет удалена, базовая проводка прикреплена к внешней базе (если это восьмеричный базовый тип) с помощью специального термостойкого цемента, и готовый радиолампа готова к старению и выгорания в стойке. Если радиолампа отвечает ряду оперативных спецификации в специальном тестере, то она отмечается и отправляется.

Металлокерамические

Если вы хотите контролировать много энергии, то хрупкая стеклянная радиолампа сложнее в использовании. Так, действительно большие радиолампы сегодня полностью выполнены из керамического изолятора и металлических электродов.

В этих больших радиолампах, пластина также является частью внешней оболочки радиолампы. Такая пластина проводит ток по лампе и умеет рассеивать много тепла, это сделано как радиатор, через который будет продуваться охлаждающий воздух, или она имеет отверстия, через которые вода или другая жидкость закачивается для охлаждения радиолампы.

Лампы с воздушным охлаждением часто используются в радиопередатчиках, в то время как радиолампы с жидкостным охлаждением используются для создания радио энергии для отопления в промышленност и. Такие радиолампы используются в качестве «индукционных нагревателей «, чтобы сделать другие виды продуктов — даже другие радиолампы.

Керамические лампы изготавливаются на другом оборудовании, чем стеклянные радиолампы, хотя процессы схожи. Мягкий металл, а не стекло, и его, как правило, обжимают на гидравлическом прессе. Керамические части, как правило, в форме кольца и металлические пломбы припаяны к их краям ; они присоединены и свариваются с металлическими деталями с помощью сварки или пайки.

ПОЧЕМУ радиолампы еще используются?

Многие большие радио-станции продолжают использовать большие радиолампы электростанций, особенно для уровней мощности выше 10000 Вт и для частот выше 50 МГц. Мощные UHF телеканалы и крупные FM станций исключительно на питание от радиоламп. Причина: стоимость и эффективность! Но на низких частотах транзисторы более эффективные и менее дорогие, чем радиолампы.

Создание большого твердотельного передатчика потребует сотни или тысячи силовых транзисторов параллельно в группы по 4 или 5. Кроме того, они требуют больших теплоотводов Радиолампа, не требует сумматора, а может быть охлаждена воздухом или водой, что делает его лучше, чем твердотельный.

Это уравнение становится еще более выраженным в диапазоне сверхвысоких частот. Почти все коммерческие спутники связи применяют лампы для своих «нисходящих» усилителей мощности. В «восходящей линии связи» наземные станции также используют радиолампы. А для высокой выходной мощности, радиолампы кажется царствовует безраздельно. Экзотические транзисторы еще используются только для усиления слабого сигнала и выходной мощностью менее 40 Вт, даже после значительных достижений в области технологии. Низкая стоимость электроэнергии, вырабатываемой радиолампы сохраняет их экономически жизнеспособным, в уровне развития науки.

Усилители ламповые гитарные

В общем, только очень дешевые гитарные усилители (и несколько специализированных профессиональных моделей) являются преимущественно твердотельными. Мы подсчитали, что не менее 80% рынка для высокого класса гитарных усилителей построены на моделях полностью ламповых или гибридных. Особой популярностью у серьезных профессиональных музыкантов современные версии классических Fender, Маршалл и модели Vox с 1950-ых и 1960-ых. Этот бизнес, как полагают, составляют не менее $ 100 миллионов по всему миру по состоянию на 1997 год.

Почему ламповые усилители? Это звук, который хотят музыканты. Усилитель и динамик становятся частью музыкального . Своеобразные искажения и затухания динамики характеристики луча тетрода или пентодного усилителя, с выходным трансформатором, чтобы соответствовать нагрузке громкоговорителя, является уникальным и трудно имитировать его твердотельными устройствами. И методы по внедрению каменных усилителей, по-видимому, не увенчались успехом; профессиональные гитаристы снова возвращаются к ламповым усилителям .

Даже самые молодые рок-музыканты, кажется, очень консервативны и фактически они используют ламповое оборудование, чтобы сделать свою музыку. И их предпочтения указали им на проверенную годами радиолампу.

