Типы сигналов. Связь между сигналами различных типов. Сигнал: виды сигналов, особенности, сферы применения и отзывы. Виды модуляции сигналов Сравнение аналоговой и цифровой обработки сигналов

Которое должно быть принято принимающей стороной, иначе оно не является сообщением. Сигналом может быть любой физический процесс, параметры которого изменяются в соответствии с передаваемым сообщением.

Сигнал, детерминированный или случайный, описывают математической моделью, функцией, характеризующей изменение параметров сигнала. Математическая модель представления сигнала, как функции времени, является основополагающей концепцией теоретической радиотехники, оказавшейся плодотворной как для анализа , так и для синтеза радиотехнических устройств и систем. В радиотехнике альтернативой сигналу, который несёт полезную информацию, является шум - обычно случайная функция времени, взаимодействующая (например, путём сложения) с сигналом и искажающая его. Основной задачей теоретической радиотехники является извлечение полезной информации из сигнала с обязательным учётом шума.

Понятие сигнал позволяет абстрагироваться от конкретной физической величины , например тока, напряжения, акустической волны и рассматривать вне физического контекста явления связанные кодированием информации и извлечением её из сигналов, которые обычно искажены шумами . В исследованиях сигнал часто представляется функцией времени, параметры которой могут нести нужную информацию. Способ записи этой функции, а также способ записи мешающих шумов называют математической моделью сигнала .

В связи с понятием сигнала формулируются такие базовые принципы кибернетики , как понятие о пропускной способности канала связи, разработанное Клодом Шенноном и об оптимальном приеме , разработанная В. А. Котельниковым .

Классификация сигналов

По физической природе носителя информации:

  • электрические;
  • электромагнитные;
  • оптические;
  • акустические

По способу задания сигнала:

  • регулярные (детерминированные), заданные аналитической функцией ;
  • нерегулярные (случайные), принимающие произвольные значения в любой момент времени. Для описания таких сигналов используется аппарат теории вероятностей .

В зависимости от функции, описывающей параметры сигнала, выделяют аналоговые, дискретные, квантованные и цифровые сигналы:

  • непрерывные (аналоговые) , описываемые непрерывной функцией ;
  • дискретные , описываемые функцией отсчётов, взятых в определённые моменты времени;
  • квантованные по уровню;
  • дискретные сигналы, квантованные по уровню (цифровые).

Аналоговый сигнал (АС)

Аналоговый сигнал

Большинство сигналов имеют аналоговую природу, то есть изменяются непрерывно во времени и могут принимать любые значения на некотором интервале. Аналоговые сигналы описываются некоторой математической функцией времени.

Пример АС - гармонический сигнал - s(t) = A·cos(ω·t + φ).

Аналоговые сигналы используются в телефонии, радиовещании, телевидении. Ввести такой сигнал в компьютер и обработать его невозможно, так как на любом интервале времени он имеет бесконечное множество значений, а для точного (без погрешности) представления его значения требуются числа бесконечной разрядности. Поэтому необходимо преобразовать аналоговый сигнал так, чтобы можно было представить его последовательностью чисел заданной разрядности.

Дискретный сигнал

Дискретизация аналогового сигнала состоит в том, что сигнал представляется в виде последовательности значений, взятых в дискретные моменты времени. Эти значения называются отсчётами. Δt называется интервалом дискретизации.

Квантованный сигнал

Основная статья: Квантование (информатика)

При квантовании вся область значений сигнала разбивается на уровни, количество которых должно быть представлено в числах заданной разрядности. Расстояния между этими уровнями называется шагом квантования Δ. Число этих уровней равно N (от 0 до N-1). Каждому уровню присваивается некоторое число. Отсчёты сигнала сравниваются с уровнями квантования и в качестве сигнала выбирается число, соответствующее некоторому уровню квантования. Каждый уровень квантования кодируется двоичным числом с n разрядами. Число уровней квантования N и число разрядов n двоичных чисел , кодирующих эти уровни, связаны соотношением n ≥ log 2 (N).

