Сопоставьте типы данных с предложенными значениями. Типы переменных в Паскале: описание, свойства, примеры

3.2. Простые типы данныхв Turbo Pascal 7

Простой тип определяет упорядоченное множество значений параметра. В Turbo Pascal имеются следующие группы простых типов:

  • целые типы;
  • логический тип;
  • символьный тип;
  • перечисляемый тип;
  • тип-диапазон;
  • вещественные типы.

Все простые типы, за исключением вещественных, называются порядковыми типами. Для величин порядковых типов определены стандартные процедуры и функции: Dec, Inc, Ord, Pred, Succ (см. п. 13.1).

3.2.1. Целые типы

В отличие от языка Паскаль, где определен единственный целый тип Integer, в Turbo Pascal имеется пять стандартных типов целых чисел: Shortint, Integer, Longint, Byte, Word. Характеристики этих типов приведены в табл. 2.

Таблица 2. Целые типы данных

Тип Диапазон Формат Размер в байтах
Shortint -128 .. 127 Знаковый 1
Integer -32768 .. 32767 Знаковый 2
Longint -2147483648 .. 2147483647 Знаковый 4
Byte 0 .. 255 Беззнаковый 1
Word 0 .. 65535 Беззнаковый 2

3.2.2. Логический тип

Стандартный логический тип Boolean (размер - 1 байт) представляет собой тип данных, любой элемент которого может принимать лишь два значения: True и False. При этом справедливы следующие условия:
False Ord (False) = 0
Ord (True) = 1
Succ (False) = True
Pred (True) = False

В Turbo Pascal 7.0 добавлено еще три логических типа ByteBool (размер - 1 байт), WordBool (размер - 2 байта) и LongBool (размер - 4 байта). Они введены для унификации с другими языками программирования и со средой Windows. Отличие их от стандартного типа Boolean заключается в фактической величине параметра этого типа, соответствующей значению True. Для вех логических типов значению False соответствует число 0, записанное в соответствующее количество байтов. Значению же True для типа Boolean соответствует число 1, записанное в его байт, а для других типов значению True соответствует любое число, отличное от нуля (хотя функция Ord в этом случае дает значение 1).

3.2.3. Символьный тип

Стандартный символьный тип Char определяет полный набор ASCII-символов. Функция Ord от величины типа Char дает код соответствующего символа. Сравниваются величины символьного типа по своим кодам.

3.2.4. Перечисляемый тип

Перечисляемый тип не является стандартным и определяется набором идентификаторов, с которыми могут совпадать значения параметра. Список идентификаторов указывается в круглых скобках, идентификаторы разделяются запятыми:

type
= ();)

Важно, в каком порядке перечислены идентификаторы при определении типа, т. к. первому идентификатору присваивается порядковый номер 0, второму - 1 и т. д. Один и тот же идентификатор можно использовать в определении только одного перечисляемого типа. Функция Ord от величины перечисляемого типа дает порядковый номер ее значения.

Пример. Перечисляемый тип.

type Operat = (Plus, Minus, Mult, Divide);

Логический тип является частным случаем перечисляемого типа:

type Boolean = (False, True);

3.2.5. Тип-диапазон

В любом порядковом типе можно выделить подмножество значений, определяемое минимальным и максимальным значением, в которое входят все значения исходного типа, находящиеся в этих границах, включая и сами границы. Такое подмножество определяет тип-диапазон. Тип-диапазон задается указанием минимального и максимального значений, разделенных двумя точками:

type = . . ;

Минимальное значение при определении такого типа не должно быть больше максимального.

Пример. Определение типов-диапазонов.

type
Dozen = 1..12; {числа от 1 до 12}
AddSub = Plus..Minus; {операции сложения и вычитания}

3.2.6. Вещественные типы

В отличие от стандарта языка Паскаль, где определен только один вещественный тип Real, в Turbo Pascal имеется пять стандартных вещественных типов: Real, Single, Double, Extended, Соmр. Характеристики этих типов см. в табл. 3. Таблица 3. Вещественные типы данных

Тип Диапазон Число значащих цифр Размер в байтах
Real 2.9*10-39..1.7*1038 11-12 6
Single 1.5*10-45..3.4*1038 7-8 4
Double 5.0*10-324.-1.7*10308 15-16 8
Extended 3.4*10-4932..1.1*104932 19-20 10
Comp -263+1..263-1 19-20 8

Тип Comp фактически является типом целых чисел увеличенного диапазона, однако порядковым не считается.

Типы Single, Double, Extended и Comp можно использовать в программах только при наличии арифметического сопроцессора или при включенном эмуляторе сопроцессора (см. пп. 17.5.8 и 17.7.1).

В любой программе нужно определить вид и тип величин, которые будут использоваться при решении задачи. По виду простые величины (в программировании они все называются данными) делятся на константы и переменные.

Константы – это данные, значения которых в процессе выполнения программы не могут изменяться. Вводятся в блоке const.

В общем виде описание простой нетипизированной константы делается так:

Const имя_константы = выражение;

Типизированные константы описываются в виде:

Const имя_константы: тип = выражение;

В выражениях могут быть использованы:

· числа или набор символов в апострофах;

· математические операции;

· операции отношения и логические операции;

· функции abs(x), round(x),trunc(x);

· функции chr(x), ord(x), pred(x), succ(x) и другие.

Формат описания констант:

идентификатор=значение;

1. Целочисленные – определяются посредством чисел, записанных в десятичном или шестнадцатеричном формате, не содержащих десятичной точки.

2. Вещественные – определяются посредством чисел, записанных в десятичном формате данных.

3. Символьные – это любой символ персонального компьютера, заключенный в апострофы.

4. Строковые – определяются последовательностью произвольных символов, заключенных в апострофы.

5. Логические – это либо False, либо True.

Тип константы не указывается, но определяется автоматически при компиляции: значения выражений сразу вычисляются, а в последующем только подставляются вместо имен.

Переменные – это данные, которые могут изменяться в процессе выполнения программы. Каждая переменная имеет свою именованную ячейку/ячейки памяти. Т.е. переменная это своеобразный контейнер, в который можно положить какие-то данные и там их хранить. Переменные имеют имя, тип и значение.

Имя переменной – должно начинаться обязательно с буквы, не может содержать пробелы, и может содержать только:

· буквы латинского алфавита;

· знак подчеркивания.

Примеры: A, A_1, AА, i, j, x, y и т.п. Неверные имена: My 1, 1A. Длина имени переменной может быть до 126 символов, поэтому старайтесь подбирать осмысленные имена переменных. Однако, компилятор различает в именах первые 63 символов. Зато он не различает строчные и прописные буквы, как в именах переменных, так и в написании служебных идентификаторов.

Тип переменной – должен быть обязательно определён в блоке описания переменных VAR. Значением переменной является константа того же типа.

Каждая программа работает с данными. Данные – это в широком смысле слова объекты, которые обрабатывает программа. Тип данного – это его характеристика. От типа зависит:

· в каком виде будет храниться это данное,

· сколько ячеек памяти на его хранение будет отведено,

· какое минимальное и максимальное значение оно может принимать,

· какие операции с ним можно выполнять.

Некоторые простые типы данных Pascal:

1. Целые типы (ShortInt, Integer, LongInt, Byte, Word).

2. Вещественные типы (Real, Single, Double, Extended, Comp).

3. Логический (Boolean).

4. Символьный (Char).

5. Строковые типы (String, String [n]).