Профессиональное аудио

Студии записи немного под влиянием распространенности радиолампы гитарных усилителей в руках музыкантов. Кроме того, классические конденсаторные микрофоны, микрофоны, предусилители, ограничители, эквалайзеры и другие устройства стали ценными предметами коллекционирования, так как различные инженеры записи обнаружили значение радиолампы в оборудовании и в получении специальных звуковых эффектов. Результатом стал огромный рост в продажах и рекламе радиолампового оборудования и аудио процессоров для использования записи.

Высокое качество звука для аудиофилов

На своей нижней точке в начале 1970-х, продажи радиоламп для HIGH-END ламповых усилителей были едва
уловимым против основной массы бума потребительской электроники. Но даже несмотря на закрытие американских и европейских заводов радиоламп после, и начиная с 1985 года были бумом продаж «высокого класса» аудиокомпонентов. И вместе с ними начался бум продаж лампового звукового оборудования для домашнего использования – ламповый усилитель. Использование радиоламп был очень спорным в инженерных кругах, но спрос на радиолампы High End оборудования продолжают расти.

Использование радиолампы

Когда я должен заменить лампу?

Вы должны заменить только радиолампы в ламповом усилителе, тогда когда вы начинаете замечать изменения в качестве звука. Обычно звук станет «тупой» и потом будет казаться, что притупляется еще больше. Кроме того, коэффициент усиления усилителя уменьшится заметно. Обычно этого предупреждения достаточно, для замены
ламп
. Если пользователь имеет очень жесткие требования к радиолампе, то лучший способ проверить лампу с надлежащим тестером. Они все еще доступны на рынке подержанных; хотя новые не были изготовлены в течение многих лет. Один тестер в настоящее время производит сегодня, Maxi-Matche. Тестер подходит для тестирования 6L6, EL34, 6550 и типов. Если вы не можете найти тестер для радиолампы, поговорите с сотрудниками технической службы.

Голубое свечение — чем это вызвано?

Стеклянные радиолампы имеют видимый блеск внутри них. Большинство аудио ламп используют оксидные катоды, которые светятся радостным теплым оранжевым цветом. И торированного-накаливания радиолампы, такие как SV811 и SV572 триоды, показывают бело-горячий жар от своих нитей и (в некоторых усилителях) небольшое оранжевое свечение от своих нитей. Все это нормальные последствия. Некоторые новички в аудио-мире также замечают, что некоторые из их радиоламп излучают голубоватый блеск. Есть две причины для этого свечения в ламповых усилителях; один из них является нормальным и безвредным, другой происходит только в плохом ламповом усилителе.

1) Большинство радиоламп Светлана показывают флуоресцентное свечение. Это очень глубокий синий цвет. Это обусловлено теми, незначительными примесями, такими как кобальт. Быстро движущиеся электроны ударяют в молекулу примеси, возбуждают их, и производят фотоны света характерного цвета. Это обычно наблюдается на внутренней поверхности пластины, на поверхности распорок, или на внутренней стороне стеклянной оболочки. Это свечение безвредно. Это нормально и не указывает на неисправность трубки. Наслаждайтесь этим. Многие аудиофилы считают, что такое свечение улучшает внешний вид радиолампы во время работы.

2) Иногда радиолампа будет светиться под небольшой утечкой. Когда воздух попадает в лампу, и когда высокое напряжение прикладывается к пластине, молекулы воздуха могут ионизировать. Свечение ионизированного воздуха довольно сильно отличается от свечения флуоресцентного, ионизированный воздух является сильным фиолетовым цветом, почти розовым. Этот цвет обычно появляется внутри пластины радиолампы (хотя и не всегда). Он не цепляется к поверхностям, как флуоресценция, но появляется в промежутках между элементами. Радиолампа показывает это свечение и следует заменить её сразу, так как газ может вызвать ток анода утечку и (возможно) приведет повреждению лампового усилителя .

ОБРАТИТЕ ВНИМАНИЕ : некоторые старые High End ламповые и гитарные усилители, и очень немногие современные усилители, используют специальные лампы, которые зависят от ионизированного газа для их нормальной работы.