Цифровой сигнал

Для того, чтобы представить аналоговый сигнал последовательностью чисел конечной разрядности, его следует сначала превратить в дискретный сигнал, а затем подвергнуть квантованию. Квантование является частным случаем дискретизации, когда дискретизация происходит по одинаковой величине называемой квантом. В результате сигнал будет представлен таким образом, что на каждом заданном промежутке времени известно приближённое (квантованное) значение сигнала, которое можно записать целым числом . Если записать эти целые числа в двоичной системе , получится последовательность нулей и единиц, которая и будет являться цифровым сигналом.

Сигнал и событие

Событие (получение записки, наблюдение сигнальной ракеты, прием символа по телеграфу) является сигналом только в той системе отношений, в которой сообщение опознается значимым (например, в условиях боевых действий сигнальная ракета - событие, значимое только для того наблюдателя, которому оно адресовано). Очевидно, что сигнал, заданный аналитически, событием не является и не несет информацию, если функция сигнала и её параметры известны наблюдателю.

В технике сигнал всегда является событием. Другими словами, событие - изменение состояния любого компонента технической системы, опознаваемое логикой системы как значимое, является сигналом. Событие, неопознаваемое данной системой логических или технических отношений как значимое, сигналом не является.

Представление сигнала и спектр

Есть два способа представления сигнала в зависимости от области определения: временной и частотный. В первом случае сигнал представляется функцией времени характеризующей изменение его параметра.

Кроме привычного временного представления сигналов и функций при анализе и обработке данных широко используется описание сигналов функциями частоты. Действительно, любой сколь угодно сложный по своей форме сигнал можно представить в виде суммы более простых сигналов, и, в частности, в виде суммы простейших гармонических колебаний, совокупность которых называется частотным спектром сигнала.

Для перехода к частотному способу представления используется преобразование Фурье :
.
Функция называется спектральной функцией или спектральной плотностью.
Поскольку спектральная функция является комплексной, то можно говорить о спектре амплитуд и спектре фаз . Физический смысл спектральной функции: сигнал представляется в виде суммы бесконечного ряда гармонических составляющих (синусоид) с амплитудами , непрерывно заполняющими интервал частот от 0 до , и начальными фазами .


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Сигнал" в других словарях:

    сигнал - а, м. signal, нем. Signal <ср. лат. signale <лат. signum знак, сигнал. 1. Условный знак для передачи каких л. сведений, распоряжений и т. п. БАС 1. Когда на корабле аншеф командующаго так повредится в бою, что более служить не может, тогда… … Исторический словарь галлицизмов русского языка

    См … Словарь синонимов

    В физике изменение некоторой физической величины, служащее для регистрации события. См. также: Сигналы Системы отсчета Финансовый словарь Финам. Сигнал Сигнал процесс передачи информации через действия компании. По английски: Signal Синонимы:… … Финансовый словарь

Назначение радиоэлектронных устройств, как известно, - получение, преобразование, передача и хранение информации, представленной в форме электрических сигналов. Сигналы, действующие в электронных устройствах, и соответственно сами устройства делят на две большие группы: аналоговые и цифровые.

Аналоговый сигнал - сигнал, непрерывный по уровню и во времени, т. е. такой сигнал существует в любой момент времени и может принимать любой уровень из заданного диапазона.

Квантованный сигнал - сигнал, который может принимать только определенные квантованные значения, соответствующие уровням квантования. Расстояние между двумя соседними уровнями - шаг квантования.

Дискретизированный сигнал - сигнал, значения которого заданы только в моменты времени, называемые моментами дискретизации. Расстояние между соседними моментами дискретизации - шаг дискретизации . При постоянном применима теорема Котельникова: , где - верхняя граничная частота спектра сигнала.

Цифровой сигнал - сигнал, квантованный по уровню и дискретизированный во времени. Квантованные значения цифрового сигнала обычно кодируются некоторым кодом, при этом каждый выделенный в процессе дискретизации отсчет заменяется соответствующим кодовым словом, символы которого имеют два значения - 0 и 1 (рис. 2.1).

Типичными представителями устройств аналоговой электроники являются устройства связи, радиовещания, телевидения. Общие требования, предъявляемые к аналоговым устройствам, - минимальные искажения. Стремление выполнить эти требования приводит к усложнению электрических схем и конструкции устройств. Другая проблема аналоговой электроники - достижение необходимой помехоустойчивости, ибо в аналоговом канале связи шумы принципиально неустранимы.

