Нахождение обратной матрицы. Действия над матрицами

Над такими матрицами производят различные действия: перемножают друг на друга, находят определители, и т.п. Матрица - частный случай массива: если массив может иметь любое количество измерений, то матрицей называют только двумерный массив.

В программировании матрицей также называют двумерный массив. Любой из массивов в программе имеет имя, как если бы это была одна переменная. Чтобы уточнить, какая из ячеек массива имеется в виду, при упоминании его в программе совместно с переменной используют номер ячейки в ней. Как двумерная матрица, так и n-мерный массив в программе может содержать не только числовую, но и символьную, строковую, булевую и иную информацию, но всегда одну и ту же в пределах всего массива.

Обозначаются матрицы заглавными буквами А:MxN, где А – имя матрицы, M– количество строк в матрице, а N– количество столбцов. Элементы – соответствующими строчными буквами с индексами, обозначающими их номер в строке и в столбце a (m, n).

Наиболее часто распространены матрицы прямоугольной формы, хотя в далеком прошлом математики рассматривали и треугольные. Если количество строк и столбцов матрицы одинаково, она называется квадратной. При этом M=N уже имеет наименование порядка матрицы. Матрица, имеющая всего одну строку, именуется строкой. Матрица с всего одним столбцом называется столбцом. Диагональная матрица – это квадратная матрица, в которой не равны нулю только элементы, расположенные по диагонали. Если все элементы равны единице, матрица называется единичной, если нулю – нулевой.

Если в матрице поменять местами строки и столбцы, она станет транспонированной. Если все элементы заменить комплексно-сопряженными, она станет комплексно-сопряженной. Кроме того, существуют и другие виды матриц, определяющиеся условиями, которые накладываются на матричные элементы. Но большинство таких условий применимо только к квадратным .

Видео по теме


Данное методическое пособие поможет Вам научиться выполнять действия с матрицами : сложение (вычитание) матриц, транспонирование матрицы, умножение матриц, нахождение обратной матрицы. Весь материал изложен в простой и доступной форме, приведены соответствующие примеры, таким образом, даже неподготовленный человек сможет научиться выполнять действия с матрицами. Для самоконтроля и самопроверки Вы можете бесплатно скачать матричный калькулятор >>> .

Я буду стараться минимизировать теоретические выкладки, кое-где возможны объяснения «на пальцах» и использование ненаучных терминов. Любители основательной теории, пожалуйста, не занимайтесь критикой, наша задача – научиться выполнять действия с матрицами .

Для СВЕРХБЫСТРОЙ подготовки по теме (у кого «горит») есть интенсивный pdf-курс Матрица, определитель и зачёт!

Матрица – это прямоугольная таблица каких-либо элементов . В качестве элементов мы будем рассматривать числа, то есть числовые матрицы. ЭЛЕМЕНТ – это термин. Термин желательно запомнить, он будет часто встречаться, не случайно я использовал для его выделения жирный шрифт.

Обозначение: матрицы обычно обозначают прописными латинскими буквами

Пример: рассмотрим матрицу «два на три»:

Данная матрица состоит из шести элементов :

Все числа (элементы) внутри матрицы существуют сами по себе, то есть ни о каком вычитании речи не идет:

Это просто таблица (набор) чисел!

Также договоримся не переставлять числа, если иного не сказано в объяснениях. У каждого числа свое местоположение, и перетасовывать их нельзя!

Рассматриваемая матрица имеет две строки:

и три столбца:

СТАНДАРТ : когда говорят о размерах матрицы, то сначала указывают количество строк, а только потом – количество столбцов. Мы только что разобрали по косточкам матрицу «два на три».

Если количество строк и столбцов матрицы совпадает, то матрицу называют квадратной , например: – матрица «три на три».

Если в матрице один столбец или одна строка , то такие матрицы также называют векторами .

На самом деле понятие матрицы мы знаем еще со школы, рассмотрим, например точку с координатами «икс» и «игрек»: . По существу, координаты точки записаны в матрицу «один на два». Кстати, вот Вам и пример, почему порядок чисел имеет значение: и – это две совершенно разные точки плоскости.

Теперь переходим непосредственно к изучению действий с матрицами :

1) Действие первое. Вынесение минуса из матрицы (внесение минуса в матрицу) .

Вернемся к нашей матрице . Как вы наверняка заметили, в данной матрице слишком много отрицательных чисел. Это очень неудобно с точки зрения выполнения различных действий с матрицей, неудобно писать столько минусов, да и просто в оформлении некрасиво выглядит.