9. Безусловные операторы в Паскале. Описание и использование.

Вид оператора

goto <метка>;

Назначение – передача управления в программе на оператор, помеченный меткой <метка>. Меткой может выступать имя (написанное по правилам для имен языка) или целое число без знака, описанное в операторе описания метокLabel, и стоящее перед помеченным оператором, но только в одном месте программы. Метка отделяется от оператора символом «:».Переход на метку может встречаться в блоке несколько раз, но сама метка - только один раз. Если на какую-то метку нет передачи управления, ошибки не будет.

Оператор безусловного перехода, вообще говоря, не разрешен в структурном программировании. Хотя он позволяет сократить текст программы, его использование в паскале ограничено рядом правил и рекомендаций. Запрещается переходить внутрь составного оператора, внутрь или на начало подпрограммы и выходить из подпрограммы в вызвавшую ее программу. Не рекомендуется выполнять переход за пределы страницы (экрана) текста программы, кроме перехода на завершающие операторы программы. Все это связано с возможностью пропуска важных операторов для правильного функционирования программы. Обычно оператор безусловного перехода используется только для возврата на начало тела цикла, если цикл конструируется с помощью условного и безусловного операторов.

Отметим, что следующий за goto оператор должен быть также помечен другой меткой, (если goto не последний в группе операторов). В противном случае, на следующий заgoto оператор никак не попасть.

10. Операторы ветвления в Паскале. Описание и использование.

К операторам, позволяющим из нескольких возможных вариантов выполнения программы (ветвей) выбрать только один, относятся

Т.е. эти операторы позволяют изменить естественный порядок выполнения операторов программы.

if <условие> then < оператор 1 >

else <оператор 2> ;

if a>=b then Max:=a else Max:=b;

В операторе if по обеим ветвям (then и else) может выполняться только один оператор!

Пример задачи на операторы ветвления в паскале. Ввести два целых числа и вывести на экран наибольшее из них.

Идея решения: надо вывести на экран первое число, если оно больше второго, или второе, если оно больше первого.

Особенность: действия исполнителя зависят от некоторых условий (если … иначе …).

var a, b, max: integer;

writeln("Введите два целых числа");

if a > b then max:=a else max:=b;

writeln ("Наибольшее число ", max);

Сложные условия

Сложное условие – это условие, состоящее из нескольких простых условий (отношений), связанных с помощью логических

операций:

Not – НЕ (отрицание, инверсия)

And – И (логическое умножение, конъюнкция,

одновременное выполнение условий)

Or – ИЛИ (логическое сложение, дизъюнкция,

выполнение хотя бы одного из условий)

Xor – исключающее ИЛИ (выполнение только

одного из двух условий, но не обоих)

Простые условия (отношения)

< <= > >= = <>

Порядок выполнения (приоритет = старшинство)

Выражения в скобках

<, <=, >, >=, =, <>

Особенность – каждое из простых условий обязательно заключать в скобки.

Оператор выбора case

Оператор case позволяет сделать выбор между несколькими вариантами.

Оператор варианта состоит

Øиз выражения, называемого селектором,

Øи списка операторов, каждый из которых отмечен константой того же типа, что и селектор.

Селектор должен относиться только к порядковому типу данных, но не к типу longint.

Селектор может быть переменной или выражением.

Список констант может задаваться как явным перечислением, так и интервалом или их объединением. Повторение констант не

допускается.

Тип переключателя и типы всех констант должны быть совместимыми.

Case < выражение {селектор}> of

<список констант 1> : < оператор 1>;

< список констант K> : < оператор K>;

Выполнение оператора case происходит следующим образом:

1)вычисляется значение селектора;

2)полученный результат проверяется на принадлежность к тому или иному списку констант;

3)если такой список найден, то дальнейшие проверки уже не производятся, а выполняется оператор, соответствующий

выбранной ветви, после чего управление передается оператору, следующему за ключевым словом end, которое закрывает всю

конструкцию case;

4)если подходящего списка констант нет, то выполняется оператор, стоящий за ключевым словом else; если else-ветви нет,

то не выполняется ничего.

В операторе ветвления case по всем ветвям может выполняться только один оператор!

При необходимости выполнения нескольких требуется использовать операторные скобки begin-end.

case Index mod 4 of

1: x:= y*y – 2*y;

11.Оператор варианта (выбора) в Паскале. Описание и использование.

Оператор выбора (вариант, переключатель) реализует выбор одной из возможных альтернатив, т.е. вариантов продолжения программы.

Формат записи:

Case – выбор, вариант;

S – селектор, выражение порядкового типа;

Ki – константы выбора, константа, тип которой совпадает с типом селектора;

OPi – любой оператор в том числе пустой;

Оператор выбора реализует следующую конструкцию:

Работа оператора выбора в Паскале: Вычисляется выражение селектора. Вычисленное значение последовательно сравнивается с константами альтернатив и передается управление оператору константа выбора, которого совпадает с вычисленным значением селектора. Выполняется оператор и передается управление за пределы оператора выбора. Если вычисленное значение селектора не совпадает ни с одной из констант, то управление передается на ветвь Else, наличие которой, не обязательно в этом случае управление передается за пределы оператора выбора.

Структурная схема оператора выбора.

Структуру оператора выбора можно реализовать с помощью вложенных условных операторов, но это ухудшает наглядность программы. Рекомендуется не более 2-3 уровней вложений.

12. Виды операторов цикла в Паскале, их назначение.

5. Алгоритмические конструкции циклов. Виды циклов.

Существует три типа циклических алгоритмов: цикл с параметром (который называют арифметическим циклом), цикл с предусловием и цикл с постусловием (их называют итерационными).

12.13 Арифметический цикл. В арифметическом цикле число его шагов (повторений) однозначно определяется правилом изменения параметра, которое задается с помощью начального (N) и конечного (К) значений параметра и шагом (h) его изменения. Т.е., на первом шаге цикла значение параметра равно N, на втором - N + h, на третьем - N + 2h и т.д. На последнем шаге цикла значение параметра не больше К, но такое, что дальнейшее его изменение приведет к значению, большему, чем К.

Циклы со счетчиком используются тогда, когда циклическая часть программы должна повторяться фиксированное число раз. В таких циклах имеется переменная целого типа, которая называется счетчиком цикла.

Если необходимо, чтобы фрагмент программы повторился заданное число раз, то используется конструкция:

FOR <имя счетчика цикла> = <начальное значение> ТО <конечное значение> DO <оператор>;

FOR, TO, DO - зарезервированные слова (англ.: для, до, выполнить);

<счетчик (параметр) цикла> - переменная типа INTEGER, которая изменяется на отрезке от <начального значения>, увеличиваясь на единицу в конце каждого шага цикла;

<оператор> - любой (чаще составной) оператор.

Существует другая форма этого оператора:

FOR <имя счетчика цикла>:= <начальное значение> DOWNTO <конечное значение> DO <оператор> :

Замена ТО на DOWNTO (англ.: вниз до) означает, что шаг изменения параметра цикла равен - 1 , т. е. происходит пошаговое уменьшение счетчика на единицу.

12.14 Цикл с предусловием. Количество шагов цикла заранее не определено и зависит от входных данных задачи. В данной циклической структуре сначала проверяется значение условного выражения (условие) перед выполнением очередного шага цикла. Если значение условного выражения истинно, исполняется тело цикла. После чего управление вновь передается проверке условия и т.д. Эти действия повторяются до тех пор, пока условное выражение не примет значение ЛОЖЬ. При первом же несоблюдении условия цикл завершается.