Цифровые сигналы формируются электронными схемами, транзисторы в которых либо закрыты (ток близок к нулю), либо полностью открыты (напряжение близко к нулю), поэтому на них рассеивается незначительная мощность и надежность цифровых устройств получается более высокой, чем аналоговых.

Цифровые устройства более помехоустойчивы, чем аналоговые, так как небольшие посторонние возмущения не вызывают ошибочного срабатывания устройств. Ошибки появляются только при таких возмущениях, при которых низкий уровень сигнала воспринимается как высокий, или наоборот. В цифровых устройствах можно также применить специальные коды, позволяющие исправить ошибки. В аналоговых устройствах такой возможности нет.

Цифровые устройства нечувствительны к разбросу (в допустимых пределах) параметров и характеристик транзисторов и других элементов схем. Безошибочно изготовленные цифровые устройства не нужно настраивать, а их характеристики полностью повторяемы. Все это очень важно при массовом изготовлении устройств по интегральной технологии. Экономичность производства и эксплуатации цифровых интегральных микросхем привела к тому, что в современных радиоэлектронных устройствах цифровой обработке подвергаются не только цифровые, но и аналоговые сигналы. Распространены цифровые фильтры, регуляторы, перемножители и др. Перед цифровой обработкой аналоговые сигналы преобразуются в цифровые с помощью аналого-цифровых преобразователей (АЦП). Обратное преобразование - восстановление аналоговых сигналов по цифровым - выполняется с помощью цифроаналоговых преобразователей (ЦАП).


При всем многообразии задач, решаемых устройствами цифровой электроники, их функционирование происходит в системах счисления, оперирующих всего двумя цифрами: нуль (0) и единица (1).

Работа цифровых устройств обычно тактируется достаточно высокочастотным генератором тактовых импульсов. В течение одного такта реализуется простейшая микрооперация - чтение, сдвиг, логическая команда и т. п. Информация представляется в виде цифрового слова. Для передачи слов используются два способа - параллельный и последовательный. Последовательное кодирование применяется при обмене информацией между цифровыми устройствами (например, в компьютерных сетях, модемной связи). Обработка информации в цифровых устройствах реализуется при использовании параллельного кодирования информации, обеспечивающего максимальное быстродействие.

Элементную базу для построения цифровых устройств составляют интегральные микросхемы (ИМС), каждая из которых реализуется с использованием определенного числа логических элементов - простейших цифровых устройств, выполняющих элементарные логические операции.

Различают четыре вида сигналов s(t): непрерывный непрерывного времени, непрерывный дискретного времени, дискретный непрерывного времени и дискретный дискретного времени .

Непрерывные сигналы непрерывного времени называют сокращенно непрерывными (аналоговыми) сигналами. Они могут изменяться в произвольные моменты, принимая любые из непрерывного множества возможных значении (рис. 1.3). К таким сигналам относится и известная всем синусоида.

Рис. 1.3 Непрерывный сигнал

Рис. 1.4 Непрерывный сигнал дискретною времени

Непрерывные сигналы дискретного времени могут принимать произвольные значения, но изменяться только в определенные, наперед заданные (дискретные) моменты (рис. 1.4).

Дискретные сигналы непрерывного времени отличаются тем, что они могут изменяться в произвольные моменты, но их величины принимают только разрешенные (дискретные) значения (рис. 1.5).

Дискретные сигналы дискретного времени (сокращенно дискретные) (рис. 1.6) в днекретные моменты времени могут принимать только разрешенные (днекретные) значения.

Сигналы, формируемые на выходе преобразователя дискретного сообщения в сигнал, как правило, являются по информационному параметру дискретными, т. е. описываются функцией дискретного времени и конечным множеством возможных значений. В технике передачи данных такие сигналы называют цифровыми сигналами данных (ЦСД). Параметр сигнала данных, изменение которого отображает изменение сообщения, называется представляющим (информационным) . На рис. 1.7 изображен ЦСД, представляющим параметром которого является амплитуда, а множество возможных значений представляющего параметра равно двум Часть цифрового сигнала данных, отличающаяся от остальных частей значением одного из своих представляющих. параметров, называется элементом ЦСД.