Вынесем минус за пределы матрицы, сменив у КАЖДОГО элемента матрицы знак :

У нуля, как Вы понимаете, знак не меняется, ноль – он и в Африке ноль.

Обратный пример: . Выглядит безобразно.

Внесем минус в матрицу, сменив у КАЖДОГО элемента матрицы знак :

Ну вот, гораздо симпатичнее получилось. И, самое главное, выполнять какие-либо действия с матрицей будет ПРОЩЕ. Потому что есть такая математическая народная примета: чем больше минусов – тем больше путаницы и ошибок .

2) Действие второе. Умножение матрицы на число .

Пример:

Всё просто, для того чтобы умножить матрицу на число, нужно каждый элемент матрицы умножить на данное число. В данном случае – на тройку.

Еще один полезный пример:

– умножение матрицы на дробь

Сначала рассмотрим то, чего делать НЕ НАДО :

Вносить дробь в матрицу НЕ НУЖНО, во-первых, это только затрудняет дальнейшие действия с матрицей, во-вторых, затрудняет проверку решения преподавателем (особенно, если – окончательный ответ задания).

И, тем более, НЕ НАДО делить каждый элемент матрицы на минус семь:

Из статьи Математика для чайников или с чего начать , мы помним, что десятичных дробей с запятой в высшей математике стараются всячески избегать.

Единственное, что желательно сделать в этом примере – это внести минус в матрицу:

А вот если бы ВСЕ элементы матрицы делились на 7 без остатка , то тогда можно (и нужно!) было бы поделить.

Пример:

В этом случае можно и НУЖНО умножить все элементы матрицы на , так как все числа матрицы делятся на 2 без остатка .

Примечание: в теории высшей математики школьного понятия «деление» нет. Вместо фразы «это поделить на это» всегда можно сказать «это умножить на дробь». То есть, деление – это частный случай умножения.

3) Действие третье. Транспонирование матрицы .

Для того чтобы транспонировать матрицу, нужно ее строки записать в столбцы транспонированной матрицы.

Пример:

Транспонировать матрицу

Строка здесь всего одна и, согласно правилу, её нужно записать в столбец:

– транспонированная матрица.

Транспонированная матрица обычно обозначается надстрочным индексом или штрихом справа вверху.

Пошаговый пример:

Транспонировать матрицу

Сначала переписываем первую строку в первый столбец:

Потом переписываем вторую строку во второй столбец:

И, наконец, переписываем третью строку в третий столбец:

Готово. Грубо говоря, транспонировать – это значит повернуть матрицу набок.

4) Действие четвертое. Сумма (разность) матриц .

Сумма матриц действие несложное.
НЕ ВСЕ МАТРИЦЫ МОЖНО СКЛАДЫВАТЬ. Для выполнения сложения (вычитания) матриц, необходимо, чтобы они были ОДИНАКОВЫМИ ПО РАЗМЕРУ.

Например, если дана матрица «два на два», то ее можно складывать только с матрицей «два на два» и никакой другой!

Пример:

Сложить матрицы и

Для того чтобы сложить матрицы, необходимо сложить их соответствующие элементы :

Для разности матриц правило аналогичное, необходимо найти разность соответствующих элементов .

Пример:

Найти разность матриц ,

А как решить данный пример проще, чтобы не запутаться? Целесообразно избавиться от лишних минусов, для этого внесем минус в матрицу :

Примечание: в теории высшей математики школьного понятия «вычитание» нет. Вместо фразы «из этого вычесть это» всегда можно сказать «к этому прибавить отрицательное число». То есть, вычитание – это частный случай сложения.

5) Действие пятое. Умножение матриц .

Какие матрицы можно умножать?

Чтобы матрицу можно было умножить на матрицу нужно, чтобы число столбцов матрицы равнялось числу строк матрицы .

Пример:
Можно ли умножить матрицу на матрицу ?

Значит, умножать данные матрицы можно.

А вот если матрицы переставить местами, то, в данном случае, умножение уже невозможно!

Следовательно, выполнить умножение невозможно:

Не так уж редко встречаются задания с подвохом, когда студенту предлагается умножить матрицы, умножение которых заведомо невозможно.