Этот наиболее часто используемый оператор повторения имеет вид:

WHILE <условие> DO <оператор>;

WHILE, DO - резервированные слова (англ.: пока, делать);

<условие> - выражение логического типа;

<оператор> - произвольный (возможно составной) оператор.

Особенностью цикла с предусловием является то, что если изначально условное выражение ложно, то тело цикла не выполнится ни разу.

Циклы с предусловием используются тогда, когда выполнение цикла связано с некоторым логическим условием. Оператор цикла с предусловием имеет две части: условие выполнения цикла и тело цикла.

12.15 Цикл с постусловием (итерационный цикл). Как и в цикле с предусловием, в циклической конструкции с постусловием заранее не определено число повторений тела цикла, оно зависит от входных данных задачи. В отличие от цикла с предусловием, тело цикла с постусловием всегда будет выполнено хотя бы один раз, после чего проверяется условие. В этой конструкции тело цикла будет выполняться до тех пор, пока значение условного выражения ложно. Как только оно становится истинным, выполнение команды прекращается.

Этот оператор имеет вид:

REPEAT <тело цикла> UNTIL <условие>:

REPEAT, UNTIL - резервированные слова (англ.: повторять, пока не);

<условие> - выражение логического типа, если его значение истинно, то происходит выход из цикла.

Следует отметить, что в данной конструкции последовательность операторов, определяющих тело цикла, не заключается в операторные скобки BEGIN ... END, поскольку ими служит пара REPEAT ... UNTIL.

Циклы с постусловием похожи на циклы с предусловием, но в них условие находится после тела цикла.

В отличие от цикла с предусловием, который может закончить работу, ни разу не выполнив тела цикла (если условие выполнения будет ложно при первом проходе цикла), тело цикла с постусловием обязательно выполняется хотя бы один раз, после чего условие проверяется.

Один из операторов тела цикла должен влиять на значение условия выполнения цикла, иначе цикл будет повторяться бесконечное число раз.

Если условие истинно, то происходит выход из цикла, иначе операторы цикла повторяются.

16. Массив - это множество однотипных элементов, объединённых общим именем и занимающих в компьютере определённую область памяти. Количество элементов в массиве всегда конечно. В общем случае массив - это структурированный тип данных, состоящий из фиксированного числа элементов, имеющих один и тот же тип. Название регулярный тип (или ряды) массивы получили за то, что в них объединены однотипные (логически однородные) элементы, упорядоченные (урегулированные) по индексам, определяющим положение каждого элемента в массиве. В качестве элементов массива можно использовать любой тип данных, поэтому вполне правомерно существование массивов записей, массивов указателей, массивов строк, массивов и т.д.Элементами массива могут быть данные любого типа, включая структурированные.Тип элементов массива называется базовым. Особенностью языка Паскаль является то, что число элементов массива фиксируется при описании и в процессе выполнения программы не меняется. Элементы, образующие массив, упорядочены таким образом, что каждому элементу соответствует совокупность номеров (индексов), определяющих его местоположение в общей последовательности. Доступ к каждому отдельному элементу осуществляется путем индексирования элементов массива. Индексы представляют собой выражения любого скалярного типа (чаще целого), кроме вещественного. Тип индекса определяет границы изменения значений индекса. Для описания массива предназначено словосочетание array of (массив из).

Массивом называется- совокупность данных, выполняющих аналогичные функции, и обозначаемая одним именем. Если за каждым элементом массива закреплен только один его порядковый номер, то такой массив называется линейным, или одномерным.

17. Одномерный массив – это фиксированное количество элементов одного типа, объединенных одним именем, причем каждый элемент имеет свой уникальный номер, и номера элементов идут подряд.

Для описания подобных объектов в программировании предварительно следует ввести соответствующий тип в разделе описания типов.

Тип массив описывается следующим образом:

Имя типа = Array [тип индекса (ов)] Of тип элементов;

Имя переменной: имя типа;

Переменную типа массив можно описать сразу в разделе описания переменных Var:

Var Имя переменной: array [тип индекса (ов)] Of тип элементов;

Array – служебное слово (в переводе с английского означает «массив»);

Of – служебное слово (в переводе с английского означает «из»).

Тип индекса – любой порядковый тип, кроме типов integer, longint.

Тип же самих элементов может быть любым, кроме файлового типа.

Количество элементов массива называется его размерностью. Несложно подсчитать, что при последнем способе описания множества индексов размерность массива равна: максимальное значение индекса – минимальное значение индекса + 1.

Например:

mas = array of real;

Массив Х – одномерный, состоящий из двадцати элементов вещественного типа. Элементы массива хранятся в памяти компьютера последовательно друг за другом.

При использовании переменных для обозначения индекса их значения к моменту использования должны быть определены, а в случае арифметических выражений их результат не должен выходить за границы минимального и максимального значения индексов массива.

Индексы элементов массива могут начинаться с любого целого числа, в том числе и отрицательного, например:

Type bb = Array [-5..3] Of Boolean;

Массивы данного типа будут содержать 9 логических переменных, пронумерованных от -5 до 3.

18. Двумерный массив в Паскале трактуется как одномерный массив, тип элементов которого также является массивом (массив массивов). Положение элементов в двумерных массивах Паскаля описывается двумя индексами. Их можно представить в виде прямоугольной таблицы или матрицы.

Рассмотрим двумерный массив Паскаля размерностью 3*3, то есть в ней будет три строки, а в каждой строке по три элемента:

Каждый элемент имеет свой номер, как у одномерных массивов, но сейчас номер уже состоит из двух чисел – номера строки, в которой находится элемент, и номера столбца. Таким образом, номер элемента определяется пересечением строки и столбца. Например, a 21 – это элемент, стоящий во второй строке и в первом столбце.

Описание двумерного массива Паскаля.

Существует несколько способов объявления двумерного массива Паскаля.

Мы уже умеем описывать одномерные массивы, элементы которых могут иметь любой тип, а, следовательно, и сами элементы могут быть массивами. Рассмотрим следующее описание типов и переменных:

Основные действия с двумерными массивами Паскаля

Все, что было сказано об основных действиях с одномерными массивами, справедливо и для матриц. Единственное действие, которое можно осуществить над однотипными матрицами целиком – это присваивание. Т.е., если в программе у нас описаны две матрицы одного типа, например,

matrix= array of integer;

то в ходе выполнения программы можно присвоить матрице a значение матрицы b (a:= b). Все остальные действия выполняются поэлементно, при этом над элементами можно выполнять все допустимые операции, которые определены для типа данных элементов массива. Это означает, что если массив состоит из целых чисел, то над его элементами можно выполнять операции, определенные для целых чисел, если же массив состоит из символов, то к ним применимы операции, определенные для работы с символами.

21.Технологии работы с текстовыми документами. Текстовые редакторы и процессоры: назначение и возможности.

олее совершенные текстовые редакторы (например, Microsoft Word и OpenOffice.org Writer), которые называют иногда текстовыми процессорами, имеют широкий спектр возможностей по созданию документов (вставка списков и таблиц, средства проверки орфографии, сохранение исправлений и др.).

Для подготовки к изданию книг, журналов и газет в процессе макетирования издания используются мощные программы обработки текста - настольные издательские системы (например, Adobe PageMaker, Microsoft Office Publisher).

Для подготовки к публикации в Интернете Web-страниц и Web-сайтов используются специализированные приложения (например, Microsoft FrontPage).