Фиксируемое значение состояния представляющею параметра сигнала называется значащей позицией. Момент, в который происходит смена значащей позиции сигнала, называется значащим (ЗМ).

Рис. 1.5 Дискретный сигнал непрерывною времени

Рис. 1.6 Дискретный сигнал

Рис. 1.7 Цифровой сигнал данных

Интервал времени между двумя соседними значащими моментами сигнала называется значащим (ЗИ)

Минимальный интервал времени то, которому равны значащие интервалы времени сигнала, называется единичным (интервалы а-б, б-в и другие на рис 1 7). Элемент сигнала, имеющий длительность, равную единичному интервалу времени, называется единичным (е э)

Термин единичный элемент является одним из основных в технике передачи данных. В телеграфии ему соответствует термин элементарная посылка

Различают изохронное и анизохронные сигналы данных Для изохронного сигнала любой значащий интервал времени равен единичному интервалу или их целому числу. Анизохронными называются сигналы, элементы которых могут иметь любую длительность, но не менее чем Другой особенностью анизохронных сигналов является то, что они могут отстоять друг от друга во времени на произвольном расстоянии


Аналоговая величина – величина, значения которой в заданном интервале изменяются непрерывно. Её конкретное значение зависит только от точности прибора, производящего измерения. Это, например, температура.

Дискретная величина – величина, значения которой изменяются скачкообразно. Например, число студентов в аудитории. Измерительный сигнал – сигнал, содержащий количественную информацию об измеряемой физической величине. Например, напряжение на выходе термоэлектрического преобразователя, измеряющего температуру.

Сигнал данных – форма представления сообщения данных с помощью физической величины, изменения одного или нескольких параметров которой, отображает его изменение.

В микропроцессорной технике сигналами являются электрические величины (ток, напряжение). Представляющий параметр сигнала данных – параметр сигнала данных, изменение которого отображает изменение сообщения данных (амплитуда, частота, фаза, длительность импульса, длительность паузы).

– сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений, т.е. аналоговые сигналы описываются непрерывной (или кусочно-непрерывной) функцией x a (t), причём сама функция и аргумент t могут принимать любые значения на некоторых интервалах

Аналоговый сигнал f (t) называется периодическим, если существует действительное число T, такое, что f (t + T) = f (t) для любых t, при этом T называется периодом сигнала.

Дискретный сигнал данных – отличается от аналоговых тем, что его значения известны лишь в дискретные моменты времени. Дискретные сигналы описываются решётчатыми функциями – последовательностями – x д (nT), где T = const – интервал (период) дискретизации, n = 0, 1, 2, … .

Сама функция x д (nT) может в дискретные моменты принимать произвольные значения на некотором интервале. Эти значения функции называются выборками или отсчётами функции. Другим обозначением решётчатой функции x(nT) является x(n) или xn. Последовательность x(n) может быть конечной или бесконечной, в зависимости от интервала определения функции.

Квантованный сигнал данных – отличается от аналоговых или дискретных разбиением диапазона значений непрерывной или дискретной величины на конечное число интервалов. Простейшим видом квантования является деление целочисленного значения на натуральное число, называемое коэффициентом квантования.

Цифровой сигнал данных – сигнал, у которого каждый из представляющих параметров описывается функцией дискретного времени и конечным множеством возможных значений. Цифровые сигналы описываются квантованными решётчатыми функциями x ц (nT). При получении цифрового сигнала из аналогового происходят дискретизация и квантование.

Двоичный цифровой сигнал – сигнал данных, в котором используется способ представления информации о величине параметра в виде многоразрядной комбинации двух величин – нуля и единицы – и называемый обычно двоичным кодом.

Модуляция – процесс изменения одного или нескольких параметров высокочастотного несущего колебания по закону низкочастотного информационного сигнала (сообщения).

В наше время двоичные цифровые сигналы в связи с простотой кодирования и обработки используются в цифровых электронных устройствах. Для передачи цифрового сигнала по каналам связи (например, электрическим или радиоканалам) используются различные виды модуляции.

Рассмотрим примеры представляющих параметров сигналов данных на примере различных видов модуляции (см. рис. 1). Кроме рассмотренных видов модуляции, также существуют фазовая (ФМ), время-импульсная (ВИМ), и другие модуляции.