Следует отметить, что в ряде случаев можно умножать матрицы и так, и так.
Например, для матриц, и возможно как умножение , так и умножение

Матрицей размерности называется таблица чисел , содержащая строк и столбцов. Числа называются элементами этой матрицы, где – номер строки, – номер столбца, на пересечении которых стоит данный элемент. Матрица, содержащая строк и столбцов, имеет вид: .

Виды матриц:

1) при – квадратная , причем называют порядком матрицы ;

2) квадратная матрица, у которой все недиагональные элементы равны нулю

диагональная ;

3) диагональная матрица, у которой все диагональные элементы равны

единице – единичная и обозначается ;

4) при – прямоугольная ;

5) при – матрица-строка (вектор-строка);

6) при – матрица-столбец (вектор-столбец);

7) при всех – нулевая матрица.

Заметим, что основной числовой характеристикой квадратной матрицы является ее определитель. Определитель, соответствующий матрице -го порядка, также имеет -ый порядок.

Определителем матрицы 1-го порядка называется число .

Определителем матрицы 2-го порядка называется число . (1.1)

Определителем матрицы 3-го порядка называется число . (1.2)

Приведем необходимые для дальнейшего изложения определения.

Минором М ij элемента а ij матрицы n- гопорядка А называется определитель матрицы (n-1)- гопорядка, полученной из матрицы А путем вычеркивания i -ой строки и j -го столбца.

Алгебраическим дополнением А ij элемента а ij матрицы n - гопорядка А называется минор этого элемента, взятый со знаком .

Сформулируем основные свойства определителей, присущие определителям всех порядков и упрощающие их вычисление.

1. При транспонировании матрицы ее определитель не меняется.

2. При перестановке двух строк (столбцов) матрицы ее определитель меняет знак.

3. Определитель, имеющий две пропорциональные (равные) строки (столбца), равен нулю.

4. Общий множитель элементов какой-либо строки (столбца) определителя можно вынести за знак определителя.

5. Если элементы какой-либо строки (столбца) определителя представляют собой сумму двух слагаемых, то определитель может быть разложен на сумму двух соответствующих определителей.

6. Определитель не изменится, если к элементам любой его строки (столбца) прибавить соответствующие элементы другой его строки (столбца), предварительно умноженные на любое число.

7. Определитель матрицы равен сумме произведений элементов любой его строки (столбца) на алгебраические дополнения этих элементов.

Поясним данное свойство на примере определителя 3-го порядка. В данном случае свойство 7 означает, что – разложение определителя по элементам 1-ой строки. Заметим, что для разложения выбирают ту строку (столбец), где есть нулевые элементы, так как соответствующие им слагаемые в разложении обращаются в ноль.

Свойство 7 представляет собой теорему о разложении определителя, сформулированную Лапласом.

8. Сумма произведений элементов какой-либо строки (столбца) определителя на алгебраические дополнения соответствующих элементов другой его строки (столбца) равна нулю.

Последнее свойство часто называют псевдоразложением определителя.

Вопросы для самопроверки.

1. Что называется матрицей?

2. Какая матрица называется квадратной? Что понимается под ее порядком?

3. Какая матрица называется диагональной, единичной?

4. Какая матрица называется матрицей-строкой и матрицей-столбцом?

5. Что является основной числовой характеристикой квадратной матрицы?

6. Какое число называется определителем 1-го, 2-го и 3-го порядка?

7. Что называется минором и алгебраическим дополнением элемента матрицы?

8. Каковы основные свойства определителей?

9. С помощью какого свойства можно вычислить определитель любого порядка?

Действия над матрицами (схема 2)

На множестве матриц определен ряд операций, основными среди которых являются следующие:

1) транспонирование – замена строк матрицы на столбцы, а столбцов на строки;

2) умножение матрицы на число производится поэлементно, то есть , где , ;

3) сложение матриц, определенное только для матриц одной размерности;

4) умножение двух матриц, определенное только для согласованных матриц.

Суммой (разностью) двух матриц называется такая результирующая матрица, каждый элемент которой равен сумме (разности) соответствующих элементов матриц-слагаемых.

Две матрицы называются согласованными , если количество столбцов первой из них равно количеству строк другой. Произведением двух согласованных матриц и называется такая результирующая матрица , что , (1.4)

где , . Отсюда следует, что элемент -ой строки и -го столбца матрицы равен сумме попарных произведений элементов -ой строки матрицы на элементы -го столбца матрицы .

Произведение матриц не коммутативно, то есть А . В В . А. Исключение составляет, например, произведение квадратных матриц на единичную А . Е = Е . А.