Текстовые редакторы - это программы для создания, редактирования, форматирования, сохранения и печати документов. Современный документ может содержать, кроме текста, и другие объекты (таблицы, диаграммы, рисунки и т. д.).

Редактирование - преобразование, обеспечивающее добавление, удаление, перемещение или исправление содержания документа. Редактирование документа обычно производится путем добавления, удаления или перемещения символов или фрагментов текста.

Форматирование - это оформление текста. Кроме текстовых символов форматированный текст содержит специальные невидимые коды, которые сообщают программе, как надо его отображать на экране и печатать на принтере: какой шрифт использовать, каким должно быть начертание и размер символов, как оформляются абзацы и заголовки.

Форматированные и неформатированные тексты несколько различаются по своей природе. Это различие надо понимать. В форматированном тексте важно все: и размеры букв, и их образ, и то, где заканчивается одна строка и начинается другая. То есть форматированный текст неразрывно связан с параметрами листа бумаги, на котором напечатан.

При оформлении текстовых документов часто требуется добавлять в документ не текстовые элементы или объекты. Продвинутые текстовые редакторы позволяют это делать – они имеют широкие возможности по вставке в текст рисунков, диаграмм, формул и так далее.

Документы бумажные и электронные. Документы могут быть бумажными или электронными. Бумажные документы создают и форматируют так, чтобы обеспечить их наилучшее представление при печати на принтере. Электронные документы создают и форматируют с целью наилучшего представления на экране монитора. Постепенное вытеснение бумажного документооборота электронным - одна из тенденций развития информационных технологий. Сокращение расхода бумаги благотворно сказывается на сбережении природных ресурсов и уменьшении загрязнения окружающей среды.

Форматирование бумажных и электронных документов может существенно различаться. Для бумажных документов принято так называемое абсолютное форматирование. Печатный документ всегда форматируется под печатный лист известного размера (формата). Например, ширина строки документа зависит от ширины листа бумаги. Если документ был оформлен для печати на листах большого формата, то его нельзя напечатать на маленьких листочках - часть документа на них не поместится. Одним словом, форматирование печатного документа всегда требует предварительного выбора листа бумаги с последующей привязкой к этому листу. Для печатного документа всегда можно точно назвать (в любых единицах измерения) размеры шрифтов, полей, расстояний между строками или абзацами и т. п.

Для электронных документов принято так называемое относительное форматирование. Автор документа не может заранее предсказать, на каком компьютере, с каким размером экрана документ будут просматривать. Более того, даже если бы размеры экранов и были известны заранее, все равно невозможно предсказать, каков будет размер окна, в котором читатель увидит документ. Поэтому электронные документы делают так, чтобы они подстраивались под текущий размер окна и форматировались «на лету».

Автор электронного документа не знает также, какие шрифты имеются на компьютере будущего читателя, и потому не может жестко указать, каким шрифтом должны изображаться текст и заголовки. Но он может задать такое форматирование, при котором на любом компьютере заголовки будут выглядеть крупнее, чем текст.

Относительное форматирование используют для создания электронных документов Интернета (так называемых Web-страниц), а абсолютное - для создания печатных документов в текстовых процессорах.

22.Основные структурные элементы текстового документа. Шрифты, стили, форматы.

Форматирование шрифта (символов).

Символы – это буквы, цифры, пробелы, знаки пунктуации, специальные символы. Символы можно форматировать (изменять их внешний вид). Среди основных свойств символов можно выделить следующие: шрифт, размер, начертание и цвет.

Шрифт – это полный набор символов определенного начертания. Каждый шрифт имеет своё название, например Times New Roman, Arial, Comic Sans MS. Единицей измерения шрифта является пункт (1 пт = 0,367 мм). Размеры шрифтов можно изменять в больших пределах. Кроме нормального (обычного) начертания символов обычно применяют полужирное, курсивное, полужирное курсивное.

По способу представления в компьютере различаются шрифты растровые и векторные. Для представления растровых шрифтов служат методы растровой графики, символы шрифта - это группы пикселей. Растровые шрифты допускают масштабирование только с определенными коэффициентами.

В векторных шрифтах символы описываются математическими формулами и возможно произвольное их масштабирование. Среди векторных шрифтов наибольшее распространение получили шрифты типа TrueType.

Можно также установить дополнительные параметры форматирования символов: подчеркивание символов различными типами линий, изменение вида символов (верхний и нижний индекс, зачеркнутый), изменение расстояний между символами.

Если планируется цветная печать документа, то можно задать различные цвета для различных групп символов.

Для проверки орфографии и синтаксиса используются специальные программные модули, которые обычно включаются в состав текстовых процессоров и издательских систем. Такие системы содержат словари и грамматические правила для нескольких языков, что позволяет исправлять ошибки в многоязычных документах.

24. База данных - это информационная модель, позволяющая упорядоченно хранить данные о группе объектов, обладающих одинаковым набором свойств.

Существует несколько различных типов баз данных: табличные (реляционные), иерархические и сетевые.

Табличные базы данных.

Табличная база данных содержит перечень объектов одного типа, т. е. объектов с одинаковым набором свойств. Такую базу данных удобно представлять в виде двумерной таблицы.

В реляционных базах данных все данные представлены в виде простых таблиц, разбитых на строки и столбцы, на пересечении которых расположены данные. Запросы к таким таблицам возвращают таблицы, которые сами могут становиться предметом дальнейших запросов. Каждая база данных может включать несколько таблиц.

Главное достоинство таблиц - в их понятности. С табличной информацией мы имеем дело практически каждый день. Загляните, например, в свой дневник: расписание занятий там представлено в виде таблицы. Когда мы приходим на вокзал, смотрим расписание электричек. Какой вид оно имеет? Это таблица! А еще есть таблица футбольного чемпионата. И журнал учителя, куда он выставляет вам оценки, - тоже таблица.

Кратко особенности реляционной базы данных можно сформулировать следующим образом:

1.Данные хранятся в таблицах, состоящих из столбцов («атрибутов», «полей») и строк («записей»);

2.На пересечении каждого столбца и строчки стоит в точности одно значение;

3.У каждого столбца есть своё имя, которое служит его названием, и все значения в одном столбце имеют один тип.

4.Запросы к базе данных возвращают результат в виде таблиц, которые тоже могут выступать как объект запросов.

5.Строки в реляционной базе данных неупорядочены - упорядочивание производится в момент формирования ответа на запрос.

6.Обычно информация в базах данных хранится не в одной таблице, а в нескольких взаимосвязанных.

В реляционных БД строка таблицы называется записью , а столбец - полем . Каждое поле таблицы имеет имя.

Поля - это различные характеристики (иногда говорят – атрибуты) объекта. Значения полей в одной строке относятся к одному объекту.

Первичным ключом в базе данных называют поле (или совокупность полей), значение которого не повторяется у разных записей.

С каждым полем связано еще одно очень важное свойство – тип поля . Тип поля определяет множество значений, которые может принимать данное поле в различных записях.

В реляционных базах данных используются четыре основных типа поля:

Числовой;

Символьный;

Логический.

25. Системы управления базами данных и принципы работы с ними. Поиск, удаление и сортировка данных в БД. Условия поиска (логические выражения); порядок и ключи сортировки.

Системы управления базами данных (СУБД).

Для создания баз данных, а также выполнения операции поиска и сортировки данных предназначены специальные программы - системы управления базами данных (СУБД).