Рис. 1. Различные виды модуляции сигналов – различные представляющие параметры сигналов данных

Для понимания сущности цифрового сигнала рассмотрим следующую классификацию. В цифровой технике выделяют сигналы (рис. 2):

    произвольные по величине и непрерывные во времени (аналоговые);

    произвольные по величине и дискретные по времени (дискретные);

    квантованные по величине и непрерывные по времени (квантованные);

    квантованные по величине и дискретные по времени (цифровые).

Рис. 2. Аналоговый, дискретный, квантованный и цифровой сигналы

Аналоговые сигналы часто используют для представления непрерывно изменяющихся физических величин. Например, аналоговый электрический сигнал, снимаемый , несёт информацию об изменении температуры, сигнал с микрофона – о быстрых изменениях давления в звуковой волне и т.п.

В области цифровой и импульсной техники терминология не является установившейся. Так, дискретный сигнал – это сигнал, значения представляющего параметра которого известны только в определённые моменты времени, а также это сигнал, в отличие от аналогового, представляющий параметр которого может принимать только фиксированные значения (обычно два: логический «ноль» или логическую «единицу»).

Во втором случае было бы правильно называть сигнал квантованным, но промышленные модули называются «модулями ввода дискретных сигналов». Кроме использования для передачи информации различных физических величин, сигналы различаются также представляющими параметрами.

Сигнал – это материальный носитель информации (данных), которая передается от источника к потребителю. Может представлять собой физические сигналы или математические модели.

Сигналы могут быть аналоговыми и дискретными.

Аналоговый (непрерывный) сигнал отражается некоторой физической величиной, изменяющейся в заданном интервале времени, например, тембром или силой звука.

Приведем пример непрерывного сообщения. Человеческая речь, передаваемая модулированной звуковой волной; параметром сигнала в этом случае является давление, создаваемое этой волной в точке нахождения приемника – человеческого уха.

Дискретный (цифровой) сигнал слагается из счетного множества информационных элементов.

Параметр сигнала принимает последовательное во времени конечное число значений.

Набор самых «мелких» элементов дискретного сигнала называется алфавитом, а сам дискретный сигнал называют также сообщением.

Сообщение, передаваемой с помощью таких сигналов – дискретное.

Информация, передаваемая источником – дискретная.

Примером дискретного сообщения может быть процесс чтения книги, информация в которой представлена текстом, т.е. дискретной последовательностью отдельных значков (букв).

Аналоговый сигнал может быть преобразован в дискретный. Такой процесс называется дискретизацией.

Непрерывное сообщение может быть представлено непрерывной функцией, заданной на некотором отрезке [а, b] (рис. 2.1). Непрерывное сообщение можно преобразовать в дискретное (такая процедура называется дискретизацией).

Рис. 2.1. Процесс дискретизации

Для этого из бесконечного множества значений этой функции (параметра сигнала) выбирается их определенное число, которое приближенно может характеризовать остальные значения. Полученная последовательность значений функции у 1 , у 2 , ... у n . является дискретным представлением непрерывной функции, точность которого можно неограниченно улучшать путем уменьшения длин отрезков разбиения области значений аргумента.

Таким образом, любое сообщение может быть представлено как дискретное, иначе говоря, последовательностью знаков некоторого алфавита.

Возможность дискретизации непрерывного сигнала с любой желаемой точностью (для возрастания точности достаточно уменьшить шаг) принципиально важна с точки зрения информатики. Компьютер – цифровая машина, т. е. внутреннее представление информации в нем дискретно. Дискретизация входной информации (если она непрерывна) позволяет сделать ее пригодной для компьютерной обработки.

Кодирование сигналов

Для автоматизации работы с данными, относящимися к различным типам, очень важно унифицировать их форму представления – для этого обычно используется прием кодирования, то есть выражение данных одного типа через данные другого типа.

Под кодированием сигнала понимают:

· его представление в определенной форме, удобной или пригодной для последующего использования сигнала;

· правило, описывающее отображение одного набора знаков в другой набор знаков.

Кодированию подлежат как отдельные символы исходного алфавита, так и их комбинации.

Приведем пример.

Дана таблица соответствия между натуральными числами трех систем счисления.