Пример 1.1. Перемножить матрицы A и B, если:

.

Решение. Так как матрицы согласованные (количество столбцов матрицы равно количеству строк матрицы ), то воспользуемся формулой (1.4):

Вопросы для самопроверки.

1. Какие действия осуществляются над матрицами?

2. Что называется суммой (разностью) двух матриц?

3. Что называется произведением двух матриц?

Метод Крамера решения квадратных систем линейных алгебраических уравнений (схема 3)

Дадим ряд необходимых определений.

Система линейных уравнений называется неоднородной , если хотя бы один ее свободный член отличен от нуля, и однородной , если все ее свободные члены равны нулю.

Решением системы уравнений называется упорядоченный набор чисел, который, будучи подставленным вместо переменных в систему, обращает каждое ее уравнение в тождество.

Система уравнений называется совместной , если она имеет хотя бы одно решение, и несовместной , если она решений не имеет.

Совместная система уравнений называется определенной , если она имеет единственное решение, и неопределенной , если она имеет более одного решения.

Рассмотрим неоднородную квадратную систему линейных алгебраических уравнений, имеющую следующий общий вид:

. (1.5) Главной матрицей системы линейных алгебраических уравнений называется матрица, составленная из коэффициентов, стоящих при неизвестных: .

Определитель главной матрицы системы называется главным определителем и обозначается .

Вспомогательный определитель получается из главного определителя путем замены -го столбца на столбец свободных членов.

Теорема 1.1 (теорема Крамера). Если главный определитель квадратной системы линейных алгебраических уравнений отличен от нуля, то система имеет единственное решение, вычисляемое по формулам:

Если главный определитель , то система либо имеет бесконечное множество решений (при всех нулевых вспомогательных определителях), либо вообще решения не имеет (при отличии от нуля хотя бы одного из вспомогательных определителей)

В свете приведенных выше определений теорема Крамера может быть сформулирована иначе: если главный определитель системы линейных алгебраических уравнений отличен от нуля, то система является совместной определенной и при этом ; если главный определитель нулевой, то система является либо совместной неопределенной (при всех ), либо несовместной (при отличии хотя бы одного из от нуля).

После этого следует провести проверку полученного решения.

Пример 1.2. Решить систему методом Крамера

Решение. Так как главный определитель системы

отличен от нуля, то система имеет единственное решение. Вычислим вспомогательные определители

Воспользуемся формулами Крамера (1.6): , ,

Вопросы для самопроверки.

1. Что называется решением системы уравнений?

2. Какая система уравнений называется совместной, несовместной?

3. Какая система уравнений называется определенной, неопределенной?

4. Какая матрица системы уравнений называется главной?

5. Как вычислить вспомогательные определители системы линейных алгебраических уравнений?

6. В чем состоит суть метода Крамера решения систем линейных алгебраических уравнений?

7. Какой может быть система линейных алгебраических уравнений, если ее главный определитель равен нулю?

Решение квадратных систем линейных алгебраических уравнений методом обратной матрицы (схема 4)

Матрица, имеющая отличный от нуля определитель, называется невырожденной ; имеющая определитель равный нулю – вырожденной .

Матрица называется обратной для заданной квадратной матрицы , если при умножении матрицы на обратную ей как справа, так и слева, получается единичная матрица, то есть . (1.7)

Заметим, что в данном случае произведение матриц и коммутативно.

Теорема 1.2. Необходимым и достаточным условием существования обратной матрицы для заданной квадратной матрицы, является отличие от нуля определителя заданной матрицы

Если главная матрица системы оказалась при проверке вырожденной, то для нее не существует обратной, и рассматриваемый метод применить нельзя.

Если главная матрица невырожденная, то есть определитель 0, то для нее можно найти обратную матрицу по следующему алгоритму.

1. Вычислить алгебраические дополнения всех элементов матрицы .

2. Выписать найденные алгебраические дополнения в матрицу транспонированно.

3. Составить обратную матрицу по формуле: (1.8)

4. Сделать проверку правильности найденной матрицы А-1 согласно формуле (1.7). Заметим, что данная проверка может быть включена в итоговую проверку самого решения системы.