Таким образом, необходимо различать собственно базы данных (БД) - упорядоченные наборы данных, и системы управления базами данных (СУБД) - программы, управляющие хранением и обработкой данных. Например, приложение Access, входящее в офисный пакет программ Microsoft Office, является СУБД, позволяющей пользователю создавать и обрабатывать табличные базы данных.

Реляционная база данных, по сути, представляет собой двумерную таблицу. Под записью здесь понимается строка двумерной таблицы, элементы которой образуют столбцы таблицы. В зависимости от типа данных столбцы могут быть числовые, текстовые или содержать дату. Строки таблицы нумеруются.

Работа с СУБД начинается с создания структуры базы данных, т. е. с определения:

количества столбцов;

названий столбцов;

типов столбцов (текст/число/дата);

ширины столбцов.

Основные функции СУБД:

Управление данными во внешней памяти (на дисках);

Управление данными в оперативной памяти;

Журнализация изменений и восстановление базы данных после сбоев;

Поддержание языков БД (язык определения данных, язык манипулирования данными).

В командах СУБД условие выбора записывается в форме логического выражения.

Логическое выражение, подобно математическому выражению, выполняется (вычисляется), но в результате получается не число, а логическое значение: истина (true) или ложь (false).

Выражение, состоящее из одной логической величины или одного отношения, будем называть простым логическим выражением.

Часто встречаются задачи, в которых используются не отдельные условия, а совокупность связанных между собой условий (отношений). Например, нужно выбрать учеников у которых вес больше 60 и рост меньше 168.

Выражение, содержащие логические операции, будем называть сложным логическим выражением.

Объединение двух (или нескольких) высказываний в одно с помощью союза «и» называется операцией логического умножения или конъюнкцией.

В результате логического умножения (конъюнкции) получается истина, если истинны все логические выражения.

Объединение двух (или нескольких) высказываний с по мощью союза «или» называется операцией логического сложения или дизъюнкцией.

В результате логического сложения (дизъюнкции) получается истина, если истинно хотя бы одно логическое выражения.

Присоединение частицы «не» к высказыванию называется операцией логического отрицания или инверсией.

27. Электронные таблицы, назначение и основные функции.

Электронная таблица - это программа обработки числовых данных, хранящая и обрабатывающая данные в прямоугольных таблицах.

Электронная таблица состоит из столбцов и строк. Заголовки столбцов обозначаются буквами или сочетаниями букв (A, G, АВ и т. п.), заголовки строк - числами (1, 16, 278 и т. п.). Ячейка - место пересечения столбца и строки.

Каждая ячейка таблицы имеет свой собственный адрес. Адрес ячейки электронной таблицы составляется из заголовка столбца и заголовка строки, например: А1, F123, R1. Ячейка, с которой производятся какие-то действия, выделяется рамкой и называется активной.

Типы данных. Электронные таблицы позволяют работать с тремя основными типами данных: число, текст и формула.

Числа в электронных таблицах Excel могут быть записаны в обычном числовом или экспоненциальном формате, например: 195,2 или 1,952Е + 02. По умолчанию числа выравниваются в ячейке по правому краю. Это объясняется тем, что при размещении чисел друг под другом (в столбце таблицы) удобно иметь выравнивание по разрядам (единицы под единицами, десятки под десятками и т. д.).

Формула должна начинаться со знака равенства и может включать в себя числа, имена ячеек, функции (Математические, Статистические, Финансовые, Дата и время и т. д.) и знаки математических операций. Например, формула «=А1+B2» обеспечивает сложение чисел, хранящихся в ячейках А1 и B2, а формула «=А1*B» - умножение числа, хранящегося в ячейке А1, на 5. При вводе формулы в ячейке отображается не сама формула, а результат вычислений по этой формуле. При изменении исходных значений, входящих в формулу, результат пересчитывается немедленно.

Абсолютные и относительные ссылки. В формулах используются ссылки на адреса ячеек. Существуют два основных типа ссылок: относительные и абсолютные. Различия между ними проявляются при копировании формулы из активной ячейки в другую ячейку.

Относительная ссылка в формуле используется для указания адреса ячейки, вычисляемого относительно ячейки, в которой находится формула. При перемещении или копировании формулы из активной ячейки относительные ссылки автоматически обновляются в зависимости от нового положения формулы. Относительные ссылки имеют следующий вид: А1, BЗ.

Если символ доллара стоит перед буквой (например: $A1), то координата столбца абсолютная, а строки - относительная. Если символ доллара стоит перед числом (например, А$1), то, наоборот, координата столбца относительная, а строки - абсолютная. Такие ссылки называются смешанными.

Пусть, например, в ячейке С1 записана формула =A$1+$J31, которая при копировании в ячейку D2 приобретает вид =В$1+$B2. Относительные ссылки при копировании изменились, а абсолютные - нет.

Сортировка и поиск данных. Электронные таблицы позволяют осуществлять сортировку данных. Данные в электронных таблицах сортируются по возрастанию или убыванию. При сортировке данные выстраивают - ся в определенном порядке. Можно проводить вложенные сортировки, т. е. сортировать данные по нескольким столбцам, при этом назначается последовательность сортировки столбцов.

В электронных таблицах возможен поиск данных в соответствии с указанными условиями - фильтрами. Фильтры определяются с помощью условий поиска (больше, меньше, равно и т. д.) и значений (100, 10 и т. д.). Например, больше 100. В результате поиска будут найдены те ячейки, в которых содержатся данные, удовлетворяющие заданному фильтру.

Построение диаграмм и графиков. Электронные таблицы позволяют представлять числовые данные в виде диаграмм или графиков. Диаграммы бывают различных типов (столбчатые, круговые и т. д.); выбор типа диаграммы зависит от характера данных.

28. Технология обработки информации в электронных таблицах (ЭТ). Структура электронной таблицы.

Электронная таблица - это программа обработки числовых данных, хранящая и обрабатывающая данные в прямоугольных таблицах. Электронная таблица состоит из столбцов и строк. Заголовки столбцов обозначаются буквами или сочетаниями букв (A, G, АВ и т. п.), заголовки строк - числами (1, 16, 278 и т. п.). Ячейка - место пересечения столбца и строки. Каждая ячейка таблицы имеет свой собственный адрес. Адрес ячейки электронной таблицы составляется из заголовка столбца и заголовка строки, например: Al, B5, E7. Ячейка, с которой производятся какие-то действия, выделяется рамкой и называется активной. Электронные таблицы, с которыми работает пользователь в приложении, называются рабочими листами. Можно вводить и изменять данные одновременно на нескольких рабочих листах, а также выполнять вычисления на основе данных из нескольких листов. Документы электронных таблиц могут включать несколько рабочих листов и называются рабочими книгами.

29. Типы данных в электронных таблицах (ЭТ): числа, формулы, текст. Правила записи формул.

Типы данных.

Электронные таблицы позволяют работать с тремя основными типами данных: число, текст и формула.

Числа в электронных таблицах Excel могут быть записаны в обычном числовом или экспоненциальном формате, например: 195,2 или 1.952Ё + 02. По умолчанию числа выравниваются в ячейке по правому краю. Это объясняется тем, что при размещении чисел друг под другом (в столбце таблицы) удобно иметь выравнивание по разрядам (единицы под единицами, десятки под десятками и т. д.).

Текстом в электронных таблицах Excel является последовательность символов, состоящая из букв, цифр и пробелов, например запись «32 Мбайт» является текстовой. По умолчанию текст выравнивается в ячейке по левому краю. Это объясняется традиционным способом письма (слева направо).