Эту таблицу можно рассматривать как некоторое правило, описывающее отображение набора знаков десятичной системы счисления в двоичную и шестнадцатеричную. Тогда исходный алфавит – десятичные цифры от 0 до 9, а кодовые алфавиты – это 0 и 1 для двоичной системы; цифры от 0 до 9 и символы {A, B, C, D, E, F} – для шестнадцатеричной.

Виды кодирования в зависимости от целей кодирования.

1. Кодирование по образцу используется всякий раз при вводе информации в компьютер для ее внутреннего представления.

Данный вид кодирования применяется для представления дискретного сигнала на том или ином машинном носителе.

Большинство кодов, используемых в информатике для кодирования по образцу, имеют одинаковую длину и используют двоичную систему для представления кода (и, возможно, шестнадцатеричную как средство промежуточного представления).

В данном виде кодирования используются:

a) прямые коды.

Применяются для представления в ЭВМ числовых данных и используют двоичную систему счисления. Могут использоваться для кодирования и нечисловых данных.

b) ASCII–коды.

Наиболее распространенным является код ASCII (American Standard Code for Information Interchange), который используется для внутреннего представления символьной информации в операционной системе MS DOS, в Блокноте операционной системы Windows’xx, а также для кодирования текстовых файлов в Интернет.

c) коды, учитывающие частоту символов.

В некоторых системах кодирования значение кода определяется частотой кодируемого символа. Как правило, такие частоты известны для букв алфавитов естественных языков, например, английского или русского, и используются уже давно при размещении клавиш клавиатуры: наиболее часто используемые буквы располагаются на клавишах в середине клавиатуры, наиболее редко используемые – на периферии, что создает удобство работы для человека.

2. Криптографическое кодирование, или шифрование используется, когда нужно защитить информацию от несанкционированного доступа.

3. Эффективное, или оптимальное, кодирование используется для устранения избыточности информации, т.е. снижения ее объема, например, в архиваторах.

Для кодирования символов исходного алфавита используют двоичные коды переменной длины: чем больше частота символа, тем короче его код.
Эффективность кода определяется средним числом двоичных разрядов для кодирования одного символа.

4. Помехозащитное, или помехоустойчивое, кодирование используется для обеспечения заданной достоверности в случае, когда на сигнал накладывается помеха, например, при передаче информации по каналам связи.

В качестве базового кода, который подвергается помехозащитному кодированию, используется двоичный код постоянной длины. Такой исходный (базовый) код называется первичным, поскольку подвергается модификации.

Данные

Термин «данные»

Под данными понимается:

1) представление информации в формализованном (закодированном) виде, позволяющем хранить, передавать или обрабатывать её с помощью технических средств;

2) зарегистрированные сигналы.

Носителями данных могут быть:

· бумага – самый распространённый носитель. Данные регистрируются путем изменения оптических характеристик ее поверхности;

· CD–ROM. Используется изменение оптических свойств в устройствах, осуществляющих запись лазерным лучом на пластмассовых носителях с отражающим покрытием;

· магнитные ленты и диски – используют изменение магнитных свойств.

Операции с данными

С данными можно производить различные операции:

· сбор данных – накопление данных с целью обеспечения достаточной полноты информации для принятия решений;

· формализация данных – приведение данных, поступающих из разных источников, к одинаковой форме, чтобы сделать их сопоставимыми между собой, то есть повысить их уровень доступности;

· фильтрация данных – отсеивание «лишних» данных, в которых нет необходимости для принятия решений; при этом должен уменьшаться уровень «шума», а достоверность и адекватность данных должны возрастать;

· сортировка данных – упорядочение данных по заданному признаку с целью удобства использования; повышает доступность информации;

· группировка данных – объединение данных по заданному признаку с целью повышения удобства использования; повышает доступность информации;

· архивация данных – организация хранения данных в удобной и легкодоступной форме; служит для снижения экономических затрат на хранение данных и повышает общую надежность информационного процесса в целом;

· защита данных – комплекс мер, направленных на предотвращение утраты, воспроизведения и модификации данных;

· транспортировка данных – прием и передача (доставка и поставка) данных между удаленными участниками информационного процесса; при этом источник данных в информатике принято называть сервером, а потребителя – клиентом;

· преобразование данных – перевод данных из одной формы в другую или из одной структуры в другую.