Система (1.5) линейных алгебраических уравнений может быть представлена в виде матричного уравнения: , где – главная матрица системы, – столбец неизвестных, – столбец свободных членов. Умножим это уравнение слева на обратную матрицу , получим:

Так как по определению обратной матрицы , то уравнение принимает вид или . (1.9)

Таким образом, чтобы решить квадратную систему линейных алгебраических уравнений нужно столбец свободных членов умножить слева на матрицу, обратную для главной матрицы системы. После этого следует сделать проверку полученного решения.

Пример 1.3. Решить систему методом обратной матрицы

Решение. Вычислим главный определитель системы

. Следовательно, матрица невырожденная и обратная к ней матрица существует.

Найдём алгебраические дополнения всех элементов главной матрицы :

Запишем алгебраические дополнения транспонированно в матрицу

. Воспользуемся формулами (1.8) и (1.9) для нахождения решения системы

Вопросы для самопроверки.

1. Какая матрица называется вырожденной, невырожденной?

2. Какая матрица называется обратной для заданной? Каково условие ее существования?

3. Каков алгоритм нахождения обратной матрицы для заданной?

4. Какому матричному уравнению эквивалентна система линейных алгебраических уравнений?

5. Как решить систему линейных алгебраических уравнений с помощью обратной матрицы для главной матрицы системы?

Исследование неоднородных систем линейных алгебраических уравнений (схема 5)

Исследование любой системы линейных алгебраических уравнений начинается с преобразования ее расширенной матрицы методом Гаусса. Пусть размерность главной матрицы системы равна .

Матрица называется расширенной матрицей системы, если наряду с коэффициентами при неизвестных, она содержит столбец свободных членов. Следовательно, размерность равна .

Метод Гаусса основан на элементарных преобразованиях , к которым относятся:

– перестановка строк матрицы;

– умножение строк матрицы на отличное от руля число;

– поэлементное сложение строк матрицы;

– вычеркивание нулевой строки;

– транспонирование матрицы (в этом случае преобразования производятся по столбцам).

Элементарные преобразования приводят первоначальную систему к системе, ей эквивалентной. Системы называются эквивалентными , если они имеют одно и то же множество решений.

Рангом матрицы называется наивысший порядок отличных от нуля ее миноров. Элементарные преобразования ранга матрицы не меняют.

На вопрос о наличии решений у неоднородной системы линейных уравнений отвечает следующая теорема.

Теорема 1.3 (теорема Кронекера-Капелли). Неоднородная система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг расширенной матрицы системы равен рангу ее главной матрицы, т. е.

Обозначим количество строк, оставшихся в матрице после метода Гаусса, через (соответственно, в системе остается уравнений). Эти строки матрицы называются базисными .

Если , то система имеет единственное решение (является совместной определенной), ее матрица элементарными преобразованиями приводится к треугольному виду. Такую систему можно решить методом Крамера, с помощью обратной матрицы или универсальным методом Гаусса.

Если (количество переменных в системе больше чем уравнений), матрица элементарными преобразованиями приводится к ступенчатому виду. Такая система имеет множество решений и является совместной неопределенной. В данном случае для нахождения решений системы необходимо выполнить ряд операций.

1. Оставить в левых частях уравнений системы неизвестных (базисные переменные ), остальные неизвестных перенести в правые части (свободные переменные ). После разделения переменных на базисные и свободные система принимает вид:

. (1.10)

2. Из коэффициентов при базисных переменных составить минор (базисный минор ), который должен быть отличен от нуля.

3. Если базисный минор системы (1.10) равен нулю, то одну из базисных переменных заменить на свободную; полученный базисный минор проверить на отличность от нуля.

4. Применяя формулы (1.6) метода Крамера, считая правые части уравнений их свободными членами, найти выражение базисных переменных через свободные в общем виде. Полученный при этом упорядоченный набор переменных системы является ее общим решением .

5. Придавая свободным переменным в (1.10) произвольные значения, вычислить соответствующие значения базисных переменных. Получаемый при этом упорядоченный набор значений всех переменных называется частным решением системы, соответствующим данным значениям свободных переменных. Система имеет бесконечное множество частных решений.

6. Получить базисное решение системы – частное решение, получаемое при нулевых значениях свободных переменных.

Заметим, что количество базисных наборов переменных системы (1.10) равно числу сочетаний из элементов по элементов . Так как каждому базисному набору переменных соответствует свое базисное решение, следовательно, базисных решений у системы также.