Формула должна начинаться со знака равенства и может включать в себя числа, Имена ячеек, функции (Математические, Статистические, Финансовые, Дата и время и т.д.) и знаки математических: операций. Например, формула «=А1+В2» обеспечивает сложение чисел, хранящихся в ячейках А1 и В2, а формула «=А1*5» - умножение числа, хранящегося в ячейке А1, на 5. При вводе формулы в ячейке отображается не сама формула, а результат вычислений по этой формуле. При изменении исходных значений, входящих в формулу, результат пересчитывается немедленно.

Правила записи формул в электронных таблицах

1. Формулы содержат числа, имена ячеек, знаки операций, круглые скобки, имена функций

2. Арифметические операции и их знаки:

Название операции Знак Комбинация клавиш

сложение + {Shift + +=}или {+} на дополнительной клавиатуре

вычитание – {-}

умножение * {Shift + 8} или {*}на дополнительной клавиатуре

деление / {Shift + | \} или {/}на дополнительной клавиатуре

возведение в степень ^ {Shift + 6} на английском

3. Формула пишется в строку, символы последовательно выстраиваются друг за другом, проставляются все знаки операций; используются круглые скобки.

4. В первую очередь выполняются операции в скобках, если нет скобок, то порядок выполнения определяется старшинством операций. По убыванию старшинства операции располагаются в таком порядке:

1. возведение в степень

2. умножение, деление

3. сложение, вычитание

Операции одинакового старшинства выполняются в порядке их записи слева направо.

5. Формулы можно вводить в режиме отображения расчетов, т.е. запись формулы в текущую ячейку пользователь начинает со знака = и в ячейке после нажатия клавиши Enter отображается результат вычисления по формуле.

6. Формулы можно вводить в режиме отображения формул, т.е. пользователь в текущую ячейку записывает формулу без знака = и в ячейке после нажатия клавиши Enter отображается формула.

30.Основные встроенные функции. Абсолютные и относительные ссылки в элект-ронных таблицах (ЭТ).

Относительная ссылка в формуле используется для указания адреса ячейки, вычисляемого относительно ячейки, в которой находится формула. При перемещении или копировании формулы из активной ячейки относительные ссылки автоматически обновляются в зависимости от нового положения формулы. Относительные ссылки имеют следующий вид: А1, ВЗ.

Абсолютная ссылка в формуле используется для указания фиксированного адреса ячейки. При перемещении или копировании формулы абсолютные ссылки не изменяются. В абсолютных ссылках перед неизменяемым значением адреса ячейки ставится знак доллара (например, $А$1).

Если символ доллара стоит перед буквой (например: $А1), то координата столбца абсолютная, а строки - относительная. Если символ доллара стоит перед числом (например, А$1), то, наоборот, координата столбца относительная, а строки - абсолютная. Такие ссылки называются смешанными. Пусть, например, в ячейке С1 записана формула =А$1+$В1, которая при копировании в ячейку D2 приобретает вид =В$1+$В2. Относительные ссылки при копировании изменились, а абсолютные - нет.

Данные - это общее понятие для всего того, с чем оперирует вычислительная машина. Любой тип данных определяет множество значений, которые может принимать та или иная переменная, и те операции, которые можно к ним применять.С каждой встречающейся в программе переменной должен быть сопоставлен один и только один тип.

В Паскале существуют простые типы двух видов: ординальные типы и вещественный тип. Ординальный тип либо определяется программистом (перечисляемый тип или диапазонный), либо обозначается именем одного из трех предописанных ординальных типов: Boolean, Integer или Char . Вещественный тип обозначается именем предописанного типа Real .

Перечисляемый тип характеризуется множеством входящих в него различных значений, среди которых определен линейный порядок. Сами значения обозначаются в определении этого типа именами.

Диапазонный (ограниченный) тип задается с помощью минимального и максимального значений, относящихся к предварительно описанному ординальному типу. Так порождается новый ординальный тип.

Ординальные типы данных

Ординальный тип данных описывает конечное и упорядоченное множество значений. Эти значения отображаются на последовательность порядковых номеров 0,1,2,...; исключение делается лишь для целых ординальных чисел, которые отображаются сами на себя. Каждый ординальный тип имеет минимальное и максимальное значение. Для всех значений, кроме минимального, существует предшествующее значение, а для всех значений, кроме максимального - последущее.

Предописанные функции succ, pred, ord воспринимают аргументы любого из ординальных типов:
succ(X) - дает следующее за X ординальное значение
pred(X) - дает предшествующее X ординальное значение
ord(X) - дает ординальный номер для X

Для всех ординальных типов существуют операции отношения = , = и > , причем предполагается, что оба операнда одного и того же типа.

Логический тип (Boolean)

Логическое значение - одно из двух истиностных значений, обозначаемых предопределенными именами false и true .

Существуют следующие логические операции, дающие логическое значение при применении их к логическим операндам:
and - логическое И
or - логическое ИЛИ
not - логическое НЕ

Также любая из операций отношения (= , = , > , in) поставляет логический результат.

Кроме того логический тип определен так, что false

Существуют и предописанные логические функции (т.е функции, дающие логический результат):
odd(F) - true, если целое F-нечетное и результат false, если F-четное
eoln(F) - проверка на конец строки
eof(F) - проверка на конец файла

Целый тип (Integer)

Тип integer включает в себя множество целых чисел.

При работе с целыми операндами следующие арифметические операции дают целые значения:
* - умножение
div - целая часть от деления
mod - остаток от деления
+ - сложение
- - вычитание

В Паскале существует также предописанная константа с именем MaxInt , которая содержит максимальное значение целого типа Integer и равна 32767

Целый результат дают и четыре важные предописанные функции:
abs(I) - абсолютное значение целого значения I
sgr(I) - целое значение I, возведенное в квадрат при условии, что I trunc(R) - выдает целую часть вещественного числа R
round(R) - выдает округленное целое. При этом: для R>0 означает trunc(R+0.5) , а для R

Если I - целое значение, то:
succ(I) - дает следующее целое значение (I+1)
pred(I) - дает предыдущее целое значение (I-1)

Символьный тип (Char)

Значениями типа Char являются элементы конечного и упорядоченного множества символов. Значения такого типа обозначаются одним символом, заключенным в одни кавычки (апострофы). Если нужен сам апостроф, то он пишется дважды.
Примеры: "*" "G" "3" """" "X"

    Для типа Char справедливы следующие минимальные допущения:
  1. Десятичные цифры от 0 до 9 упорядочены в соответствии с их числовыми значениями и следуют одна за другой (например, succ("5") = "6").
  2. Могут существовать прописные буквы от "A" до "Z"; если это так, то они упорядочены в алфавитном порядке, но не обязательно следуют одна за другой (например, "A"
  3. Могут существовать строчные буквы от "a" до "z"; если это так, то они упорядочены в алфавитном порядке, но не обязательно следуют одна за другой (например, "a"

Для отображения заданного множества символов на порядковые номера и обратно существуют две предописанные функции:
ord(C) - дает порядковый номер символа С в упомянутом упорядоченном множестве символов
chr(I) - дает символ с порядковым номером I

Для аргументов типа Char предописанные функции pred и succ могут быть определены таким образом:
pred(C) = chr(ord(C)-I)
succ(C) = chr(ord(C)+I)

Замечание. Предшествующий данному либо следующий за ним символ зависит от указанного множества символов, поэтому оба этих соотношения справедливы только в том случае, когда предшествующий или следующий символ существует.