Некоторые ламповые усилители используют выпрямители ртутные, такие как 83, 816, 866 или 872. Эти радиолампы светятся сильным сини-фиолетовым цветом при нормальной эксплуатации. Они превращаются переменного тока в постоянный ток для запуска других радиоламп.

И иногда, старинные и современные ламповые усилители используют регулятор для радиоламп газоразрядных, например типов 0A2, 0B2, 0C2, 0A3, 0B3, 0C3 или 0D3.

Эти лампы работают на ионизированном газе для контроля напряжения очень плотно, и обычно светятся либо сине-фиолетовым или розовым, когда в нормальном режиме.

Что такое класс А, В, АВ, ультралинейный ламповый усилитель, и т.д.?

1. Класс А означает, что мощность проводит такое же количество тока все время, будь то на холостом ходу или работает на полную мощность. Класс очень неэффективный для электричества, но, как правило, дает очень низкий уровень искажений и отличный звук.

Есть несимметричный класс, или SE, усилители. Они используют одну или несколько радиоламп параллельно, которые работают все в фазе друг с другом. Они обычно используются в небольших гитарных усилителях и в High End высокого класса усилителях. Многие аудиофилы предпочитают ламповый усилитель SE, даже если он имеет относительно высокий уровень искажений четного порядка. Большинство 300B высокого класса ламповые усилители SE. Отрицательная обратная связь(ООС), которая может быть использована, чтобы уменьшить искажение усилителя, не особо ощущается в звуке. Большинство ламповых усилители SE без ООС.

Также двухтактные ламповые усилители класса А — они используют две, четыре или более трубок (всегда в паре), которые приводятся в противофазе друг к другу. Это сводит на нет искажения даже четного порядка и дает очень чистый звук. Примером класса А в двухтактном ламповом усилителе является гитарный усилитель Vox AC-30. Высокие токи могут, как правило, изнашивать катоды радиоламп быстрее, чем в ламповом усилителе АВ.

Есть два вида класса А, которые можно применить к несимметричным или двухтактным

Класс А1 означает, что напряжение сетки всегда более отрицательное, чем напряжение катода. Это дает максимально возможную линейность и используется с триодах, таких как SV300B, и пентодах.

Класс A2 означает, что сетка приводится более положительно, чем для части катода или всего сигнала. Это означает, что сетка будет опираться на ток с катода и нагреваться. А2 не часто используется в пентодах или триодах как SV300B, особенно в аудио ламповых усилителях. Обычно ламповый усилитель класса-A2 будет использовать радиолампы со специальными прочными сетками, таких как SV811 и SV572 серии триодов.

2. Класса АВ относится только к . Это означает, что, когда сетка одной радиолампы управляется, пока его анодный ток не отсекает (останавливает) полностью, то другая радиолампа берет на себя и обрабатывает выходную мощность. Это дает большую эффективность, чем класса А. Он также приводит к увеличению искажений, если усилитель не тщательно спроектирован и использует некоторые негативные отклики. Есть класс-AB1 и класс-AB2 усилители; различия такие же, как было объяснено.

Бестрансформаторные ламповые усилители особая высокотехнологичная продукция. Потому что это дорого и сложно причем, некоторые инженеры решили вообще ликвидировать трансформатор. К сожалению, радиолампы имеют относительно высокие выходные импедансы по сравнению с транзисторами. Хорошо продуманный бестрансформаторный ламповый усилитель способен на качество звука и доступен сегодня. Такой ламповый усилитель, как правило, требуют больше ухода и большую заботу в использовании, чем трансформаторный.

В последние годы, бестрансформаторный ламповый усилитель получил плохую репутацию ненадежности. Это было только проблемой с некоторыми производителями недорогих, которые с тех пор вышли из бизнеса. Хорошо продуманный ламповый усилитель может быть столь же надежный, как трансформаторный.

Скачать отличные книги «Ламповый усилитель своими руками» можно БЕСПЛАТНО Размер 220.47 MB!!!

2 часть книг про Ламповый усилитель можно БЕСПЛАТНО Размер 122.41 MB!!

Я надеюсь, что это объяснение хоть немного помогло. Пожалуйста, оставляйте комментарии ниже, чтобы я мог вернуться к вам. Не бойтесь меня и добавляйтесь в