Однородная система уравнений всегда совместна, так как имеет хотя бы одно – нулевое (тривиальное) решение. Для того чтобы однородная система линейных уравнений с переменными имела ненулевые решения, необходимо и достаточно, чтобы ее главный определитель был равен нулю. Это означает, что ранг ее главной матрицы меньше числа неизвестных . В этом случае исследование однородной системы уравнений на общее и частные решения проводится аналогично исследованию неоднородной системы. Решения однородной системы уравнений обладают важным свойством: если известны два различных решения однородной системы линейных уравнений, то их линейная комбинация также является решением этой системы. Нетрудно убедиться в справедливости следующей теоремы.

Теорема 1.4. Общее решение неоднородной системы уравнений представляет собой сумму общего решения соответствующей однородной системы и некоторого частного решения неоднородной системы уравнений

Пример 1.4.

Исследовать заданную систему и найти одно частное решение:

Решение. Выпишем расширенную матрицу системы и применим к ней элементарные преобразования:

. Так как и , то по теореме 1.3 (Кронекера-Капелли) заданная система линейных алгебраических уравнений совместна. Количество переменных , т. е. , значит, система является неопределённой. Количество базисных наборов переменных системы равно

. Следовательно, базисными могут быть 6 комплектов переменных: . Рассмотрим один из них . Тогда систему, полученную в результате метода Гаусса, можно переписать в виде

. Главный определитель . С помощью метода Крамера ищем общее решение системы. Вспомогательные определители

По формулам (1.6) имеем

. Данное выражение базисных переменных через свободные представляет собой общее решение системы:

При конкретных значениях свободных переменных из общего решения получаем частное решение системы. Например, частное решение соответствует значениям свободных переменных . При получаем базисное решение системы

Вопросы для самопроверки.

1. Какая система уравнений называется однородной, неоднородной?

2. Какая матрица называется расширенной?

3. Перечислите основные элементарные преобразования матриц. Какой метод решения систем линейных уравнений основан на этих преобразованиях?

4. Что называется рангом матрицы? Каким способом можно его вычислить?

5. О чем говорит теорема Кронекера-Капелли?

6. К какому виду может быть приведена система линейных алгебраических уравнений в результате ее решения методом Гаусса? Что это означает?

7. Какие строки матрицы называются базисными?

8. Какие переменные системы называются базисными, какие свободными?

9. Какое решение неоднородной системы называется частным?

10.Какое ее решение называется базисным? Сколько базисных решений имеет неоднородная система линейных уравнений?

11.Какое решение неоднородной системы линейных алгебраических уравнений называется общим? Сформулируйте теорему об общем решении неоднородной системы уравнений.

12. Каковы основные свойства решений однородной системы линейных алгебраических уравнений?

1-й курс, высшая математика, изучаем матрицы и основные действия над ними. Здесь мы систематизируем основные операции, которые можно проводить с матрицами. С чего начать знакомство с матрицами? Конечно, с самого простого - определений, основных понятий и простейших операций. Заверяем, матрицы поймут все, кто уделит им хотя бы немного времени!

Определение матрицы

Матрица – это прямоугольная таблица элементов. Ну а если простым языком – таблица чисел.

Обычно матрицы обозначаются прописными латинскими буквами. Например, матрица A , матрица B и так далее. Матрицы могут быть разного размера: прямоугольные, квадратные, также есть матрицы-строки и матрицы-столбцы, называемые векторами. Размер матрицы определяется количеством строк и столбцов. Например, запишем прямоугольную матрицу размера m на n , где m – количество строк, а n – количество столбцов.

Элементы, для которых i=j (a11, a22, .. ) образуют главную диагональ матрицы, и называются диагональными.

Что можно делать с матрицами? Складывать/вычитать , умножать на число , умножать между собой , транспонировать . Теперь обо всех этих основных операциях над матрицами по порядку.

Операции сложения и вычитания матриц

Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера. Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы . Приведем пример. Выполним сложение двух матриц A и В размером два на два.

Вычитание выполняется по аналогии, только с противоположным знаком.

На произвольное число можно умножить любую матрицу. Чтобы сделать это, нужно умножить на это число каждый ее элемент. Например, умножим матрицу A из первого примера на число 5:

Операция умножения матриц

Перемножить между собой удастся не все матрицы. Например, у нас есть две матрицы - A и B. Их можно умножить друг на друга только в том случае, если число столбцов матрицы А равно числу строк матрицы В. При этом каждый элемент получившейся матрицы, стоящий в i-ой строке и j-м столбце, будет равен сумме произведений соответствующих элементов в i-й строке первого множителя и j-м столбце второго . Чтобы понять этот алгоритм, запишем, как умножаются две квадратные матрицы:

И пример с реальными числами. Умножим матрицы:

Операция транспонирования матрицы

Транспонирование матрицы – это операция, когда соответствующие строки и столбцы меняются местами. Например, транспонируем матрицу A из первого примера:

Определитель матрицы

Определитель, о же детерминант – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!

Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.
Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.

Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.

А если матрица три на три? Тут уже посложнее, но справиться можно.

Для такой матрицы значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.

К счастью, вычислять определители матриц больших размеров на практике приходится редко.

Здесь мы рассмотрели основные операции над матрицами. Конечно, в реальной жизни можно ни разу так и не встретить даже намека на матричную систему уравнений или же наоборот - столкнуться с гораздо более сложными случаями, когда придется действительно поломать голову. Именно для таких случаев и существует профессиональный студенческий сервис . Обращайтесь за помощью, получайте качественное и подробное решение, наслаждайтесь успехами в учебе и свободным временем.

Действия над матрицой

1. Сложение и вычитание матриц :

Сложение и вычитание матриц - одно из простейших действий над ними, т.к. необходимо сложить или отнять соответствующие элементы двух матриц. Главное помнить, что складывать и вычитать можно только матрицы одинаковых размеров , т.е. тех, у которых одинаковое количество строк и одинаковое количество столбцов.

Например, пусть даны две матрицы равного размера 2х3, т.е. с двумя строками и тремя столбцами:

Сумма двух матриц:

Разность двух матриц:

2. Умножение матрицы на число:

Умножение матрицы на число - процесс, заключающийся в умножении числа на каждый элемент матрицы.

Например, пусть дана матрица А:

Умножим число 3 на матрицу А:

3. Умножение двух матриц:

Умножение двух матриц возможно только при условии, что число столбцов первой матрицы должно равняться числу строк второй. Новая матрица, которая получится при умножении матриц, будет состоять из количества строк, равное количеству столбцов первой матрицы и количества столбцов, равное количеству строк второй матрицы.

Предположим есть две матрицы размерами 3х4 и 4х2, т.е. в первой матрице 3 строки и 4 столбца, а во второй матрице 4 строки и 2 столбца. Т.к. количество столбцов первой матрицы (4), равно количеству строк второй матрицы (4), то матрицы можно перемножить, новая матрица будет иметь размер: 3х2, т.е. 3 строки и 2 столбца.

Можно представить все это в виде схемы:

После того как Вы определились с размером новой матрицы, которая получится при умножении двух матриц, можно приступить к заполнению этой матрицы элементами. Если Вам надо заполнить первую строчку первого столбца этой матрицы, то надо каждый элемент первой строки первой матрицы умножать на каждый элемент первого столбца второй матрицы, если будем заполнять вторую строку первого столбца соответственно будем брать каждый элемент второй строки первой матрицы и умножать на первый столбец второй матрицы и т.д.

Посмотрим как это выглядит на схеме:

Посмотрим как это выглядит на примере:

Даны две матрицы:

Найдем произведение этих матриц:

4. Деление матриц :

Деление матриц - действие над матрицами, которое в этом понятии не встретишь в учебниках. Но если есть необходимость разделить матрицу А на матрицу В, то в этом случае используют одно из свойств степеней:

Согласно этому свойству разделим матрицу А на матрицу В:

В результате задача о делении матриц сводиться к умножению обратной матрицы матрице В на матрицу А.

Обратная матрица

Пусть имеется квадратная матрица n-го порядка

Матрица А -1 называется обратной матрицей по отношению к матрице А, если А*А -1 = Е, где Е - единичная матрица n-го порядка.

Единичная матрица - такая квадратная матрица, у которой все элементы по главной диагонали, проходящей от левого верхнего угла к правому нижнему углу, - единицы, а остальные - нули, например:

Обратная матрица может существоватьтолько для квадратных матриц т.е. для тех матриц, у которых число строк и столбцов совпадают.

Теорема условия существования обратной матрицы

Для того чтобы матрица имела обратную матрицу необходимо и достаточно, чтобы она была невырожденной.

Матрица А = (А1, А2,...А n) называется невырожденной , если векторы-столбцы являются линейно независимыми. Число линейно независимых векторов-столбцов матрицы называется рангом матрицы . Поэтому можно сказать, что для того, чтобы существовала обратная матрица, необходимо и достаточно, чтобы ранг матрицы равнялся ее размерности, т.е. r = n.