Вещественный тип (Real)

Значениями вещественного типа являются элементы определяемого реализацией подмножества вещественных чисел.

Все операции над величинами вещественного типа - приближенные, их точность определяется реализацией (машиной), с которой вы имеете дело. Вещественный тип относится к простому типу, это не ординальный тип. У вещественных значений нет ординального номера и для любого из них не существует предшествующего и следующего значений.

Если хотя бы один из операндов - вещественного типа (другой может быть и целым), следующие операции дают вещественный результат:
* - умножение
/ - деление (оба операнда могут быть целыми, но результат всегда вещественный)
+ - сложение
- - вычитание

Существуют предописанные функции, дающие вещественный результат при вещественном аргументе:
abs(R) - абсолютное значение R
sqr(R) - R в квадрате, если результат не выходит за диапазон вещественных чисел

А эти предописанные функции дают вещественный результат при целом или вещественном аргументе:
sin(X) - дает синус Х; Х выражено в радианах
cos(X) - дает косинус Х; Х выражено в радианах
arctan(X) - дает выраженное в радианах значение арктангенса от Х
ln(X) - дает значение натурального (с основанием е) логарифма для Х, Х>0
exp(X) - дает значение экспоненциальной функции (т.е в степени Х)
sqrt(X) - дает значение корня квадратного Х, Х>=0

Предупреждение. К вещественным аргументам нельзя применять функции pred, succ Нельзя использовать значения вещественного типа при индексировании массивов, для управления в цикле с параметром, для определения базового типа множеств, для индексирования в операторе варианта.

Знание и понимание типов данных является неотъемлемой частью в программировании.

В этом уроке мы познакомимся с типами данных в языке программирования Turbo Pascal.

В языке Паскаль любые объекты, т.е. константы, переменные, значения функций или выражения, характеризуются своими типами. Тип определяет множество допустимых значений того или иного объекта, а также множество операций, которые к нему применимы. Кроме того, тип определяет формат внутреннего представления данных в памяти ЭВМ. В отношении типов объектов Паскаль является статическим языком. Это означает, что тип объекта, например, переменной, определяется при ее описании и не может быть изменен в дальнейшем.

Структура типов данных в языке Паскаль:

Простые типы языка
К простым типам относятся порядковые, вещественный, строковый и адресный (указатели) типы. Все они определяют тип только одного отдельного значения.

Порядковые типы характеризуются тем, что каждый из них имеет конечное число возможных значений, среди которых установлен линейный порядок. С каждым из значений можно сопоставить некоторое целое число - его порядковый номер.

Целочисленные типы - обозначают множества целых чисел в различных диапазонах. Имеется пять целочисленных типов, различающихся диапазоном допустимых значений и размером занимаемой оперативной памяти. Целочисленные типы обозначаются идентификаторами: Byte, ShortInt, Word, Integer, LongInt; их характеристики приведены в следующей таблице.

Значения целых типов записываются в программе привычным способом:
123 4 -3 +345 -699
Наличие десятичной точки в записи целого числа недопустимо. Будет ошибкой записать целое число следующим образом:
123.0
Кроме привычной десятичной формы записи допускается запись целых чисел в шестнадцатеричном формате, используя префикс $, например:
$01AF $FF $1A $F0A1B
Регистр букв A,B, ..., F значения не имеет.

Допустимые операции:

  • - присваивание;
  • - все арифметические: +, - ,*, /, div, mod (при обычном делении [/] результат вещественный!);
  • - сравнение <, >, >=, <=, <>, =.
Логический тип (Boolean) - состоит всего из двух значений: False (ложно) и True (истинно). Слова False и True определены в языке и являются, по сути, логическими константами. Регистр букв в их написании несущественен: FALSE = false. Значения этого типа являются результатом вычислений условных и логических выражений и участвуют во всевозможных условных операторах языка.
Допустимые операции:
  • - присваивание;
  • - сравнение: <, >, >=, <=, <>, =;
  • - логические операции: NOT, OR, AND, XOR
Символьный тип (Char) - это тип данных, состоящих из одного символа (знака, буквы, кода). Значением типа Char может быть любой символ из набора ASCII. Если символ имеет графическое представление, то в программе он записывается заключенным в одиночные кавычки (апострофы), например:
"ж" "s" "." "*" " "-(пробел)
Для представления самого апострофа его изображение удваивается: """".
Если же символ не имеет графического представления, например, символ табуляции или символ возрата каретки, то можно воспользоваться эквивалентной формой записи символьного значения, состоящего из префикса # и ASCII-кода символа:
#9 #32 #13
Допустимые операции:
  • - присваивание;
  • - сравнение: <, >, >=, <=, <>, =. Большим считается тот символ, который имеет больший ASCII-номер.
Строковый тип (String, String[n]) - этот тип данных определяет последовательности символов - строки. Параметр n определяет максимальное количество символов в строке. Если он не задан, подразумевается n=255. Значение типа «строка» в программе запиывается как последовательность символов, заключенных в одиночные кавычки (апострофы), например
"Это текстовая строка" "This is a string"
"1234" - это тоже строка, не число
"" - пустая строка

Допустимые операции:
  • - присваивание;
  • - сложение (конкатенация, слияние); например, S:= "Зима"+" "+"пришла!";
  • - сравнение: <, >, >=, <=, <>, =. Строки считаются равными, если имеют одинаковую длину и посимвольно эквивалентны.
Вещественные типы - обозначают множества вещественных чисел в различных диапазонах. Имеется пять вещественных типов, различающихся диапазоном допустимых значений и размером занимаемой оперативной памяти. Вещественные типы обозначаются идентификаторами: Real, Single, Double, Extended, Comp; их характеристики приведены в следующей таблице.

Тип Comp хотя и относится к вещественным типам, на самом деле является целочисленным с очень огромным диапазоном значений.
Значения вещественных типов могут записываться в программе несколькими способами:
1.456 0.000134 -120.0 65432
+345 0 -45 127E+12
-1.5E-5 -1.6E+12 5E4 0.002E-6

Будет ошибкой записать вещественное число следующим образом:
.5 (правильно 0.5)
12. (правильно 12.0 или 12)

Вещественное число в форме с плавающей точкой (экспоненциальная форма) записывается как пара
<мантисса> Е <порядок>
Такое обозначение понимается как «мантисса, умноженная на десять в степени, равном порядку». Например,
-1.6E+12 сответствует -1.6·1012

Допустимые операции:
- присваивание;
- все арифметические: +, - ,*, /;
- сравнение: <, >, >=, <=, <>, =.

При сравнении вещественных чисел следует помнить, что в следствие неточности их представления в памяти компьютера (в виду неизбежности округления) стоит избегать попыток определения строгого равенства двух вещественных значений. Есть шанс, что равенство окажется ложным, даже если на самом деле это не так.

Диапазон или (ограниченный тип) не является предопределенным типом языка (таким как, например, Integer или Char) и поэтому ему не соответствует никакой идентификатор. Этот тип является вводимм пользователем. Используя его мы можем определить новый тип, который будет содержать значения только из ограниченного поддиапазона некоего базового типа. Базовым типом может быть только целочисленный тип, тип Char (символьный) и любой из введенных программистом перечислимых типов.