Алгоритм нахождения обратной матрицы

    Записать в таблицу для решения систем уравнений методом Гаусса матрицу А и справа (на место правых частей уравнений) приписать к ней матрицу Е.

    Используя преобразования Жордана, привести матрицу А к матрице, состоящей из единичных столбцов; при этом необходимо одновременно преобразовать матрицу Е.

    Если необходимо, то переставить строки (уравнения) последней таблицы так, чтобы под матрицей А исходной таблицы получилась единичная матрица Е.

    Записать обратную матрицу А -1 , которая находится в последней таблице под матрицей Е исходной таблицы.

Пример 1

Для матрицы А найти обратную матрицу А -1

Решение: Записываем матрицу А и справа приписываем единичную матрицу Е. Используя преобразования Жордана, приводим матрицу А к единичной матрице Е. Вычисления приведены в таблице 31.1.

Проверим правильность вычислений умножением исходной матрицы А и обратной матрицы А -1 .

В результате умножения матриц получилась единичная матрица. Следовательно, вычисления произведены правильно.

Ответ:

Определители матриц (Детерминанты) Определители матриц (Детерминанты)

Определители матриц, способ № 1:

Определителем квадратной матрицы (det A) называется число, которое может быть вычислено по элементам матрицы по формуле:

Где М 1k - определитель матрицы (детерминант), полученной из исходной матрицы вычеркиванием первой строки и k - oго столбца. Следует обратить внимание на то, чтоопределители имеют только квадратные матрицы , т.е. матрицы, у которых число строк равно числу столбцов. Первая формула позволяет вычислить определитель матрицы по первой строке, также справедлива формула вычисления определителя матрицы по первому столбцу:

Вообще говоря, определитель матрицы может вычисляться по любой строке или столбцуматрицы , т.е. справедлива формула:

Очевидно, что различные матрицы могут иметь одинаковые определители . Определитель единичной матрицы равен 1. Для указанной матрицы А число М 1k называется дополнительным минором элемента матрицы a 1k . Таким образом, можно заключить, что каждый элемент матрицы имеет свой дополнительный минор. Дополнительные миноры существуют только в квадратных матрицах .

Дополнительный минор произвольного элемента квадратной матрицы a ij равенопределителю матрицы , полученной из исходной матрицы вычеркиванием i-ой строки и j-го столбца.

Определители матриц, способ № 2:

Определителем матрицы первого порядка, или определителем первого порядка, называется элемент а 11:

Определителем матрицы второго порядка, или определителем второго порядка, называется число, которое вычисляется по формуле:

Определителем матрицы третьего порядка, или определителем третьего порядка, называется число, которое вычисляется по формуле:

Это число представляет алгебраическую сумму, состоящую из шести слагаемых. В каждое слагаемое входит ровно по одному элементу из каждой строки и каждого столбца матрицы . Каждое слагаемое состоит из произведения трех сомножителей.

Знаки, с которыми члены определителя матрицы входят в формулу нахождения определителя матрицы третьего порядка можно определить, пользуясь приведенной схемой, которая называется правилом треугольников или правилом Сарруса. Первые три слагаемые берутся со знаком плюс и определяются из левого рисунка, а последующие три слагаемые берутся со знаком минус и определяются из правого рисунка.

Замечание:

Вычисление определителей матриц четвертого и более высокого порядка приводит к большим вычислениям, так как:

    для первого порядка мы находим одно слагаемое, состоящее из одного сомножителя;

    для нахождения определителя матрицы второго порядка нужно вычислить алгебраическую сумму из двух слагаемых, где каждое слагаемое состоит из произведения двух сомножителей;

    для нахождения определителя матрицы третьего порядка нужно вычислить алгебраическую сумму из шести слагаемых, где каждое слагаемое состоит из произведения трех сомножителей;

    для нахождения определителя матрицы четвертого порядка нужно вычислить алгебраическую сумму из двадцати четырех слагаемых, где каждое слагаемое состоит из произведения четырех сомножителей и т.д.

Определить количество слагаемых, для нахождения определителя матрицы , в алгебраической сумме, можно вычислив факториал: 1!=1 2!=1×2=2 3!=1×2×3=6 4!=1×2×3×4=24 5! = 1 × 2 × 3 × 4 × 5 = 120 ...