Для введения нового типа - диапазона - нужно в блоке описания типов TYPE указать имя вводимого типа и границы диапазона через специальный символ диапазона ".." (две точки подряд):
TYPE
Century = 1..21; { поддиапазон цилочисленного типа }
CapsLetters = "А".."Я"; { поддиапазон из типа Char }

Структурированные типы языка

К структурированным типам относятся: массив, запись, множество, файл и др. Все они определяют тип (или типы) некоторой структуры данных.

Массив - упорядоченная структура однотипных данных, хранящая их последовательно. Массив обязательно имеет размеры, определяющие сколько элементов хранится в структуре. До любого элемента в массиве можно добраться по его индексу.

Тип массив определяется конструкцией:
Array [диапазон] of ТипЭлементов;

Диапазон в квадратных скобках указывает значения индексов первого и последнего элемента в стурктуре. Примеры объявления типов и переменных:

TYPE Vector = array of Real; VAR V1: Vector; V2: array of Byte;
Здесь переменная V1 определяется с использованием описанного выше типа Vector; тип переменной V2 конструируется непостредственно на этапе ее описания.

В качетве типа элементов массива можно также указаывать массив, образуя тем самым многомерные структуры. Например, описание двумерной структуры (матрицы) будет выгдядеть следующим образом:
VAR M1: array of array of Byte; Это же самое можно записать гораздо компактнее: VAR M2: array of Byte;
Зжесь массивы M1 и M2 имеют совершенно одинаковую структуру - квадратной матрицы размером 3x3.

Доступ к элемента массива осуществляется путем указания его индекса, например:

Writeln(V1); {вывод на экран первого элемента массива V1} readln(M2);{ввод третьего элемента второй строки матрицы М2}
На этом урок по типам данных закончен, текст был почти полностью скопипастен (ссылочка будет ниже), т.к. я не вижу смысла этот материал рассказывать своими словами. Если хоть немного понятна разница между типами данных, то это уже хорошо.

Понятие типа является одним из фундаментальных понятий любого языка программирования. Объекты (константы , переменные , функции, выражения), которыми оперирует программа, относятся к определенному типу.

Тип - это множество значений, которые могут принимать объекты программы, и совокупность операций, допустимых над этими значениями .

Например , значения 1 и 2 относятся к целочисленному типу , их можно складывать, умножать и выполнять другие арифметические операции . Значения «монитор» и «Паскаль» носят лингвистический характер, они имеют свой набор допустимых операций. В большинстве широкоупотребительных языков могут использоваться только строго определенные, заранее известные типы. Pascal , наряду со стандартными типами, имеющимися в других языках высокого уровня, позволяет программисту образовывать собственные типы.

Все допустимые в языке Паскаль типы подразделяются на две большие группы: простые и сложные (структурированные).

Тип Диапазон Мантисса, знаков Требуемая память (байт)
REAL 2.9*10Е-39..1.7*10Е38 11-12
SINGLE 1.5*10Е-45..3.4*10Е38 7-8
DOUBLE 5.0*10Е-324..1.7*10Е308 15-16
EXTENDED 1.9*10Е-4951..1.1*10Е4932 19-20
COMP -2Е+63+1..2Е+63-1 10-20

Эффективное использование типов SINGLE, DOUBLE, EXTEND, COMP возможно только при включенной директиве {$N+}. По умолчанию она находится в выключенном состоянии. Для решения инженерно-экономических задач достаточно значений типа REAL.

Пример

Var Res, Summa, Itog: real;

Булевский тип данных описывается идентификатором BOOLEAN. Переменные и константы этого типа могут принимать только одно из двух значений: TRUE (истина) или FALSE (ложь).

Пример

Var Sel1, Sel2: boolean;

A,B,C,D: boolean;

Выражения булевского типа занимают в памяти 1 байт и используются в логических выражениях и выражениях отношения, а также для управления порядком выполнения операторов программы.

Литерный (символьный) тип описывается стандартным идентификатором CHAR. Константы и переменные этого типа могут принимать одно из значений кодовой таблицы ASCII. Значение константы или переменной этого типа заключается в апострофы.

Например , Var Bukva, Znak, Simvol: char;

Bukva:=’A’; Znak:=’+’; Simvol:=’!’

Переменные символьного типа занимают в памяти 1 байт. Использование данных типа char в арифметических выражениях запрещено. К литерным значениям могут применяться операции сравнения, результат при этом зависит от номера литерной переменной или константы в кодовой таблице.

Кроме стандартных типов данных, Паскаль поддерживает скалярные типы, определенные пользователем . К ним относятся перечисляемый и интервальный типы . Данные этих типов занимают в памяти 1 байт, поэтому любой пользовательский тип не может содержать более 255 элементов. Их применение значительно улучшает наглядность программы, делает более легким поиск ошибок и экономит память.

Перечисляемый тип задается непосредственно перечислением всех значений, которые может принимать переменная данного типа. Отдельные значения указываются через запятую, а весь список заключается в круглые скобки.

Формат

Type <имя типа>=(<значение1, значение2, ..., значениеN>);

Var <идентификатор, ...>: < имя типа>;

Пример

Type Season =(Spring, Summer, Autumn, Winter);

Var S1, S2: Season;

Autumn: (September, October, Nowember);

В данном примере приведен явно описанный тип данных пользователя Season. Определены их значения - обозначения времен года. Переменные S1 и S2 могут принимать только одно из перечисленных значений. Попытка присвоить им любое другое значение вызовет программное прерывание . Третий тип перечисления - анонимный (не имеет имени) и задается перечислением значений в разделе Var. Autumn является переменной этого типа и может принимать значения September, October, Nowember. Таким образом, может быть задан любой тип, но это не всегда приемлемо. Первый способ, безусловно, более понятен и больше соответствует характеру языка Pascal.

Интервальный тип позволяет задавать две константы, определяющие границы диапазона значений для данной переменной. Компилятор при каждой операции с переменной интервального типа генерирует подпрограммы проверки, определяющие, остается ли значение переменной внутри установленного для нее диапазона. Обе константы должны принадлежать одному из стандартных типов, кроме вещественного. Значение первой константы должно быть обязательно меньше значения второй.

Формат

Type <имя типа> = <константа1> .. <константа2>;

Var <идентификатор>: < имя типа>;

Пример

Type Days = 1.. 31;

Var Work_d, Free_d: Days;

В этом примере переменные Work_d, Free_d имеют тип Days и могут принимать любые значения из диапазона 1 . . 31.

Выход из диапазона вызывает программное прерывание.

Можно определить интервальный тип, задав границы диапазона не значениями констант, а их именами:

Const Min = 1; Max = 31;

Type Days = Min .. Max;

Var Work_d, Free_d: Days;

Структурированные типы данных базируются на скалярных типах и могут содержать их различные комбинации. Они определяют упорядоченную совокупность скалярных элементов и характеризуются типом своих компонентов . В языке Паскаль представлены следующие структурированные типы данных:

строка - последовательность символов, заключенная в апострофы;

массив - структурированный тип данных, состоящий из фиксированного количества элементов одного и того же типа, доступ к которым осуществляется по индексу;

множество - набор выбранных по какому-либо признаку или группе признаков объектов, которые можно рассматривать как единое целое;

запись - совокупность фиксированного числа компонентов разного типа;

файл - последовательность компонентов одного типа и одной длины.

Еще двум структурированным типам - процедурному и типу object (объектному) - трудно поставить в соответствие данные в обычном представлении.

Рисунок 1 - Набор основных типов языка Паскаль